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Abstract

In this paper, we propose to make Bayesian inferences for the parameters of
the Lomax distribution using non-informative priors, namely the (dependent
and independent) Jeffreys prior and the reference prior. We assess Bayesian
estimation through a Monte Carlo study with 10, 000 simulated datasets. In
order to evaluate the possible impact of prior specification on estimation, two
criteria were considered: the mean relative error and the mean square error. An
application on a real dataset illustrates the developed procedures.
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1. Introduction

The Lomax distribution [1], also known as the Pareto Type II distribution
(or simply Pareto II), is a heavy-tailed probability distribution often used in
business, economics, and actuarial modeling. It is essentially a Pareto distribu-
tion that has been shifted so that its support begins at zero [2]. The Lomax5

distribution has been applied in a variety of contexts ranging from modeling the
survival times of patients after a heart transplant [3] to the sizes of computer
files on servers [4]. Some authors, such as [5], suggest the use of this distribution
as an alternative to the exponential distribution when data are heavy-tailed.
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The primary goal of this paper is to consider the Lomax distribution to de-10

scribe reliability data. In order to achieve that we consider a Bayesian inference
for the parameters of the Lomax distribution using objective priors, namely the
Jeffreys prior [6] and the reference prior [7]. The obtained priors are improper
and may return improper posteriors, which is undesirable. Therefore, we pro-
vide sufficient conditions for the obtained posteriors being proper. We prove15

that Jeffreys prior leads to a proper posterior while the reference prior leads to
an improper posterior. We also show how to represent the Lomax distribution
in a hierarchical form by augmenting the model with a latent variable, which
makes the Bayesian computations easier to implement. This representation
would also allow the user to implement inferences using all-purpose Bayesian20

statistical packages, like WinBUGS [8] or JAGS [9].
In order to evaluate the performance of the Bayes estimators, we present

a simulation study to compare the efficiency of the Bayesian approach with
the maximum likelihood inference for estimating the model parameters and
check for the possible impact of prior specification. Similar studies have been25

conducted for other distributions [10, 11, 12]. Finally, the proposed methodology
is illustrated on a real dataset related to the active repair times (in hours) for
an airborne communication transceiver.

The remainder of this paper is organized as follows. In Section 2, we present
the Lomax distribution and list some of its properties. In Section 3, we formulate30

the Bayesian model using non-informative priors. In Section 4, a simulation
study is presented. In Section 5, the methodology is illustrated on a real dataset.
Some final comments are given in Section 6.

2. Model definition

Here, we use the definition that appears, for instance, in [13].35

Definition 2.1. A continuous random variable X has a Lomax distribution
with parameters α and β if its probability density function is given by

f(x|β, α) =
α

β

(
1 +

x

β

)−(α+1)

, x ≥ 0, (1)

where α > 0 and β > 0 are the shape and scale parameters, respectively.

We refer to this distribution as Lomax (β, α). The median is β(21/α−1) and
the mode is zero. The hazard function is given by

h(x|β, α) =
α

β

(
1 +

x

β

)−1
, x ≥ 0,

which is a decreasing function of x, thus making this a suitable model for com-
ponents that age with time. The survival function is given by

S(x|β, α) =

(
1 +

x

β

)−α
, x ≥ 0.
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We note also that the Lomax distribution can be expressed as a scale mixure
of distributions using the following hierarchical form

X|β, λ ∼ Exponential

(
λ

β

)
, λ|α ∼ Gamma(α, 1).

This result dates back to [14], where mixtures of exponential and Weibull
densities are discussed, and will allow complete conditional distributions to be
obtained in closed form and easy to sample from. More recently, [15] also
provided a scale mixture representation of Pareto-like densities in the context
of shrinkage priors in Bayesian analysis. The result follows from writing the
joint density of X and λ as

f(x|β, λ)f(λ|α) =
1

βΓ(α)
λα exp

{
−λ
(

1 +
x

β

)}
.

So, the marginal density of X is given by

f(x|β, α) =
1

βΓ(α)

∫ ∞
0

λα exp

{
−λ
(

1 +
x

β

)}
dλ

=
1

βΓ(α)
Γ(α+ 1)

(
1 +

x

β

)−(α+1)

=
α

β

(
1 +

x

β

)−(α+1)

and we can conclude that X ∼ Lomax(β, α).
Using this mixture representation, it is not difficult to see that the uncondi-

tional mean and variance of X are given by40

E(X) = βE[λ−1] =
β

α− 1
, α > 1,

V ar(X) = β2
{
E
[
λ−1

]2
+ V ar

[
λ−1

]}
=

αβ2

(α− 1)2(α− 2)
, α > 2,

since λ−1 ∼ IG(α, 1), where IG(a, b) denotes the Inverse Gamma distribution
with parameters a and b, mean b/(a−1), a > 1, and variance b2/(a−1)2(a−2),
a > 2.

Now, suppose that X = (X1, . . . , Xn)
′

is a random sample of size n from the
Lomax distribution (1). Since the Xis are conditionally independent given α and45

β, the mixing parameters λ = (λ1, . . . , λn)
′

are also a priori independent as a
consequence. In fact, this is a data-augmentation scheme which also facilitates
posterior computation. The complete conditional distribution of λ using the
hierarchical form above is given by

f(λ|x, β, α) ∝ f(x|β,λ) f(λ|α)

∝
n∏
i=1

λi exp{−λixi/β}
n∏
i=1

λα−1i exp{−λi}

=

n∏
i=1

λαi exp

{
−λi

(
1 +

xi
β

)}
,
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in which case, [λ1, . . . , λn|x, β, α] =
∏n
i=1[λi|x, β, α]. Finally, the complete con-

ditional distribution of each λi follows as

λi|x,λ−i, β, α ∼ Gamma

(
α+ 1, 1 +

xi
β

)
,

where λ−i represents the vector λ without the i-th element.50

Again, using the hierarchical form, we obtain the complete conditional dis-
tributions of α and β as

f(α|x,λ, β) ∝ f(λ|α) π(β, α) ∝ [Γ(α)]
−n

(
n∏
i=1

λi

)α−1
π(β, α), (2)

f(β|x,λ, α) ∝ f(x|β,λ)π(β, α) ∝ β−n exp

{
− 1

β

n∑
i=1

λixi

}
π(β, α). (3)

We note that using this representation of the Lomax distribution, each ob-
servation Xi is associated with one mixing parameter λi, whose posterior mean
or median can be used to identify a possible outlier. A potential outlier would
be indicated, for example, if λi is estimated substantially small, since this would
imply that the exponential distribution has an inflated variance [16].55

3. Prior specification

We now complete the Bayesian model by specifying a prior distribution for
α and β. We consider non-informative priors on these parameters and verify
the existence of their posterior distribution.

A commonly used objective prior in Bayesian analysis is Jeffreys prior [6],
which is defined as

πJ(β, α) ∝ |I(β, α)|1/2,
where I(·) stands for the Fisher information matrix. This is given by60

I(β, α) = n


α

β2(α+ 2)
− 1

β(α+ 1)

− 1

β(α+ 1)

1

α2

 ,
from which we obtain

πJ(β, α) ∝ 1

β(α+ 1)α1/2(α+ 2)1/2
, β, α > 0. (4)

Considering independence between the parameters, the Jeffreys joint prior
for (β, α) is given by

πIJ(β, α) ∝ π(β)π(α) =
1

βα
, β, α > 0. (5)
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It is worth noting that the independent Jeffreys prior can also be obtained
as a particular reference prior. For the derivation of this reference prior, see
Supplemental Material.

Proposition 3.1. For any sample size, the posterior distribution under the65

Jeffreys prior (4) is proper.

Proof. Under Jeffreys prior, the joint posterior density of β and α is given by

π(β, α|x) ∝ αn−1/2β−(n+1)

(α+ 1)(α+ 2)1/2

n∏
i=1

(
1 +

xi
β

)−(α+1)

.

We next show that the integral of this expression is finite for any sample size n.
First, we solve ∫ ∞

0

β−(n+1)
n∏
i=1

(
1 +

xi
β

)−(α+1)

dβ. (6)

Consider y = min{x1, . . . , xn}. Then, it follows that(
1 +

xi
β

)α+1

≥
(

1 +
y

β

)α+1

for all α ≥ 0, i = 1, . . . , n, and therefore70

n∏
i=1

(
1 +

xi
β

)−(α+1)

≤
(

1 +
y

β

)−n(α+1)

.

Thus,∫ ∞
0

β−(n+1)
n∏
i=1

(
1 +

xi
β

)−(α+1)

dβ ≤
∫ ∞
0

β−(n+1)

(
1 +

y

β

)−n(α+1)

dβ.

Now considering the change of variable u = φ(β) = y
β , du = |φ′(β)|dβ =

y
β2 dβ with φ((0,∞]) = (0,∞] by the change of variables formula we have

∫ ∞
0

β−(n+1)

(
1 +

y

β

)−n(α+1)

dβ =
1

yn

∫ ∞
0

un−1

(1 + u)
nα+n du =

1

yn
B(n, nα)

=
1

yn
Γ(n)Γ(nα)

Γ(nα+ n)
=

(n− 1)!

yn
1∏n−1

j=0 (nα+ j)

for all α > 0, where B(u, v) stands for the beta function, for u > 0 and v > 0.
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Then, ∫ ∞
0

∫ ∞
0

αn−1/2β−(n+1)

(α+ 1)(α+ 2)1/2

n∏
i=1

(
1 +

xi
β

)−(α+1)

dβdα

=
(n− 1)!

yn

∫ ∞
0

αn−1/2

(α+ 1)(α+ 2)1/2
1∏n−1

j=0 (nα+ j)
dα

=
(n− 1)!

yn

(∫ 1

0

f(α)dα+

∫ ∞
1

f(α)dα

)
,

where f(α) =
αn−1/2

(α+ 1)(α+ 2)1/2
1∏n−1

j=0 (nα+ j)
.

Now, notice that, for j ≥ 1 and α > 0 we have that (nα+j) ≥ 1 since n > 0.
Therefore, for all α > 0 it follows that

1∏n−1
j=0 (nα+ j)

≤ 1

nα
.

By the same argument it follows that, for α > 0, 1
(α+1) ≤ 1 and 1

(α+2)1/2
< 1√

2
.

Combining all these inequalities we have that, since n ≥ 1,∫ 1

0

f(α)dα ≤ 1

n
√

2

∫ 1

0

αn−3/2dα =
1

n(n− 1/2)
√

2
.

On the other hand, we have that, for j ≥ 0, (nα + j) ≥ nα. Therefore, for
all α > 0 it follows that

1∏n−1
j=0 (nα+ j)

≤ 1

nn
1

αn
.

By the same argument it follows that, for α > 0, 1
α+1 ≤

1
α and 1

(α+2)1/2
≤ 1

α1/2 .

Combining all these inequalities we have that∫ ∞
1

f(α)dα ≤ 1

nn

∫ ∞
1

α−2dα =
1

nn
.

Therefore,

(n− 1)!

yn

(∫ 1

0

f(α)dα+

∫ ∞
1

f(α)dα

)
≤ (n− 1)!

yn

(
1

n(n− 1/2)
√

2
+

1

nn

)
<∞

and we can conclude that the posterior distribution using Jeffreys prior is proper
for n ≥ 1.

Proposition 3.2. For any sample size, the posterior distribution under the
independent Jeffreys/reference prior (5) is improper.75
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Proof. Using an independent Jeffreys/reference prior, the joint posterior density
of β and α is given by

π(β, α|x) ∝ αn−1β−(n+1)
n∏
i=1

(
1 +

xi
β

)−(α+1)

.

We next verify whether the integral of this expression is finite.
Note that, by the analogous arguments and the same change of variables

used in Jeffreys prior, we have that, for w = max{x1, . . . , xn},∫ ∞
0

β−(n+1)
n∏
i=1

(
1 +

xi
β

)−(α+1)

dβ ≥
∫ ∞
0

β−(n+1)
n∏
i=1

(
1 +

w

β

)−n(α+1)

dβ

=
1

wn
Γ(n)Γ(nα)

Γ(nα+ n)
=

(n− 1)!

wn
1∏n−1

j=0 (nα+ j)

and thus∫ ∞
0

∫ ∞
0

αn−1β−(n+1)
n∏
i=1

(
1 +

xi
β

)−(α+1)

dβdα ≥ (n− 1)!

wn

∫ ∞
0

αn−1∏n−1
j=0 (nα+ j)

dα

≥ (n− 1)!

wn

∫ ∞
1

αn−1∏n−1
j=0 (nα+ j)

dα.

Now, for α ≥ 1 and j < n we have that nα+j < nα−α+n = n(α+1) ≤ n2α
since α+ 1 ≤ 2α for α ≥ 1. Therefore,

1∏n−1
j=0 (nα+ j)

≥ 1

(2n)
n

1

αn
(7)

for all α ≥ 1 and thus

(n− 1)!

wn

∫ ∞
1

αn−1∏n−1
j=0 (nα+ j)

dα ≥ (n− 1)!

(2wn)
n

∫ ∞
1

α−1dα =∞.

Hence, the posterior distribution using reference prior is improper for n ≥ 1.

Let us recall the hierarchical form for the Lomax distribution, presented in
Section 2, and derive alternative posterior characterizations. Then, substituting80

π(β, α) in the expressions for the complete conditional densities (2)-(3), we
obtain

f(α|x,λ, β) ∝ 1

(α+ 1)α1/2(α+ 2)1/2[Γ(α)]n

(
n∏
i=1

λi

)α−1
for the dependent Jeffreys prior and

f(α|x,λ, β) ∝ 1

α[Γ(α)]n

(
n∏
i=1

λi

)α−1
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for the independence case. So, the complete conditional distribution of α is not
of standard form and a Metropolis-Hastings algorithm [17] is used for sampling
its values. Likewise, the complete conditional density of β is given by

f(β|x,λ, α) ∝ β−(n+1) exp

{
− 1

β

n∑
i=1

λixi

}
,

then it follows that

β|x,λ, α ∼ IG

(
n,

n∑
i=1

λixi

)
.

4. Simulation study

In this section, we perform a Monte Carlo study to evaluate the methodol-
ogy described in the previous section. We generated N = 10, 000 replications85

of samples of sizes n = (20, 30, . . . , 250) from the Lomax distribution, consid-
ering parameter values (β = 2, α = 1.5) and (β = 3, α = 0.5). The model
was then estimated using the posterior obtained from Jeffreys priors. We used
the Metropolis-Hastings algorithm implemented in software R to simulate two
chains of values from the posterior distribution. A total of 5, 500 iterations with90
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Figure 1: MRE, MSE, CP and LI for the estimates of β = 2 and α = 1.5, for N = 10, 000
simulated samples of size n, and using the MLE and the Bayes estimators.
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jumps of 5 and a burn-in of 500 were performed for each chain, thus leading
to a final sample of 1, 000 values for each chain. Also, the Geweke convergence
diagnostic provided in the R package CODA was used to monitor convergence
of the two parallel chains.

Let θ̂(j) be the estimate of parameter θ for the j-th replication, j = 1, . . . , N .
These are the parameter posterior modes calculated from the 10, 000 simulated
values for each replication. In order to evaluate the estimation method, two
criteria were considered: the mean relative error (MRE) and the mean square
error (MSE), which are defined as

MRE =
1

N

N∑
j=1

θ̂(j)

θ
and MSE =

1

N

N∑
j=1

(
θ̂(j) − θ

)2
.

The estimated coverage probability (CP) of the 95% asymptotic confidence in-95

tervals, the 95% credibility intervals (CI) and the 95% highest posterior density
intervals (HPDI) is also presented. Additionally, we show the length of the
obtained Bayesian intervals (LI).

Under this approach, the best estimators will show MRE closer to one and
MSE closer to zero. From the classical approach we obtained the CP based100

on the asymptotic confidence intervals, while from the Bayesian method we
obtained it from both 95% CI and 95% HPDI, where the latter were computed
using the R package HDInterval. For a large number of experiments considering
a 95% credibility level, the frequencies of intervals that covered the true values
of θ should be closer to 95%.105

The results from the simulated experiment appear in Figures 1-2. We note
that the Bayesian approach returned superior results when compared to the
classical maximum likelihood estimation (MLE) method. Concerning accuracy,
we obtained adequate results for β and α regarding MRE and MSE using the
Jeffreys prior. The length of the HPDI showed to be smaller than the obtained110

by the CI. Moreover, the produced HPDI returned better CP, especially for
small sample sizes. Overall, the results obtained for the sample sizes and pa-
rameter values considered allow us to recommend the Bayesian approach to
make inferences on the parameters of the Lomax distribution.

5. Application115

In order to illustrate the methodology proposed in this paper, we consider a
dataset related to the active repair times (in hours) for an airborne communica-
tion transceiver. The equipment was only observed during the time of its active
operation. This dataset was first described by Von Alven [18] and available in
Table 1.120

Figure 3 shows the survival function fitted by different probability distri-
butions (Weibull, Gamma, and Lomax). It can be observed that the Lomax
distribution returned a good fit for the considered dataset.
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Figure 2: MRE, MSE, CP and LI for the estimates of β = 3 and α = 0.5, for N = 10, 000
simulated samples of size n, and using the MLE and the Bayes estimators.

Table 1: Dataset related to repair times for an airborne communication transceiver ([18]).

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8
0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0
2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7
5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5

In order to discriminate among the candidate models, we consider the results
of AIC [19] and AICc [20] for these models. As it can be seen in Table 2, the125

Lomax distribution showed the best fit, with the lowest AIC and AICc values.
The figure available in the Supplemental Material contains the trace, au-

tocorrelation and density plots of the marginal posterior samples for α and β
generated from Markov chain Monte Carlo (MCMC) methods. In this case, we
observed that the chains converged to the target marginal posterior distribu-130

tions, which is also confirmed through the Geweke’s diagnostic criterion [21].
The z-scores for α and β are, respectively, 0.694 and 0.907, which are smaller
than 1.98 (assuming a significance level of 5%). The results of the simulated
chains can be assumed to be samples of the marginal posterior distributions for
the parameters of the Lomax distribution.135

The Bayes estimates of the parameters α and β of the Lomax distribution
are presented in Table 3.

Therefore, through the proposed methodology, the data related to the ac-
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Figure 3: The fitted survival functions superimposed to the empirical survival function, con-
sidering the dataset related to repair times for an airborne communication transceiver.

Table 2: The AIC and AICc values for all fitted distributions, considering the airborne com-
munication transceiver data.

Weibull Gamma Lomax

AIC 212.94 213.86 210.70

AICc 213.22 214.14 210.98

Table 3: Maximum a posteriori (MAP) estimates, standard deviations (SD), 95% CI and
95% HPDI for the parameters α and β of the Lomax distribution, considering the airborne
communication transceiver data.

Parameter MAP SD 95% CI 95% HPDI

α 2.3939 2.1164 (1.2264; 9.1911) (0.9769; 8.0083)

β 5.0882 7.0625 (2.3238; 29.1653) (1.2850; 24.1780)

tive repair times (in hours) for an airborne communication transceiver can be
well-described by the Lomax distribution, considering the objective Bayesian140

inference to obtain the parameter estimates of α and β.

6. Concluding remarks

In this paper, we considered the Bayesian method to estimate the parame-
ters of a Lomax distribution under two non-informative prior specifications. We
showed that the Jeffreys prior returned a proper posterior, while the reference145

prior returned an improper posterior and should not be used for the Lomax
model. We also obtained a scale mixture representation of the Lomax distri-
bution, in which the complete conditional distribution of the scale parameter is
of known closed form and easy to sample. As a by-product, this representation
allows for the mixing parameters to be used to identify possible outliers.150
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The obtained results indicated that the Bayesian approach outperforms the
MLE in terms of smaller bias and MSE under the Jeffreys prior specification.
In fact, for samples of size 50, we obtained Bayes estimates almost without bias,
i.e., with MRE closer to one. Moreover, we observed that the marginal densities
are achieved without high computational cost using the MCMC techniques. On155

the other hand, the densities of the posterior distributions of α and β have a
very heavy right tail, which contributes to the intervals being wide. In this case,
the posterior mean is not a good choice, which leads us to consider the posterior
mode as the Bayes estimator. Although the intervals are wide, the simulation
results suggested that one typically only needs a few data (at least about 30160

observations) to obtain accurate credibility intervals (using the HPDI) for the
parameters of the Lomax distribution, while the MLE-based approach does not
return good coverage probabilities, especially for small samples.

There are many further possible extensions of this paper. For instance, the
presence of censoring, covariates and long-term survivals are quite common in165

practical situations. Our approach should thus be investigated further in these
settings.

Acknowledgements

The authors are grateful to the Editor and the two reviewers for their helpful
and useful comments that improved the manuscript. Pedro L. Ramos is grateful170

to the São Paulo State Research Foundation (FAPESP Proc. 2017/25971-0).

References

[1] K. Lomax, Business Failures; Another example of the analysis of failure
data, Journal of the American Statistical Association - JSTOR 49 (1954)
847–852.175

[2] H. M. Van, D. Vose, A Compendium of Distributions - ebook.

[3] L. Bain, M. Engelhardt, Introduction to Probability and Mathematical
Statistics, Duxbury Press, 1992.

[4] O. Holland, A. Golaup, Aghvami, Traffic characteristics of aggregated mod-
ule downloads for mobile terminal reconfiguration, Biometrika 135 (2006)180

683–690.

[5] M. Bryson, Heavy-tailed distributions: Properties and tests., Technomet-
rics 16 (1974) 61–68.

[6] H. Jeffreys, Theory of Probability, Oxford Univ. Press, Oxford, 1961.

[7] J. Bernardo, Reference posterior distributions for Bayesian inference (with185

discussion), Journal of the Royal Statistical Society, Series B 41 (1979)
113–147.



13

[8] D. J. Lunn, A. Thomas, N. Best, D. Spiegelhalter, WinBUGS - a Bayesian
modelling framework: Concepts, structure, and extensibility, Statistics and
Computing 10 (4) (2000) 325–337.190

[9] M. Plummer, JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling, in: Proceedings of the 3rd International Workshop
on Distributed Statistical Computing, 2003.

[10] H. Wang, D. Sun, Objective bayesian analysis for a truncated model, Statis-
tics & Probability Letters 82 (12) (2012) 2125–2135.195

[11] J. Fu, A. Xu, Y. Tang, Objective bayesian analysis of pareto distribution
under progressive type-ii censoring, Statistics & Probability Letters 82 (10)
(2012) 1829–1836.

[12] R. Tanabe, E. Hamada, Objective priors for the zero-modified model,
Statistics & Probability Letters 112 (2016) 92–97.200

[13] H. Howlader, A. M. Hossain, Bayesian survival estimation of Pareto distri-
bution of the second kind based on failure-censored data., Computational
Statistics & Data Analysis 38 (2002) 301–314.

[14] N. P. Jewell, Mixtures of exponential distributions, The Annals of Statistics
10 (2) (1982) 479–484.205

[15] A. Armagan, D. B. Dunson, J. Lee, Generalized double Pareto shrinkage,
Statistica Sinica 23 (2013) 119–143.

[16] C. A. Vallejos, M. F. J. Steel, Objective Bayesian survival analysis us-
ing shape mixtures of log-normal distributions, Journal of the American
Statistical Association 110 (510) (2015) 697–710.210

[17] W. Hastings, Monte Carlo Sampling Methods Using Markov Chains and
Their Applications, Biometrika 57 (1970) 97–109.

[18] W. H. Von Alven, Reliability engineering, Prentice Hall, 1964.

[19] H. Akaike, A new look at the statistical model identification, IEEE trans-
actions on automatic control 19 (6) (1974) 716–723.215

[20] N. Sugiura, Further analysts of the data by akaike’s information criterion
and the finite corrections: Further analysts of the data by akaike’s, Com-
munications in Statistics-Theory and Methods 7 (1) (1978) 13–26.

[21] J. Geweke, Evaluating the Accuracy of Sampling-Based Approaches to
the Calculation of Posterior Moments, In Bayesian Statistics 4 (eds. J.M.220

Bernardo, J. Berger, A.P. Dawid and A.F.M. Smith), Oxford: Oxford Uni-
versity Press (1992) 169–193.


	Introduction
	Model definition
	Prior specification
	Simulation study
	Application
	Concluding remarks

