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Abstract: Yield data represent a valuable layer for supporting decision-making as they reflect crop
management results. Forestry decision-makers often rely on coarse spatial resolution data (e.g., forest
inventory plots) despite the availability of modern harvesters that can provide high-resolution forestry
yield data. The objectives of this study were to present a method for generating high-resolution
Eucalyptus grandis yield data (individual tree-level) and explore their applications, such as correlation
analysis with soil attributes to aid nutrient recommendations. Two evaluations were conducted at two
sites in Brazil: (a) assessing the positioning accuracy of the global navigation satellite system (GNSS)
receiver positioning, and (b) analyzing the yield data and their correlation with the soil attributes.
The results indicated that positioning the GNSS receiver at the harvesting head provided higher
accuracy than placement at the top of the harvester cabin for individual tree-level data. Reliable yield
data were generated despite the GNSS receiver’s increased susceptibility to damage when mounted
on a harvest head. The linear correlation analysis between the Eucalyptus grandis yield data and
soil attributes showed both negative (Clay, B, S, coarse sand, and potential acidity — H + Al) and
positive correlations (K, Mg, pH-SMP, Ca, sum of bases, pH, base saturation, fine sand, total sand,
and silt content). This study demonstrates the feasibility of obtaining high-resolution yield data at
the individual tree-level and their correlation with soil attributes, providing valuable insights for
improving forestry decision-making.
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1. Introduction

Yield data are considered the result of interactions among environmental and anthro-
pogenic factors, providing valuable information for many decision-making processes, such as
nutrient removal maps, profitability maps, management zone establishment, and others [1].

Yield monitoring systems are commonly found for annual crops like maize [2], rice [3],
soybean [4], and wheat [5], as well as for semiperennial crops like sugarcane [6]. However,
perennial crops such as Eucalyptus spp., lack these systems due to challenges associated
with automated yield accountability. Unlike others crops, the yield in forestry involves
volumetric measurements of the tree trunk rather than mass measurements.

The most common method for obtaining the yield measurements for Eucalyptus spp.
or any forest is through forest inventory plots. The biometrics methods employed for forest
plantation measurements involve assessing the tree features (diameter, total height, and
shape) within rectangular or circular plots of varying sizes, usually ranging from 200 to
600 m?. These plots are distributed randomly or systematically within the population, with
the sampling density per one plot from 5 to 20 ha within a stand [7]. The method relies
on the manual use of a tree caliper and hypsometer that are costly, time-consuming, and
provide coarse spatial resolution.
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In this sense, to overcome these issues, advances in forest inventory have been made
towards the use of orbital, aerial and terrestrial Light Detection and Ranging (LiDAR) sensor
systems, resulting in high-spatial-resolution data [8-10]. However, there are limitations
for data generation. Orbital and aerial systems face problems related to tree density and
leaf cover. Terrestrial systems have major issues associated with occlusions, terrain, and
aboveground objects.

Given the significance of yield data for foresters and resource managers, improved
models to understand or predict the yield and its components are in development. However,
for reliable yield prediction equations, regardless of the approach (individual tree [11] or
stand-level [11]), it is necessary to obtain ground-truth data in the field, which are commonly
obtained by manual measurements. Even for LiDAR sensor systems, it is necessary to
calibrate with manual measurements as a methodological procedure [12].

Yield data are the most common variable evaluated in field experiments [13-17]. How-
ever, the majority of these experiments assess the yield based on low-resolution data, which
underrepresent the crop’s spatial behavior in the field. This approach contradicts the princi-
ples of precision agriculture, which aim to enhance the resource use efficiency, productivity,
quality, profitability, and sustainability of agricultural production by considering temporal,
spatial, and individual plant data [18].

The development of modern harvesters and forwarders offers a potential solution
for acquiring high-resolution yield data, specifically at the individual tree-level. These
machines can record data under a standard known as the StanForD standard, using a
specific file format (“.stm”) [19]. However, in the forestry industry’s routine operations,
instead of utilizing the individual data of harvested trees, summarized data from each
stand are often used. This presents an opportunity for the researchers engaged in big data
analysis to gain new insights based on overlooked data, such as the timber log diameter
and length information from the mechanical harvesting process.

Considering that the methods to obtain high-spatial-resolution data are still in development
and acknowledging the pressing need to enhance the crop production efficiency to align with
the sustainable development goals [20], it becomes crucial to minimize the errors related to
crop management practices. Particularly for Eucalyptus spp., a long-term crop [21], the common
approach to obtaining yield data is still based on a coarse spatial resolution (e.g., inventory level
with about one sample for every 400 m?). There is a gap in improving the efficiency of the
managerial practices supported by the use of yield data layers.

In this context, exploring the data produced by harvesting systems is promising. This
study explores the hypothesis that it is feasible to obtain high-resolution yield data using
modern harvesters. The objectives of this study were to demonstrate a methodology for
generating high-resolution yield data for Eucalyptus grandis and its possible applications,
such as correlation analysis with soil attributes to aid nutrient recommendation.

2. Materials and Methods
2.1. Description of the Study Site

The study was conducted at two experimental sites cultivated with Eucalyptus grandis,
located at the State of Sao Paulo, Brazil, that belong to Suzano SA Company. Site 1
coordinates are 23°42'31" S and 48°22/21"" W and site 2 coordinates are 22°54'57"" S and
48°14/33" W (Figure 1).

First forest site has an average altitude of 650 m above mean sea level and is covered by
Red Oxisol with a clayey texture [22]. This site has an average annual rainfall of 1350 mm
and an average annual temperature of 19 °C, characteristic of a humid subtropical climate
with hot summer and without dry season [23]. Second forest site has an average altitude of
580 m and is covered by quartzipsamments with a sandy texture. This site has an average
annual rainfall of 1200 mm and an average annual temperature of 21.5 °C, characteristic of
a tropical climate with dry winter [23].
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Figure 1. Study sites. (A) Country level (Brazil) highlighting the state of Sao Paulo. (B) Area 1 and
(C) Area 2 of study.

Both forest sites studied are within one of the most traditional forestry regions in
Brazil, renowned for being one of the most favorable areas in the world for successful
forestry due to its high suitability for dozens of Eucalyptus species [24].

2.2. Experimental Design (GNSS Placement) and Harvesting Procedures

Site 1 was planted in 2010 across an area of 11.07 ha, with a row and plant spac-
ing of 3.30 m and 2.27 m, respectively, and mechanically harvested in 2018. Site 2,
spanning 18.56 ha, was planted in 2011 with a row and plant spacing of 3.80 m and 2.10 m,
respectively, and was mechanically harvested in 2019.

The harvesting system adopted by eucalypt-based pulp companies is typically cut-to-
length logging. In this system, mechanical harvesters are used for felling trees, delimbing
(removing branches), bucking (cutting the tree into logs of specific lengths), and arranging
these timber logs into bunks for transportation. In this study, yield data were obtained using
a harvesting head (model H77euca—Ponsse, Vierema, Finland) coupled with a hydraulic
excavator (model PC200, Kotmatsu, Sao Paulo, Brazil). The harvester head, equipped
with a sensor system integrated into a multifunctional data logger and a global navigation
satellite system (GNSS) receiver (model Opti4G 4.715—Ponsse, Vierema, Finland), initially
measures the tree’s diameter at breast height (DBH). Subsequently, during delimbing and
bucking, it measures the diameter and length of each cut wood timber log to calculate the
tree volume (m?®). The minimum diameter processed (measured) by the harvester head is
0.03 m, meaning that harvest obtains the commercial tree volume.

For georeferenced data, testing the placement of the GNSS receiver on the harvester
was necessary to ensure accurate data collection by tree. At site 1, the receiver was installed
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at the top of the harvester cabin as per the default protocol (Figure 2A), which could
potentially compromise the accuracy of tree distribution data. At site 2, to improve the pre-
cision and accuracy in capturing individual tree data, the GNSS receiver was placed at the
harvesting head (Figure 2B), accounting for radial movement and accurately representing
the real position of individual harvested trees.

)

Figure 2. Sensor system used for Eucalyptus grandis harvesting process with different global navigation
satellite system receiver (GNSS) placements. (A) GNSS receiver located at the top of the harvester
cabin and (B) GNSS receiver located at harvesting head.

A tree caliper (Ponsse, Vierema, Finland) was used to calibrate the harvesting sensor
system. The tree caliper provided manual measurements and records of the diameters
and lengths of the timber logs from sampled and harvested trees. After the measure-
ment, it was connected to the harvester yield monitor, feeding the sensor system in a
self-calibration mode.

2.3. Sampling Procedures

In the second site, aiming to explore the linear correlation between tree yield and soil
physical and chemical attributes, 54 sampling points (about three sampling points per ha)
were collected at a depth of 0.00-0.20 m. Each sampling point comprised four subsamples:
two within the row spacing and two within the plant spacing. These samples were subjected
to physical (clay, sand, and silt contents) and chemical (Al: aluminum, B: boron, Ca: calcium,
CEC: cation exchange capacity, Cu: copper, Fe: iron, H + Al: potential acidity, K: potassium,
Mg: magnesium, Mn: manganese, OM: organic matter, pH: potential of hydrogen—calcium
chloride (CaCly), pH-SMP: potential of hydrogen—Shoemaker-McLean-Pratt, S: sulfur,
and Zn: zinc) analyses and coincided with the inventory points. Given the higher density
of yield points compared to the soil sampling points, a buffer with a 20 m radius was
applied using the soil sampling as a reference. This buffer aimed to obtain an average yield
value for each soil sampling and to approximate the overlap between the inventory and
buffer (Figure 3).
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Figure 3. Soil sampling and Eucalyptus grandis yield points within a 20 m buffer radius.

2.4. Data Analysis

The evaluation of the yield estimation values obtained by the harvesting system
involved two approaches. The first method, inherent to the harvester system as described
earlier, involves summing the volumes of the timber logs to calculate the individual volume
of the harvested tree. The second method is based on the Schumacher and Hall (1933) [22]
equation (Equation (1)), which estimates the individual volume of the felled tree using
measurements of DBH and commercial height obtained at the harvester.

ln(V) = [30 + [51 X ln(DBH) + 62 X h’l(HT) + €4, (1)

where In = natural logarithm, V = tree volume, (3; = parameters to be estimated, DBH = diameter
at the breast height, HT = total height, and ¢; = random error.

The equation was adjusted based on precise measurements from the same trees felled
and evaluated for self-calibration of the machine. Both yield estimation methods were
compared with manual measurements conducted on forest inventory plots. This step
aimed to evaluate the best method for generating yield maps from harvester data. The
comparison was conducted using the forest inventory as the reference, which involved
measuring DBH, commercial tree height, and volume of all the trees within an 11.28 m
radius but, in this case, at a high density of two plots per hectare. Analysis of variance
followed by the Tukey multiple comparison test at a significance level of 5% were applied
to compare the tree volume.

The best model was considered the one that presented similar yield data to the forest
inventory and the lowest average error. After choosing the model, a data interpolation and
filtering process was applied. Due to the absence of consensus among researchers on the
yield data filtering process, values considered unreal to the scenario were removed. In this
case, values below 70 m® ha—! and above 421 m3 ha—! were eliminated, with a standard
deviation (o) equal to O (indicating that the observed and predicted datasets are equal,
which would be unlikely because it is a continuous variable).
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The Pearson correlation (r) analysis was conducted at a significance level of 5% for
the soil sampling results and yield data. Variables that presented significant correlations
were used to generate surface maps with a spatial resolution of 3 m x 3 m. Data extraction
from the StanForD and analysis were carried out in RStudio [25], geostatistical analysis was
conducted in Vesper [26], and surface maps were generated in a geographic information
system (QGIS 3.16) [27]. In the presence of spatial dependence, ordinary kriging was
applied; otherwise, inverse distance weighting was used [28].

3. Results and Discussion

Figure 4 shows the yield data obtained by different GNSS receiver placements. It
demonstrates that the GNSS receiver positioned at the top of the harvester cabin mainly
captured data related to the harvester’s path, which jeopardizes the generation of accurate
yield maps as the points scarcely represent the tree’s location (Figure 4A). On the other
hand, positioning the GNSS receiver at the harvesting head provided the most accurate tree-
specific yield data (Figure 4B). However, due to the GNSS receiver’s error (C/A code, port
L1) of approximately 5 m, it also affected the data’s position concerning the planting line.
Enhancing the accuracy would necessitate a more accurate and precise receiver. Despite
these challenges, generating yield maps with the GNSS receiver at the harvesting head is
feasible. Nevertheless, caution is warranted as the device is located in a region susceptible
to greater physical impact during the harvesting operation.
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Figure 4. Harvester data obtained from different global navigation satellite system (GNSS) receiver
placements. (A) GNSS receiver located at the top of the harvester cabin and (B) GNSS receiver located
at the harvesting head.

Considering the data from site 2, the volumetric yield measurements obtained from
the forest inventory were compared to the volume estimated from two harvesting system
approaches: sum of timber log volumes and Schumacher and Hall’s equation. The analysis
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of variance and Tukey’s test did not show statistically different differences (p > 0.263).
However, Schumacher and Hall’s equation presented a lower average error (—0.001 m?)
compared to the data from the yield monitoring system (0.162 m3). Therefore, the yield data
were generated by applying Schumacher and Hall’s equation with data from the harvester
as input variables (DBH and commercial height).

Figure 5 shows the yield map obtained from the harvester after the ordinary kriging
and filtering process. Figure 5A shows the spatial distribution of the yield data, potentially
at the individual tree-level. After the interpolation and filtering process (Figure 5B), the
surface maps facilitated the visualization of the yield data, enabling decision-makers to
identify patterns.
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Figure 5. Eucalyptus grandis yield maps. (A) Raw yield data. (B) Filtered and interpolated yield data.
(C) Standard deviation values.

Based on the proposed setup, crop decision management should utilize high-spatial-
resolution yield data (individual tree-level—plant and row spacing, e.g., 3.80 m x 2.10 m ~ 8 m?)
and accept lower errors instead of the higher errors derived from low-spatial-resolution data
(e.g., inventory level -3.14 x 11.28 m x 11.28 m~400 m?) [21]. Furthermore, using high-spatial-
resolution yield data (e.g., individual tree-level) can enhance and support the estimates of
wood stock produced by individual tree models, which have been under development since
the 1970s [11,29,30].

Moreover, precise and accurate yield data can mitigate the uncertainties arising from
the discrepancies between the traditional field measurements conducted during inventory
assessments and the actual volume of wood entering the mill. The traditional methods rely
on coarse spatial resolution estimations, which can negatively impact the representation of
reality. For instance, even with high-resolution yield mapping (Figure 6), gaps between data
points can be observed. After interpolating the data, it is expected that areas with closer
data points will have lower standard deviation errors, while areas with more dispersed data
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Figure 6. Correlogram among Eucalyptus grandis yield and soil attributes at 5% of significance,
considering a 20 m buffer radius using the soil sampling as reference point. Al: aluminum, B: boron,
Ca: calcium, CEC: cation exchange capacity, Cu: copper, Fe: iron, H + Al: potential acidity, K: potas-
sium, Mg: magnesium, Mn: manganese, OM: organic matter, pH: potential of hydrogen—calcium
chloride (CaCl,), pH—SMP: potential of hydrogen—Shoemaker-McLean-Pratt, S: sulfur, and Zn: zinc.

Based on Figure 6, the soil attribute variables that were positively significant at 5%
with yields include K, Mg, pH-SMP, Ca, sum of bases, pH, base saturation, fine sand, total
sand, and silt content. The negatively significant variables include clay, B, S, coarse sand,
and potential acidity (H + Al). To avoid collinearity, the variables with strong correlations
(r > 0.82) were simplified. For example, sum of bases, Ca, pH (CaCl2), and base saturation
were strongly correlated. Hence, only Ca was used for the analysis because sum of bases
and base saturation are directly related to Ca, K, and Mg. Although total sand content did
not show a significant correlation with fine and coarse sand content, it was disregarded in
the study for creating surface maps due to its strong negative correlation with clay content
(r=—0.96). Appendix B contains the correlogram with the r values (Figure A1).
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Considering the chemical soil attributes, most of the significant variables are commonly
explored in forestry studies, especially with Eucalyptus spp. [13-16]. For example, calcium
presented a linear and positive relationship with yield (r = 0.26). This correlation is expected
because highly productive Eucalyptus plantations require large amounts of Ca [14]. This
accumulation of Ca in leaves increases over time until leaf abscission, which differs from
other cations. After canopy closure, the concentration of other cations tends to reduce due
to internal translocation to growth zones [31].

Despite knowing that Eucalyptus growth is variable and influenced by soil properties
along the field or sites, or both [17], the use of high-resolution yield data is still minimal, thus
jeopardizing crop management efficiency. This might occur because producers consider
larger errors acceptable under the premise that Eucalyptus spp. is a long-term crop [21] or
they lack access to high-resolution yield mapping, or both.

In the literature, a consistent and positive correlation between regional Eucalyptus spp.
yield and clay content is observed, with values ranging from 100 to 650 g 1000 g~ ! [32,33].
However, our study reveals a contrasting negative correlation. It is crucial to note that the
clay content in our investigation ranged from 64.10 to 92.63 g 1000 g ! (Figure 7A), falling
outside the range reported by Alvares (2011) [32] and Gongalves et al. (2012) [33]. This
result underscores the importance of more comprehensive studies, encompassing a broader
clay content range, ideally spanning soils with textures ranging from sandy to very clayey.
Such nuanced investigations would significantly contribute to the understanding of the
intricate relationship between clay content and Eucalyptus spp. yield.
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Figure 7. Surface maps of soil physical attributes. (A) Clay content. (B) Coarse sand content. (C) Silt
content. (D) Fine sand content.

The range of values of the soil chemical attributes found in this study can be classified
as “adequate” only for Ca*? and Mg*? and “low” for K*, according to the class of interpre-
tation from Neto et al. 2020 [13], which established a critical level of nutrients for eucalypts
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in soil and plants. Thus, aware of the variability in the soil physical (Figure 7) and chemical
attributes (Figure 8) within the field and the capacity to obtain high-resolution yield data,
crop decision-making must be improved, such as with enhanced nutrient recommendation
considering both the yield and soil attributes content.
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Figure 8. Surface maps of soil chemical attributes. (A) Calcium—Ca. (B) Magnesium—Meg. (C) Boron—B. (D)
Sulphur—S. (E) Potassium—XK. (F) Potential of hydrogen with Shoemaker-McLean-Pratt buffer—pH-SMP.
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The attributes that presented spatial dependence (clay—Figure 7A, coarse sand—Figure 7B,
silt content—Figure 7C, fine sand—Figure 7D, B—Figure 8C, K—Figure 8E, and pH-SMP—
Figure 8F) were submitted to ordinary kriging. As a result, the surface maps are smoother in
comparison to those without spatial dependence (Ca, Mg, and S), which were submitted to the
inverse distance weighting. Appendix A (Table A1) shows the semivariogram parameters used
for ordinary kriging.

Clay (Figure 7A) and coarse sand content (Figure 7B) presented an inverse pattern
in comparison to the yield (Figure 5B), indicating that areas with higher values of clay or
coarse sand content tend to negatively affect the yield. Moreover, the opposite effect was
found for silt content (Figure 7C) and fine sand content (Figure 7D).

Looking at the chemical surface maps (Figure 8), they show the spatial variability in
the attributes (Ca, Mg, B, S, K, and pH-SMP). Aware of the variability and its significance
with yield, it can guide or support decision-makers, or both, regarding the nutrition
recommendation to improve the nutritional management practices for the area, avoiding
over- and/or under-nutrient application to reach high-yielding conditions. For example,
using the layer of Ca and pH, it can improve the efficiency of the lime application to meet
the crop requirements.

In sites where the yield is not responsive to fertilizer applications but presents field
variability, the use of high-resolution yield data can guide fertilizer recommendations based
on the nutrient removal maps. This approach helps to prevent soil nutrient depletion [34]
and plant deficiency [34]. For example, the Brazil Eucalyptus Potential Productivity (BEPP)
project found that the yield was not responsive to high rates of fertilization (e.g., 500 to
1000 kg of N ha~1) compared to the current rates (15 to 70 kg of N ha~?!). This finding
underscores the importance of evaluating the field variability to optimize the fertilization
recommendations [35].

Although soil nutrient depletion is generally not considered a risk in Eucalyptus plan-
tations [36], there are still nutrient-related issues to consider, such as the overapplication of
nutrients and the creation of nutrient pools. Evaluating nutrient pools requires multiyear
measurements from the soil and forest inventory [37], which are laborious and expensive.
However, by leveraging high-resolution yield data, it is possible to undertake more in-
formed and efficient fertilizer applications, thereby reducing the risk of overapplication
and mitigating the potential environmental impacts.

This study presented a method to obtain high-resolution yield data from a harvester
and demonstrated their applicability through pair-wise evaluations with soil attributes. The
high-resolution data enhanced the understanding of the crop’s spatial behavior and its possible
relationship with soil attributes, which can contribute to achieving the sustainable development
goals [20]. However, the correlation analysis was limited to the results from soil cores taken at a
depth of 0.00-0.20 m. Future studies could improve this by including deeper sampling depths
and higher sampling densities for further evaluation, as found in [17].

Since this study did not focus on the effects of nutrient treatments, the conclusions
regarding the relationship between soil attributes and yield are limited to the studied
area. Nevertheless, the dataset obtained can provide valuable insights and guidance for
experimental designs at the farm level, such as on-farm experimentation.

Our case study highlights the common challenges faced by the planted forest sec-
tor. Primarily, there is a prevailing mindset among technicians and managers that high-
resolution information is valuable, yet there is minimal effort undertaken to implement
it. Deploying this study to other contexts must consider challenges such as the difficult
operating conditions in forest harvesting environments, the risk of equipment damage
from residues, and the high cost of precision agriculture equipment. Additionally, there
is a shortage of qualified forestry technicians familiar with precision agriculture concepts,
and the lack of standardization among the equipment and operational procedures further
limits widespread adoption.

Future research efforts should prioritize the evaluation of the multiyear measurements
acquired from the yield harvester system across diverse locations. These efforts should
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focus on proposing advanced decision-making frameworks that leverage high-resolution
data layers, such as the development of management zones or the implementation of site-
specific application strategies. Moreover, incorporating yield data layers can significantly
enhance both individual and stand-level modeling approaches.

4. Conclusions

Our case study demonstrates the feasibility of generating high-resolution yield data
for Eucalyptus grandis using modern harvesting technology. By positioning the GNSS
receiver at the harvesting head, we obtained accurate yield data at the individual tree-
level, overcoming the challenges associated with the traditional forest inventory methods.
Additionally, our comparison of the yield estimation approaches revealed the effectiveness
of Schumacher and Hall’s equation in estimating the tree volume using the harvester data
as the input.

The availability of high-resolution yield data reveals new possibilities for enhancing
the forestry decision-making processes significantly. By correlating yield data with soil
attributes, we identified significant relationships that can inform site-specific management
practices and improve resource allocation. Furthermore, the use of high-resolution yield
maps can aid in optimizing fertilizer application, mitigating nutrient-related risks, and
promoting sustainable forestry practices.
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Appendix A

Table Al. Semivariogram parameters obtained for ordinary kriging.

Variable n co C1 Al Variogram Model RMSE AIC
Boron 54 740 x 107% 591 x 10~% 145.60 Gaussian 6.49 x 10705 —163.80
Clay 54 84.23 252.70 462.50 Gaussian 28.07 308.10

Coarse Sand 54 0.00 x 1000 1.00 x 1004 185.00 Gaussian 1326.60 427.40
Fine Sand 54 0.00 x 10% 1.00 x 10+04 184.70 Gaussian 1154.40 420.70
Potassium 54 430 x 107% 2559 x 1070 294.90 Spherical 5.69 x 107% —198.80
pH-SMP 54 0.05 0.06 380.60 Gaussian 0.01 —104.10

Silt 54 5.33 7.55 198.20 Gaussian 1.44 75.67

n = number of samples, CO = nugget effect, C1 = structural variance, Al = range, RMSE = root mean square error,

and AIC = Akaike Information Criterion.
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Appendix B

Correlogram among yield and soil attributes
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