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ABSTRACT

We report on the crystal morphology and Raman scattering features of high structural quality GaSb1�xBix alloys grown by molecular beam
epitaxy with a high Bi content (x up to �0.10). The Raman spectra were measured at room temperature with different laser excitation
wavelengths of 532 nm, 633 nm, and 785 nm. We observed well-defined Bi-induced Raman peaks associated with atomic Bin clusters and
GaBi vibrational modes. Remarkably, some Bi-induced Raman modes were strongly enhanced when the laser energy was selected near an
optical transition for the 5.8%Bi sample. This effect was attributed to a Raman resonant effect near an excited optical transition of the
GaSbBi layer and has been used to identify the nature of the observed Raman peaks.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008100

Bismuth-containing III–V alloys have drawn considerable atten-
tion in recent years, owing to their potential for near-to-mid-infrared
optoelectronics and spintronics applications.1–7 Importantly, the intro-
duction of Bi into III–V alloys results in a large bandgap reduction
and spin–orbit splitting. However, Bi atoms are difficult to incorporate
into III–V alloys due to their large size, making the growth of III–V
bismides challenging and leading to strict requirements for growth at
low temperatures at near-stoichiometric V/III flux ratios.2–4,8 On the
other hand, growth at low temperatures can trigger the formation of
various crystalline defects, which have a significant impact on the opti-
cal properties. While the majority of early studies have been focused
on GaAsBi compounds, the incorporation of Bi into GaSb-based alloys
has recently attracted much attention owing to possible applications in
the mid-infrared region. So far, most studies concerning GaSbBi have
focused on the growth process, structural quality, and optical proper-
ties, such as absorption, photoreflectance, and photolumines-
cence.2,4,9,10 Yet, there are no reports on Raman spectroscopy for
GaSbBi layers demonstrating well-defined Bi-related vibrational
modes.1,10 In fact, only a very weak shoulder around 213–215 cm�1

has been previously reported in the Raman spectra of dilute GaSbBi
layers (0.4%Bi) associated with a GaBi vibrational Raman mode.10 On
the other hand, there are several reports on Raman spectroscopy of

GaAsBi layers and other Bi-containing materials.11–19 Despite these
investigations, the interpretation of GaBi-related Raman peaks is still
being unveiled. In fact, as the bulk GaBi crystal has not been synthe-
sized, the identification of GaBi-related vibrational Raman modes is
usually a difficult task. In general, two Bi-related Raman modes are
usually observed around 185 and 210 cm�1 and are associated with
TO(C) and LO(C) GaBi modes.15,17 However, this interpretation is
not in agreement with several predictions,18,20,21 which have
pointed out a separation of TO(C) and LO(C) GaBi vibrational
modes of less than 10 cm�1. Moreover, atomic Bin clusters and
disorder-activated modes have been suggested to further compli-
cate the Raman spectra.18,19,22 Resolving these issues calls for more
extensive studies in order to understand the nature of Raman
peaks in Bi-containing III–V alloys.

In this Letter, we have investigated the structural and Raman
spectroscopic properties of high structural quality GaSbBi alloys grown
by molecular beam epitaxy (MBE) with a high Bi content. We
observed well-defined Bi-induced Raman peaks associated with atomic
Bin clusters and GaBi vibrational modes. Remarkably, we have shown
that by selecting the laser energy close to an excited transition of the
GaSbBi semiconductor material, several Bi-induced Raman vibrational
modes become clearly enhanced. We explain this effect via a resonant
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Raman effect near the E1 interband transition. In particular, we have
used the resonant Raman effect and polarized Raman spectroscopy to
identify the nature of the observed Raman peaks.

Three GaSbBi samples (B1, B2, and B3) and a reference GaSb
sample (R) were grown by MBE on n-GaSb(100) substrates. All sam-
ples were grown at a temperature of 350 �C following the growth pro-
cedure described in our previous work,4 with the exception that the
substrates were rotated during growth to produce uniform composi-
tions across the wafers. The GaSbBi structures were grown under
near-stoichiometric Sb/Ga flux ratios and different Bi/Ga beam equiv-
alent pressure ratios of 0.08 (B1), 0.11 (B2), and 0.14 (B3). The growth
temperatures were measured using a thermocouple and are consistent
with our previous work.4

High-resolution x-ray diffraction (HR-XRD) x-2h scans from
the (400) reflection were used to investigate the structural quality. The
Bi contents were determined by fitting simulations based on the
dynamical theory of x-ray diffraction to the HR-XRD data. Fully pseu-
domorphic layers and Vegard’s law with a lattice constant of 6.27 Å9

for the GaBi binary were assumed in the simulations. The fully pseu-
domorphic growth was confirmed by reciprocal space mapping
(RSM). The surfaces were characterized by atomic force microscopy
(AFM), to exclude effects from surface imperfections.

Polarization-dependent Raman spectra were measured at room
temperature using a Renishaw inVia Qontor Raman microscope with
a 785nm laser. The measurements were performed in quasi-
backscattering Porto geometry Z XXð ÞZ and Z XYð ÞZ with the basis
X ¼ ½011�, Y ¼ ½011�, and Z ¼ ½100�. For non-polarized micro-
Raman measurements, we used different laser wavelengths, i.e.,
532 nm, 633nm, and 785nm, and a Horiba LabRAM HR Evolution
system with a 1800 g/mm grating and a 50� objective. In all Raman
experiments, the spectral resolution was �1 cm�1 and the laser power
densities were below 1W/cm2 to avoid sample heating.

Figure 1 compiles the HR-XRD x-2h data (solid lines) overlaid
by their respective simulations (dotted lines) for all the samples

reported. The reference sample R exhibits a single intense and narrow
peak corresponding to the GaSb(400) reflection, indicating that the
grown epilayer is perfectly lattice-matched to the substrate. In fact, the
FWHM of the diffraction peak is only �11.3 arcseconds and the data
can be fitted with high accuracy by assuming an infinitely thick GaSb
layer in the model. In contrast, all the Bi-containing samples (B1–B3)
show clear intense secondary peaks corresponding to the GaSbBi epi-
layers, which are offset from the substrate peak by varying degrees
based on the amount of compressive strain, which is proportional to
the Bi content. In addition, the GaSbBi peaks are surrounded by clear
Pendell€osung oscillations, which indicates high interface quality and
homogeneous Bi content. Based on the simulations, which follow the
experimental data closely, the Bi contents are 5.8% (B1), 8.0% (B2),
and 10.6% (B3). To confirm that no relaxation has occurred, a RSM
from sample B3 was measured and is shown in the top-left inset of
Fig. 1. In the RSM, the substrate and epilayer peaks are aligned on the
in-plane reciprocal space axis, indicating that no relaxation of the epi-
layer has occurred. Since samples B1 and B2 have the same thickness
and lower strain, none of the samples are expected to be relaxed. To
further exclude effects from structural imperfections, the surface qual-
ity was characterized by AFM. All the samples exhibited droplet-free
smooth surfaces, with RMS roughnesses below 0.5nm. A more
detailed AFM analysis can be found in the supplementary material
(cf. Fig. S1).

Figure 2 shows typical room temperature Raman spectra of sam-
ples with different Bi contents (B1–B3) and of the reference GaSb sam-
ple (R) measured with 785nm excitation in the Z XXð ÞZ
configuration. The Raman spectra in the Z XYð ÞZ configuration are
shown in Fig. S2 (see the supplementary material). Raman peaks
around 114 cm�1, 162 cm�1, 235.5 cm�1, and 269 cm�1 are observed
for all samples, which is consistent with peaks observed in the litera-
ture for the bulk GaSb crystal.

These peaks are usually associated with the crystalline GaSb Zinc
blende structure, point group Td 43m, which shows second order:
2TA(X and R) (1116 3 cm�1 and 1176 3 cm�1) and 2TA(W and Q)
(1606 5 cm�1), first order: TO(C) (227.16 1.0 cm�1) and LO(C)

FIG. 1. HR-XRD measurements (solid gray) and simulations (dotted red) from all
the reported samples. The x-2h axis is centered to the GaSb(400) reflection, and
the samples are labeled near the right-hand side axis. The inset shows the RSM
from sample B3 corresponding to the (422) diffraction, with the substrate and epi-
layer peaks designated with S and L.

FIG. 2. Raman spectra for different Bi contents using 785 nm laser excitation mea-
sured in the Z XXð ÞZ configuration.
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(237.16 1.0 cm�1), and second order: TO(X)þTA(X) (2726 3 cm�1)
vibrational modes.23,24 Particularly, the most intense Raman peak
around 235.5 cm�1 is associated with the LO(C) GaSb mode. We
point out that this mode shows a clear red shift with increasing %Bi
(Fig. S3), indicating an increase in compressive strain, in agreement
with the HR-XRD results. Moreover, the linewidth of the LO(C)
GaSb mode increases as the Bi content is increased. These effects
are associated with an increase in disorder with the increasing Bi
content.

In comparison to the Bi-free sample (R), the GaSbBi samples
(B1-B3) show several additional Raman peaks around 136 cm�1,
185 cm�1, 195 cm�1, and 219 cm�1. Particularly, the peak at 219 cm�1

has a higher value than the peak usually associated with the LO(C)
GaBi vibrational mode around 210 cm�1 in GaAsBi layers.15,17

However, the polarized Raman results (Fig. S2) show that this peak
has different polarization behavior from the LO(C) GaSb vibrational
mode, which makes this interpretation partially inconsistent.
Moreover, this peak is at a much higher frequency than the theoretical
value predicted for the LO(C) GaBi Raman mode.20,21

Correspondingly, the Raman peak observed at 185 cm�1, which has
the same polarization as the LO(C) GaSb vibrational mode (Fig. S2),
was previously observed in several studies on GaAsBi15,18,19,25,26 and
was associated with the TO(C) GaBi vibrational mode, which is also
inconsistent with our polarized Raman results. Particularly, this mode
attribution implies a separation of 34 cm�1 between the LO(C) and
TO(C) GaBi modes, which is much larger than the predicted separa-
tion of less than 10 cm�1.18,20,21 Therefore, we attribute the Raman
peak observed around 185 cm�1 to be a convoluted LO(C)þTO(C)
GaBi vibrational mode. This attribution is more consistent with the
previous predictions18,20,21 for the Raman peak positions as well as for
the frequency separation between the TO(C) and LO(C) GaBi modes.
Moreover, instead of the LO(C) GaBi mode, the Raman peak around
219 cm�1 could be associated with GaSb Raman vibrational modes
due to other zone boundaries, such as TO(X) and/or TO(L),24 which
are forbidden by the typical momentum conservation rules for first-
order Raman scattering in GaSb. Observation of the forbidden modes
could be explained by Bi-induced disorder in the lattice, leading to the
relaxation of Raman selection rules, as proposed in several previous
works.24,27 In the resonant condition (Fig. 3), the appearance of the
GaSb-like TO(X or L) phonon mode in the GaSbBi Raman spectra
could be associated with Bi-induced mixing of the GaSb valence band.
A similar effect was observed for the GaAsN semiconductor and
attributed to the N-induced mixing of GaAs conduction bands.28,29

However, a possible contribution of the longitudinal-optical-plasmon-
coupled mode should also be considered. Therefore, further studies
would be necessary for a complete understanding of the nature of this
Raman peak.

At the other end of the spectrum, the Raman peak around
136 cm�1 has too low frequency to be associated with any LO or TO
GaBi modes. In fact, this Raman peak is in the acoustic regime and is
usually associated with disorder activated longitudinal acoustic
(DALA) modes induced by Bi.27 On the other hand, it could also be
attributed to vibration modes of atomic Bin clusters, consistent with
the fact that Bi atoms are not easily incorporated into the crystalline
structure. The Bi incorporation into GaSbBi films has been generally
reported to be over 97% substitutional in the group-V sublattice,9,30

translating to a low concentration of pure atomic Bin clusters, where

some Bi atoms occupy other than substitutional sites. However,
Punkkinen et al.31 reported that Bi clustering in GaAsBi is driven by
the existence of Ga vacancies in the lattice. Moreover, Ga vacancies in
GaSbBi have been recently shown to contribute to large hole densities
in GaSbBi.32 Thus, there is a clear rationale for why such clusters
would exist in these high Bi content GaSbBi materials. Therefore, these
results lead us to tentatively attribute this peak to a combination of
DALA and/or atomic Bi4 cluster modes, which have shown Raman
peaks near the observed peak around 136 cm�1.22 Finally, the peak at
195 cm�1 is not observed in the large majority of literature studies
related to Bi-containing materials. However, a study on Bi-doped
glasses33 and a theoretical prediction22 found a vibrational mode
around 195 cm�1 related to the Bi2 dimer. Therefore, we suggest this
Bi2 mode as the origin of the observed peak at 195 cm�1. We do note
that the higher Bi content as compared to previous studies of other
III–V bismides could favor the formation of Bi2 dimers and, thus,
explain its absence in previous studies.

We have also measured Raman spectra using different excitation
wavelengths of 532 and 633nm. Figure 3 shows the Raman spectra of
sample B1 (5.8%Bi) for all excitation wavelengths. Again, the most
intense Raman peak around 235.5 cm�1 is the LO(C) GaSb mode and
the small peak at 225 cm�1 is associated with the TO(C) GaSb
mode.23 The observation of the TO(C) GaSb mode evidences the pres-
ence of disorder induced by Bi atoms as the TO(C) peak is forbidden
by the selection rules. The spectrummeasured using 532nm excitation
shows the same features as those observed for the 785nm excitation,
but with less distinct peaks and lower signal-to-noise ratios in the
region of Bi-induced modes. Conversely, the Raman spectrum for
633 nm excitation shows particularly distinct peaks related to the Bi-
induced modes.

Remarkably, the Raman peaks at 219, 185, and 136 cm�1 are
strongly enhanced under 633nm excitation. This can be explained by
the resonant Raman effect as the laser excitation at 1.96 eV (633nm) is
near an excited optical transition of the GaSbBi material. Some

FIG. 3. Non-polarized Raman spectra of sample B1 with different excitation wave-
lengths. The intensities have been normalized to the LO(C) GaSb mode.
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theoretical studies on the band structure of GaSbBi34–36 have used the
popular valence band anti-crossing model (VBAC) and have shown a
transition between the LH/HH- valence sub-band and the conduction
band, which would be around the 633nm laser excitation energy for
5.8%Bi. However, Polak et al.37 showed that the VBAC model is less
valid for GaSbBi alloys, owing to the weaker chemical dissimilarity
between Sb and Bi, than, for example, As or P and Bi. In fact, theoreti-
cal calculations based on the density functional theory show that an
interband transition on the K-line has an energy gap near the 633nm
laser energy (i.e., the E1 transition), particularly for a Bi content close
to 5.8%Bi,38,39 which is more likely the resonant transition.

We find the resonant Raman results to be fully consistent with
the above discussion on the nature of observed peaks. Namely, the
136 cm�1 and 185 cm�1 Raman peaks are extremely sensitive to the
resonant condition, have the same polarization as the GaSb LO mode,
and are also observed in GaAsBi layers. Previously, we tentatively
ascribed the 136 cm�1 mode to DALA and/or Bi4 clusters based on
earlier reports.22,27 Considering that this mode is sensitive to the reso-
nant condition, we can now rule out the contribution of atomic Bi4
clusters, as they are not expected to have a resonant optical transition
at the wavelength of 633 nm. Conversely, the modes at 185 cm�1,
TO(C) and LO(C) of GaBi in the GaSbBi alloy, are resonant due to
the E1 gap as expected. Interestingly, the 219 cm�1 peak is also sensi-
tive to the resonant condition, but has different polarization from the
LO(C) GaSb mode. Therefore, we suggest that the 219 cm�1 Raman
peak is associated with other zone boundaries of GaSb Raman vibra-
tional modes, such as TO(X) and TO(L),27 which could be allowed by
increased disorder due to Bi incorporation. Again, this interpretation
is consistent with the polarized Raman spectra. Furthermore, it is
expected that this GaSb vibrational mode could be resonant to the E1
gap absorption of the GaSbBi crystal. Finally, the 195 cm�1 peak is not
sensitive to the resonant condition. In fact, our results indicate that the
195 cm�1 peak has a different nature and could indeed be associated
with the vibration of the dimer Bi2, which is not coupled to vibrational
modes related to GaSb.22,33 As a summary of the above discussion, all
the observed Raman peaks are compiled in Table I.

In conclusion, we have observed several distinct peaks in the
Raman spectra (non-polarized and polarized) of GaSbBi layers, which
are not visible in GaSb grown under similar conditions. We have

observed a resonant Raman effect in a GaSbBi layer with 5.8%Bi using
633 nm excitation, which enhanced some of the Bi-induced Raman
peaks. The resonant Raman effect and polarized Raman results were
used to investigate and characterize the nature of the observed Raman
peaks. Particularly, the Raman peak observed at 185 cm�1 was associ-
ated with a convoluted LO(C)þTO(C) GaBi mode. The Raman peaks
observed at 136 cm�1, 195 cm�1, and 219 cm�1 were associated with
DALA, atomic Bi2 cluster, and TO(X)/TO(L) GaSb phonon modes,
respectively.

See the supplementary material for additional AFM and Raman
measurements supporting the conclusions made in this study.
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