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ABSTRACT
In this paper, we propose a hierarchical Bayesian approach for mod-
eling the evolution of the 7-day moving average for the number of
deaths due to COVID-19 in a country, state or city. The proposed
approach is based on aGaussian process regressionmodel. Themain
advantage of this model is that it assumes that a nonlinear function f
used for modeling the observed data is an unknown random param-
eter in opposite to usual approaches that set up f as being a known
mathematical function. This assumption allows the development of
a Bayesian approach with a Gaussian process prior over f. In order to
estimate the parameters of interest, we develop anMCMC algorithm
based on the Metropolis-within-Gibbs sampling algorithm. We also
present a procedure for making predictions. The proposed method
is illustrated in a case study, in which, we model the 7-day mov-
ing average for the number of deaths recorded in the state of São
Paulo, Brazil. Results obtained show that the proposed method is
very effective in modeling and predicting the values of the 7-day
moving average.

ARTICLE HISTORY
Received 24 July 2021
Accepted 19 April 2022

KEYWORDS
COVID-19; Bayesian
approach; Gaussian process;
predictions; MCMC algorithm

1. Introduction

Especially in the year 2020, many articles were published describing modeling procedures
for the number of cases and/or deaths due to COVID-19 in many countries. The interest
in this kind of modeling lies mainly in projections that these models may provide and
consequently assist government agents in making decisions regarding the intensification
of social isolation, the acquisition of hospital equipment, an increase in the number of
intensive care units in hospitals, among others.

In general, the published works model the accumulated number of cases (or deaths)
by using some nonlinear growth model. For example, Musa et al. [5] considered a simple
exponential growth model to analyze the initial phase of the epidemic of COVID-19 in
Africa, Aviv-Sharon and Aharoni [1] modeled the data from the Philippines and Taiwan
using the generalized logistic model, Vasconcelos et al. [8] applied the Richards growth
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model to the data collected in China, France, Germany, Iran, Italy, South Korea, and Spain,
Wu et al. [10] calibrated the logistic growth model, the generalized logistic growth model,
and the generalized Richards model for the number of cases recorded in China, among
others.

Since the growth in the cumulative number of cases and deaths by COVID-19 has, in
general, presented a heterogeneous evolution over time, this implies that the adjustment of
only one of these growth models may not be adequate to explain the entire study period.
This heterogeneous evolution is due to the occurrence of more than one wave of the pan-
demic or due to the accuracy of the statistical reports on the number of cases and deaths
recorded. For example, the number of cases may present a fast growth if the number of
diagnostic tests is increased. On the other hand, tests that need to be realized to include
the death cases in mortality statistics may take some days. This implies a sub-notification
followed by an over-notification. In addition, the number of cases and deaths may be
sub-notified on the weekends and appear on the statistical reports only a few days after.

An alternative is modeling, for instance, the 7-day moving average in order to mini-
mize the discrepancies that may be contained in the dataset. In this paper, we assume for
the 7-day moving average dataset an additive model composed by a nonlinear function f
plus a random error ε. However, in opposite to the usual approach that is based on set up
f as a known mathematical function, we assume that f is an unknown random parame-
ter. In order to estimate it from the data, we adopt a Bayesian approach putting over the
unknown nonlinear function a Gaussian process prior. That is, we are assuming a prob-
ability distribution over all possible functions that fit a set of points equally well [9]. In
addition, we assume a more hierarchical level putting prior distributions on the param-
eters of the Gaussian process. The main advantage of assuming a Gaussian process prior
over f is that we are estimating f by ‘smooth functions’ obtained by the generation of values
of a multivariate normal distribution with an adequate covariance matrix, and linking the
generated points by lines.

To estimate all parameters of interest, we developed an MCMC algorithm based on
the Metropolis-within-Gibbs sampling algorithm. We also present an MCMC algorithm
for making predictions. The proposed method is illustrated in a case study, in which,
we model the 7-day moving average recorded in the state of São Paulo, Brazil. Results
obtained show that the proposed method is very effective in modeling the values of the
7-day moving average for the number of deaths due to COVID-19. In the course of
481 days of the pandemic, we run the estimation procedure four times, on the 100th,
180th, 280th and 465th days. In these four analyses, the mean square error of the fit-
ted model was smaller than 0.05, indicating a very good performance of the proposed
method.

The three main advantages of the proposed method are:

(1) It is very flexible since it is not restricted to a parametric mathematical function;
(2) Does not need the fit of a set of parametric models followed by the application of a

model comparison procedure;
(3) It is not too difficult to be implemented computationally since the estimation proce-

dure is based on the use of a Metropolis-within-Gibbs sampling algorithm;
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Althoughwedevelop the paperwith a focus on the 7-daymoving average for the number
of deaths, the method also can be used for modeling the moving average for the number
of cases. In addition, the method is not restricted to the 7-day moving average and a user
may use it for modeling a d-day moving average dataset, for d>1.

The remainder of the paper is organized as follows. In Section 2, we present the Bayesian
approach for modeling the 7-day moving average for the number of deaths recorded in a
country, state and/or city. In this section, we also describe the MCMC algorithms used to
estimate the parameters of interest and make predictions. Section 3 presents an applica-
tion of the proposed method to a case study. Section 4 concludes the paper with the final
remarks.

2. Bayesianmodel for 7-daymoving average

Let Dt be the number of deaths by COVID-19 recorded in a country, state or city on the
tth day, for t = 0, . . . ,N, where t = 0 represents the day that the first death was recorded,
and N is the last day considered in the analysis. Consider Yt = 1

7
∑t+6

m=t Dm be the 7-day
moving average of the number of deaths due to the covid-19, for t = 1, . . . , n = N − 6.

Assume that Yt values are generated according to the following additive model

Yt = ft + εt (1)

where ft = f (t) is an unknown function and εt is a random error assumed as being gen-
erated from a normal distribution with mean 0 and variance σ 2, εt ∼ N (0, σ 2), with
cov(εt , εt′) = 0, for t, t′ = 1, . . . , n and t �= t′.

At this point, it is usual to complete the model (1) by setting up ft as a known nonlinear
mathematical function. However, there may be several nonlinear parametric models that
can fit the observed data points equally well. Due to this, it is common to fit a set of can-
didate models and then choose the best model using some model selection criteria, such
as AIC or BIC. That is, the analysis stays limited to the set of models previously chosen by
a user. In addition, the complexity and/or flexibility of the parametric models considered
are limited by the number of parameters in the model.

In order to give flexibility to the modeling and not to be restricted to a set of para-
metric models, hereafter, we assume that the unknown nonlinear function is a parameter
of interest. To estimate these parameters from an observed dataset, we assume a Bayesian
approach. Thus, considerFf be the set of all possible functions that can explain the data. Let
Pf be a probability distribution defined over Ff , in a way that, a finite set f = (f1, . . . , fn) of
Ff follows a multivariate normal distribution with mean vectorm of dimension 1 × n and
covariance �f of dimension n × n and elements σ(t, t′) = cov(ft , ft′), for t, t′ = 1, . . . , n.
In other words, we are assuming that a priori f ∼ Nn(m,�f), i.e. a Gaussian process prior
over f , whereNn(·) represents the n-variate normal distribution.

Thus, setting upm = 0 in order to represent our noninformative prior knowledge about
the expected value of f and letting �f be an unknown quantity, we propose the following
hierarchical Bayesian model

Y | f , σ 2
ε ∼ Nn

(
f , σ 2

ε I
)
;

f | �f ∼ Nn(0,�f)
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σ 2
ε ∼ IG

(
a
2
,
b
2

)
;

�f | γ , σ 2
f , ν ∼ IW (

γ , σ 2
f Aν

)
.

σ 2
f | c, d ∼ G

(
c
2
,
d
2

)
,

ν | g, h ∼ G(g, h)

where IG(·) and G(·) represent the inverse gamma and gamma distributions, respectively,
and IW(γ , σ 2

f Aν) represents the inverse-Wishart distribution with parameters γ and
σ 2
f Aν is a matrix of dimension n × n with elements k(t, t′), for t, t′ = 1, . . . , n. Each term

k(t, t′) is calculated according to the squared exponential kernel, i.e.

k(t, t′) = exp
{
− (t − t′)2

2ν2

}
. (2)

We also assume that a, b, c, d, g and h are known hyperparameters. We set up all of them
equal to 0.1 in order to get noninformative prior distributions. Nowwe point out some rea-
sons that led us to consider this structure of prior distributions. The option for the Gamma
distribution for σ 2

ε lies of the fact of this be a natural conjugated prior. Analogously, the
inverseWishart distribution is the natural conjugated prior for�f . Since parametersσ 2

f and
ν assume only positive values, σ 2

f , ν ∈ (0,+∞), then a natural choice as prior distribution
is the Gamma distribution.

Using the Bayes theorem, the joint posterior distribution for θ = (f , σ 2
ε ,�f , σ 2

f , ν) is

π(θ | y, t) ∝ L(θ | y, t)π(f | �f)π(σ 2
ε | a, b)π(�f | γ , σ 2

f , ν)π(σ 2
f | c, d)π(ν | g, h) (3)

where L(θ | y, t) ∝ (σε)
−n/2 exp{− 1

2 (y − f)T�−1
ε (y − f)} is the likelihood function from

a n-variate normal distribution, for �ε = σ 2
ε I, being I is the identity matrix of dimension

n × n and the overwritten T represents the matrix transpose.
The conditional posterior distributions are given by

f | • ∼ Nn(�
−1
ε (�−1

ε + �−1
f )y, (�−1

ε + �−1
f )−1) (4)

σ 2
ε | • ∼ IG

(
a + n
2

,
b + (y − f)T(y − f)

2

)
(5)

�f | • ∼ IW(γ + n + 1,ffT + σ 2
f Aν) (6)

σ 2
f | • ∼ G

(
c + nγ

2
,
d + tr(Aν�

−1
f )

2

)
, (7)

ν | • ∼ π(ν | •) ∝ π(�f | •)π(ν | g, h), (8)

where the symbol • represents all other parâmeters and the observed data.
Since Equations (4)–(7) have a known form and Equation (8) does not, then in order

to get estimates for the parameters of interest, we consider a Metropolis-within-Gibbs
sampling algorithm (MWGS). For each iteration of the MWGS algorithm, we update the
parameters θ−ν = (f , σ 2

ε ,�f , σ 2
f ) according to the Algorithm 1.
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Algorithm 1 Gibbs sampling algorithm
1: Let the state of the Markov chain consist of θ = (f , σ 2

ε ,�f , σ 2
f , ν);

2: initialize the algorithm with a configuration θ (0) = (f(0), σ 2(0)
ε ,�(0)

f , σ 2(0)
f , ν(0));

3: procedure For the lth iteration of the algorithm, l = 1, . . . , L:

4: generate f(l) from conditional distribution (4), given σ
2(l−1)
ε , �(l−1)

f ;

5: generate σ
2(l)
ε from conditional distribution (5), given f(l);

6: generate �
(l)
f from conditional distribution (6), given f(l) and σ

2(l−1)
f ;

7: generate σ
2(l)
f from conditional distribution (7), given �

(l)
f .

In order to update parameter ν via Metropolis-Hastings algorithm, let ν∗ to be a can-
didate value generated from a candidate generating-density q[ν∗ | ν]. So, the value ν∗ is
accepted with probability �(ν∗ | ν) = min(1,Hν), where

Hν = π(�f | γ , σ 2
f , ν

∗)
π(�f | γ , σ 2

f , ν)

π(ν∗|g, h)
π(ν | g, g)

q[ν | ν∗]
q[ν∗ | ν] .

Now, it is necessary to specify the candidate-generating density q[ν∗|ν]. Usually q[·] is
chosen such that it is easy to sample from it. Two common choices are:

• q[ν∗|ν] = π[ν], i.e. the candidate generating-density is given by the prior distribution.
In this case, Hν simplifies to

Hν = π(�f | γ , σ 2
f , ν

∗)
π(�f | γ , σ 2

f , ν)
.

This case is denominated in the literature by Independent Metropolis-Hastings (IMH).
Although the choice of the prior distributions as the candidate generating density is
mathematically attractive, this may lead to many rejections of the proposed moves and
a slow convergence of the algorithm. This happens, specially, for cases in which no prior
information is available and prior distribution has a large variance.

• An alternative to the IMH is to explore the neighborhood of the current value of the
chain in order to propose a new value.

Thus, let q[ν∗|ν] = g(|ν − ν∗|), where g(·) is a symmetric density, i.e. the probability
of generating a move from ν to ν∗ depends only on the distance between them. In this
case, Hν simplifies to

Hν = π(�f | γ , σ 2
f , ν

∗)
π(�f | γ , σ 2

f , ν)

π(ν∗ | g, h)
π(ν | g, g) . (9)

This case is denominated in the literature as random walk Metropolis (RWM).
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In the remaining of the paper, we adopt the RWM algorithm for updating ν. But, this
does not prevent the proposed method to be applied with the Metropolis step being given
by the IMH. In order to implement a RWM, we set up ν∗ = ν + η with η ∼ N (0, σ 2

ν ).
However, as discussed by Chib and Greenberg [3] the choice of σ 2

ν has a great influence
on the efficiency of the algorithm. If σ 2

ν is small, then random perturbations will be small
in magnitude and almost all will be accepted, requiring a large number of iterations to get
convergence. On the other hand, if σ 2

ν is too large, then it will cause too many rejections of
the proposed moves and a considerably slowing down convergence.

According to Bedard [2], Roberts et al. [6], Mattingly et al. [4] and Saraiva and Suzuki
[7], one may fix the value of σ 2

ν testing some values in a few pilot runs and then choos-
ing a value in which the acceptance ratio lies between 20% and 30%. Thus, following this
procedure, we run 10 pilot runs of the algorithm with L = 10.000 iterations for σ 2

ν ∈ G,
where G is a grid from 0.1 to 1 with increments of size 0.1. For σ 2

ν = 0.1 the acceptance
rate was of 75%, for σ 2

ν = 0.2 the acceptance rate was of 25.82%, for σ 2
ν = 0.3 the accep-

tance rate was of 24.75% for σ 2
ν = 0.4 the acceptance rate was of 21.12% and for the

other values tested, σ 2
ν ≥ 0.5 the acceptance rate was smaller than 20%. Thus, we fix up

σ 2
ν = 0.3, the mean of the tested values that have led to an acceptance rate between 20%

and 30%.
The RWM for updating ν is implemented according to the steps of the Algorithm 2.

Using Algorithms 1 and 2, we implemented the MWGS to get estimates for parameters θ .
The steps for the implementation of this algorithm are given in Algorithm 3.

Algorithm 2 RandomWalk Metropolis
1: Let the state of the Markov chain consist of θ = (f , σ 2

ε ,�f , σ 2
f , ν).

2: Initialize the algorithm with a configuration θ (0) = (f(0), σ 2(0)
ε ,�(0)

f , σ 2(0)
f , ν(0)).

3: procedure For the lth iteration of the algorithm, l = 1, . . . , L
4: Generate r ∼ N (0, σ 2

ν ) and set ν∗ = ν(l − 1) + r
5: Calculate �(ν∗ | ν) = min(1,Hν), where Hν is given by Equation (9);
6: Generate u ∼ U(0, 1). If u ≤ �(ν∗ | ν) accept ν∗ and do ν(l) = ν∗. Otherwise,

reject ν∗ and set ν(l) = ν(l−1).

Algorithm 3Metropolis-within-Gibbs algorithm (MWGS)
1: Let the state of the Markov chain consist of θ = (f , σ 2

ε ,�f , σ 2
f , ν).

2: Initialize the algorithm with a configuration θ (0) = (f(0), σ 2(0)
ε ,�(0)

f , σ 2(0)
f , ν(0)).

3: procedure For the lth iteration of the algorithm, l = 1, . . . , L
4: Update θ−ν according to Algorithm 1;
5: Update ν according to Algorithm 2;

After running the L iterations of the Algorithm 3, we discard the first B iterations as a
burn-in.We also consider jumps of size J, i.e. only 1 drawn from every J was extracted from
the original sequence obtaining a subsequence of size S = [(L − B)/J] to make inferences.
The estimates for parameters of interest are given by the average of the generated values.
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For example, the estimates for f and σ 2
ε are f̂ = f̄ = (f̄1, . . . , (f̄n) and σ̄ 2

ε , where

f̄ (t) = 1
S

L∑
l=1

f (M(l))
t , σ̂ 2

ε = 1
S

L∑
l=1

σ 2(M(l))
ε

and f (t)(M(l)) and σ
2(M(l))
ε are the generated values for ft and σ 2

ε in theM(l) = (B + 1 + l ·
J)th iteration of the algorithm, respectively, for t = 1, . . . , n. For the other parameters, the
estimates are obtained in a similar way. The credibility interval (95%) for each one of the
parameters is given by the quantiles 2.5% and 97.5% of the sampled values.

2.1. Predictions

Defined the estimation procedure for the parameters θ , another interest lies in predicting
the value fn+1 = f (xn+1) for a new input xn+1. That is, the interest is in the predictive
distribution

π(yn+1 | y) =
∫

π(yn+1 | y, θ)π(θ | y) dθ , (10)

whereπ(θ | y) is the joint posterior distribution for θ , given in Equation (3).However, these
integrals do not have a known mathematical solution. Hence, we present in the sequel an
MCMC algorithm to get a workable approximation for the above integral.

From model (1), the marginal distribution for Y is given by a n-variate normal distri-
bution with mean vector 0 and covariance matrix �f + �ε , Y | �f ,�ε , σ 2

ε ∼ Nn(0,�f +
�ε). Since fn+1 ∼ N (mn+1, σ 2

n+1), the joint distribution for (Y, fn+1) is[
Y

fn+1

]∣∣∣∣ (f , x, xn+1,ϒ) ∼ Nn+1

([
f

m(xn+1)

]
,
[

�f + �ε CT

C σ 2
n+1

])
,

where ϒ = (�f , σ 2
ε , σ 2

n+1,C) and C = (σ (1, n + 1), . . . , σ(n, n + 1)) is a row vector, 1 ×
n, composed by the covariance among ft and fn+1, σ(t, n + 1) = cov(ft , fn+1), for t =
1, . . . , n.

By using the properties of the multivariate normal distribution, the conditional poste-
rior distribution for fn+1 is given by

fn+1 | (y, f , x, xn+1,ϒ) ∼ N (m(tn+1) + C(�f + �ε)
−1(y − f), σ 2

n+1

− C(�f + �ε)
−1

C
T). (11)

At this point, as we know the value of the 7-day moving average on the nth day, we fix up
m(tn+1) = yn. In addition, we set up each σ(t, n + 1) = k(t, n + 1) in order to get these
values according to Equation (2). Then, a sample from conditional posterior distribution
in (11) can be generated according to the implementation of the Algorithm 4.

After running the algorithm for the same L iterations, burn in B and jump J of the
Algorithm 3, an approximation for the integral in (10) is given by

π̃(fn+1 | y) = 1
S

L∑
l=1

f (M(l))
n+1 ,

whereM(l) is the (B + 1 + l · J)th iteration of the algorithm.



JOURNAL OF APPLIED STATISTICS 2201

Algorithm 4 Prediction
1: Let the state of the Markov chain consist of θ = (f , σ 2

ε ,�f , σ 2
f , ν) and fn+1.

2: Initialize the algorithm with a configuration θ (0) = (f(0), σ 2(0)
ε ,�(0)

f , σ 2(0)
f , ν(0)) and

f (0)n+1.
3: procedure For the lth iteration of the algorithm, l = 1, . . . , L
4: Update θ according to Algorithm 1;
5: Update ν according to Algorithm 2;
6: Conditional on θ (l) = θ (l) = (f(l), σ 2(l)

ε ,�(l)
f , σ 2(l)

f , ν(l)), generate f (l)n+1 from condi-
tional posterior distribution in (11).

The predictions for the next n+ j days, for j = 2, . . . , r, is obtained in a similar way
by generating a sample from fn+j according to Algorithm 4, where fn+j is given by
Equation (11), setting up m(tn+j) = f̂n+j−1 and C = (k(1, n + j), . . . , k(n, n + j)), for j =
2, . . . , r.

In many cases, the interest lies in predicting the value fn+1 = f (xn+1) for a new input
xn+1 conditional on the last ys recorded values and not on all past values y. For example,
one can have interest in the value yn+1 given the recorded 7-day moving average in the last
s = 30 days, y30 = (yn−29, . . . , yn). This prediction is also made using Algorithm 4, just
changing y by ys and adapting the parameters θ for the dimension of ys. The predictions
for the next n+ j days are done as described in the paragraph above, clearly with some
differences. The advantage of this kind of prediction is the computation time that is smaller
than the prediction procedure conditional on y.

3. Application

In this section, we apply the proposed method to a real dataset. The dataset refers to the
7-day moving average for the number of deaths recorded in the state of São Paulo, Brazil.
As an illustration of this dataset, we present in Figure 1 the number of deaths recorded in
the period from 17 March 2020 (first case) to 16 July 2021 and the 7-day moving average
recorded in the period from 23 March 2020 (t = 0) to 27 April 2021 (n = 480).

In order to estimate parameters of interest and make the predictions, we apply Algo-
rithms 3 and 4 with L = 55,000 iterations, B = 5000 iterations and J = 10. Thus, we got
a sample of size 5000 to make inferences. Using these values, we ran our first analysis on
the 100th day after the recording of the first 7-day moving average. Figure 2 shows the
observed value (symbols •) and the credibility band of 95% (blue area) determined by the
proposed method. This figure also shows the prediction band of 95% (black area) and the
recorded values for the next ten days. Themean square error (MSE) of the predicted values
in relation to the recorded values was 0.0056. As one can note, the prediction band con-
tains all recorded values. Both results show a very satisfactory performance of the proposed
method.

Figure 3 shows the graphic of the residuals. Figure 3(a) shows the quantile-quantile
plot of the residuals in relation to the normal distribution. As one can note, the normality
assumption is satisfied. Figure 3(b) shows the graphic of the predicted values versus the
standardized residuals. As one can note, the points are uniformly distributed indicating
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Figure 1. Number of deaths by day and 7-day moving average values. (a) Number of deaths. (b) 7-day
moving average.

Figure 2. Confidence and prediction bands (95%).

that there is not evidence to reject the assumption of homogeneity of the variance. This
graphic also shows that the residuals are not correlated. These both results also show the
very satisfactory performance of the proposed method.

The estimated value for the σ 2
ε is σ̂ 2

ε = 2.4427, with a credibility interval (95%) given by
(2.0154, 2.9632). Figure 4 shows the graphics of the ergodic mean (ErM) and the estimated
autocorrelation function (ACF) from the sampled values for σ 2

ε . As one can note, there is
no reason to doubt the convergence of the sampled values, since the ErM values present
satisfactory stabilization and there is no significant ACF.
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Figure 3. Residuals plot. (a) QQPlot, (b) residuals× predicted.

Figure 4. ErM and ACF from the sampled values for σ 2
ε . (a) ErM for σ 2

ε . (b) ACF for σ
2
ε ).

We also verify the convergence of the sampled values for f . The results are similar to
the presented by the sampled values for σ 2

ε . As an illustration, we show in Figure 5, the
ErM and the ACF for the sample valued for f22. The f22 was chosen at random among the
ft ∈ f , for t = 1, . . . , n. The estimate for f22 is f̂22 = 43.7603; and the credibility interval
(95%) is (40.2492, 49.2031). The recorded value was 43.43. That is an absolute percentage
error of 0.7604%. Analogously to the sampled value for σ 2

ε , there is no reason to doubt the
convergence of the sampled values for f22.

The estimate for parameter σ 2
f is σ̂ 2

f = 3.8234 with credibility interval (2.0459, 3.9189).
The estimate for parameter ν is ν̂ = 0.2637 with credibility interval (0.0153, 0.4982) and
acceptance rate of 26.78%. The convergence checking for both parameters is similar to the
presented for σ 2

ε and f22, i.e. the ergodic mean presents satisfactory stabilization and there
is no significant ACF.
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Figure 5. ErM and ACF from the sampled values for f22. (a) ErM for f22. (b) ACF for f22.

3.1. Predictions based in the last 30 days

Consider now the interest in predicting the evolution of the 7-day moving average values
for the next 15 days after the nth day conditional on the recorded values in the last thirty
days. That is, the interest is to predict the values fn+j for j = 1, . . . , 15 conditional on y30 =
(yn−30+1, . . . , yn). In the following, we present the results from three analyses ran at 180th,
280th and 465th days.

In order to obtain these predictions, we apply Algorithm 4 just changing y by y30 and
adapting the dimension of the parameters θ . We run this algorithm for the same values for
L, burn-in and jump J used in Section 3. Figure 6 shows the results of the analysis carried
out on the 180th day. TheMSE of the fittedmodel is 0.0123. As one can note, the five 7-day
average values recorded after the 180th day are inside the prediction band, but the values
recorded after the 185th day are outside the band. This a good news because it indicates
that the reduction in the values of the 7-day moving average was greater than expected.
In this period of 15 days, the moving average reduced from 191.43 (180th day) to 153.29
(195th day). A reduction of 19.42%.

Figure 7 shows the results of the analysis ran on the 280th day. The MSE of the fitted
model is 0.0471. As one can note, only the two last recorded values are outside the pre-
diction band. In this period of 15 days, the 7-day moving average value increased 44.05%,
going from 119.14 (280th day) to 213 (295th day).

Figure 8 shows the results of the analysis ran on the 465th day. The MSE of the fitted
model is 0.0437. Note that, the credibility band determined by the proposed method base
on the recorded values in the last thirty days indicates a stabilization of themoving average,
but the recorded values were all below this region. This is a piece of very good news because
it shows that a greater reduction than expected happened. The reductionwas 49.14%, going
from 550.86 (365th day) to 340.14 (480th day).

Figure 9 shows the recorded values in the last 30 days and the credibility band deter-
mined by the proposed method for the next 15 days. As one can note, this graphic shows
there is no expected a great increase in the values of the 7-day moving average in the next
15 days.
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Figure 6. Recorded values and confidence band determined by the proposed method, 180th day. (a)
2nd analysis.

Figure 7. Recorded values and confidence band determined by the proposedmethod. (a) 2nd analysis.

4. Final remarks

This article presented a hierarchical Bayesian methodology for modeling the evolution of
the 7-day moving average for the number of deaths due to COVID-19. We opt to model
the 7-day moving average in opposite to the cumulative number of deaths, as is usual, due
to the moving average smooth the possible discrepancies that may have in the statistical
reports of the number of deaths divulged.
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Figure 8. Recorded values and confidence band determined by the proposed method, 280th day. (a)
2nd analysis.

Figure 9. Recorded values and confidence band determined by the proposed method, 465th day. (a)
2nd analysis.

Contrary to usual approaches, which are based on the adoption of a set of paramet-
ric models followed by a comparison using some model selection criteria, such as, AIC
and BIC, the proposed approach assumes that the nonlinear mathematical function is an
unknown random quantity that needs to be estimated from the observed data. Then, we
adopt a Bayesian nonlinear regression approach with a Gaussian process.
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The adoption of the Gaussian process prior means that we are defining a probability
distribution over functions and the inference is taken directly in the space of the func-
tions. This approach is considered nonparametric since we are using a prior distribution
on the space of functions that corresponds to infinite-dimensional parameter space. Since
making inferences about the infinite number of parameters is impractical, the assumption
of the Gaussian process has the advantage of that conditional on a dataset a finite num-
ber of parameters (function values) can be explicitly represented by a multivariate normal
distribution, making the estimation procedure simple to be computationally implemented.

In addition, since the Gaussian process is heavily influenced by the choice of the covari-
ance function �f , we assume one more hierarchical level by putting a prior distribution
over �f and on its hyperparameters. The inference of the parameters of interest is carried
out using a Metropolis-within-Gibbs algorithm. We also present an MCMC algorithm to
make predictions.

The proposedmethod is illustrated in a case study, inwhich, wemodel the 7-daymoving
average values recorded in the state of São Paulo, Brazil, in the period from 03/23/2020 to
04/27/2021. In this period, we ran the estimation procedure four times in order to verify
the performance of the method. The results have shown a very good performance of the
method. The MSE values were all smaller than 0.05, and there is no reason to doubt the
convergence of the sampled values by the MCMC algorithm.

From a statistical data analysis point of view, the proposed method is very interesting
because it does not need the assumption of a parametric model, and the inference is made
by an MCMC algorithm that can be easily implemented in free software, such that, R soft-
ware. The computational codes were implemented in the R language and can be obtained
by e-mail to the authors.
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