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Abstract
This paper addresses an integrated lot sizing and scheduling problem in the indus-
try of consumer goods for personal care, a very competitive market in which good 
customer service and cost management are crucial in the competition for clients. 
In this research, a complex operational environment composed of unrelated parallel 
machines with limited production capacity and sequence-dependent setup times and 
costs is studied. There is also a limitation in the total storage capacity for finished 
goods, a characteristic not found in the literature. Backordering is allowed, but it is 
extremely undesirable. The problem is described through a mixed integer linear pro-
gramming formulation. Since the problem is NP-hard, relax-and-fix heuristics with 
hybrid partitioning strategies are investigated. Computational experiments with ran-
domly generated and real-world instances are presented. The results show the effi-
cacy and efficiency of the proposed approaches. Compared to the current solutions 
used by the company, the best proposed strategies yield results with substantially 
lower costs, primarily from the reduction in inventory levels and better allocation of 
production batches on the machines.

Keywords  Lot sizing and scheduling · Mixed integer linear programming models · 
Relax-and-fix · Real-world instances

1  Introduction

According to the Brazilian Toiletry, Perfumery and Cosmetic Association (ABIH-
PEC), the Brazilian market for personal care, perfumery, and cosmetics showed 
growth of 2.2% in 2020 above the −4.5% of overall industry and −4.1% of the GDP 
(Gross Domestic Product) (both heavily affected by the COVID-19 pandemic) and 
a CAGR (Compound Annual Growth Rate) of 1.7% over the last 10 years com-
pared to a CAGR of −2.1% for industry overall and −0.3% for GDP over the same 
period [1]. Among the factors that have contributed to this accelerated growth are 
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the growing participation of women in the labor market, the frequent releases of new 
products, the higher productivity achieved by using cutting-edge technology, and, 
more recently, the essentiality of the segment’s products in combating the COVID-
19 pandemic. This segment comprises a large number of small manufacturers and 
some large companies. In 2020, Brazil held the fourth largest consumer market of 
this sector in the world, valued at US$ 23.7 billion. Inside this market, the segment 
studied in this work is the disposable personal care segment, composed of diapers, 
sanitary pads, toilet paper, towels, and tissues. These products are characterized by 
(i) frequent consumption by the population, (ii) relatively low cost, and (iii) very 
similar quality among different brands. Therefore, the processes of production plan-
ning, scheduling and control serve important roles for companies to guarantee pro-
ductivity, cost control, and an adequate customer service level. In most companies, 
the main responsibility of this activity is to simultaneously analyze several relevant 
pieces of information, such as the seasonality of the demand, the seasonality of the 
supply of raw materials, the perishability of the finished products and the raw mate-
rial, and the manufacturing capacity, to develop a production plan that optimizes the 
use of productive resources while meeting the demand for manufactured products.

In this work, a case study of a large company in the market of disposable personal 
care products is performed. The company has factories in southern and southeastern 
Brazil, and its market is also geographically concentrated in these regions. Its main 
product categories are diapers, feminine sanitary pads, and toilet paper. These prod-
ucts are manufactured by the company itself, and their demands are predominantly 
affected by the company’s marketing activities and by the competition. Other prod-
ucts, such as tissue paper, which is commonly utilized in the winter due to a higher 
frequency of respiratory infections, and disposable napkins and paper towels, which 
are largely sold during holiday times such as Christmas, Easter, and the New Year, 
among others, have a strong seasonal demand. The production configuration of the 
company consists of machines of different models that have been acquired over 
time as demand was increasing. These machines have performance profiles distinct 
from each other with regard to efficiency, speed, and cost. Moreover, due to techni-
cal constraints, not all products can be manufactured by all machines. Between the 
production of batches of different products on the same line, machine preparation 
(setup) is required, which may be as simple and rapid as changing the consuming 
packing, or complex and slow if it involves a change of raw material or reconfigura-
tion of the parameters of the product, among others. Thus, these setups depend on 
the product to be produced and on the product that was being produced in the previ-
ous batch. The manufactured products are shipped to a limited capacity distribution 
center located close to the factories. Figure 1 schematically represents the process.

Typical production planning decisions, such as lot sizing and scheduling, signifi-
cantly influence the results of a company by maximizing the fulfillment of sales 
orders, correctly adjusting the inventory levels, and incurring proper operating costs. 
The process of lot sizing consists of determining how much of each product to pro-
duce in each period to meet a projected demand under the existing conditions and 
operational capabilities. On the other hand, scheduling means determining when 
and in which sequence these lots should be produced to maximize the productive 
resource efficiency and to meet the deadlines. Inefficiencies in these processes can 
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cause overstocking of finished products, unfulfilled sales orders, loss of perishable 
material, missed due dates, significant reduction in the productive capacity of the 
production line, stocks of finished products accumulated in advance, and higher 
preparation machine costs, among others.

The proposed solution method is a customized relax-and-fix heuristic that 
decomposes a mixed integer linear programming (MILP) model that represents the 
entire problem into less complex subproblems that are successively solved. This 
matheuristic approach is mentioned by Copil et  al. [2] as the next generation of 
solution methods for the MILP models of the lot sizing and scheduling problems. 
It should be noted that the proposed strategy requires minimal technical knowledge 
to be applied in situ and opens the possibility that subproblems (which are smaller 
and therefore simpler) may be solved with established off-the-shelf software. The 
proposed strategy strikes a balance between market-ready tools, where the firm must 
adapt to the capabilities of the software, and the development of more elaborate ad 
hoc solution methodologies such as customized metaheuristics that require hiring 
specialized teams. Eleven different decomposing approaches are presented. Nine of 
them are problem-dependent strategies that divide the main problem considering 
several metrics associated with machines, products, and periods, and two of them 
are problem-independent strategies. The aim of the study is not only to solve a com-
plex real-world problem, but also to assess in which ways the form of partitioning 
the problem into simpler subproblems and the sequence in which subproblems are 
solved affect the performance of the relax-and-fix heuristic.

The rest of this paper is organized as follows. A literature review is presented in 
Section 2. In Section 3, a MILP formulation of the problem is given. In Section 4, 
the considered relax-and-fix heuristics are described. In Section 5, numerical exper-
iments with randomly generated instances and real-world instances of the company 
are conducted. The proposed heuristic methods are compared against a commercial 
solver applied to the MILP model presented in Section 3, while for the real-world 
instances, a comparison with the solutions adopted by the company is also pre-
sented. Conclusions are given in the last section.

Fig. 1   Schematically representation of the production process
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2 � Literature Review

In the literature, the integrated lot sizing and scheduling problem with dependent 
setup times and costs on a single machine (or a single line) is called GLSPST (gen-
eral lot sizing and scheduling problem with sequence-dependent setup time), while 
the same problem involving parallel machines is called GLSPPL (general lot sizing 
and scheduling problem with parallel machines). The GLSP with nonzero minimum 
lot sizes and without setup times has been proven to be NP-complete by Fleischmann 
and Meyr [3]. Consequently, the GLSP and the GLSPPL with sequence setup times 
are also NP-hard  [4, 5]. The focused problem can be considered as the GLSPPL 
with sequence-dependent setup times and costs, nonidentical parallel machines, and 
specific characteristics of the environment addressed, such as limited warehousing 
capacity for finished products, machine eligibility constraints, backorder costs, and 
setup state conservation among adjacent periods. To the knowledge of the authors, 
few studies have addressed the GLSPPL with all the characteristics of the focused 
real-world problem.

Due to the relevance of production planning for the industry and its complex-
ity, many authors have addressed the lot sizing and scheduling problem with differ-
ent characteristics. See classical reviews about the theme in [6-10], and for a recent 
review see [2]. A brief description of the works that address GLSPPL with specific 
characteristics is presented below. Differences from the problem considered in this 
work are highlighted.

Kang et  al. [11] treated the GLSPPL considering the minimization of setup 
and inventory costs using column generation techniques. In this work, the cost of 
sequence-dependent setups is considered, but setup times are ignored. Clark and 
Clark [12] studied the GLSPPL, whose objective is the minimization of storage and 
backordering costs, but without considering setup costs. The proposed mathemati-
cal model is based on the premise that the maximum number of setups per period 
is predetermined. A rolling-horizon method and relax-and-fix heuristics are applied. 
However, the presented computational results show that only small problems can be 
solved in a reasonable time. Aiming to minimize production, inventory and setup 
costs without allowing delivery delays, [5] considered the threshold accepting and 
simulated annealing metaheuristic in small real instances with identical machines. 
Beraldi et al. [13] developed rolling-horizon and relax-and-fix heuristics to solve the 
GLSPPL in the textile and fiberglass industry environment. Unlike the mathematical 
model developed by Meyr [5], the authors introduced a compact formulation for the 
case of identical machines considering the setup costs but neglected the setup times.

Józefowska and Zimniak [14] developed a decision support system applied to 
a Polish company that manufactures plastic pipes and whose production environ-
ment is composed of unrelated parallel machines. This system is based on a multi-
objective model that includes among its criteria the maximization of the machine 
utilization and the minimization of the deviation between the production schedule 
and the S &OP (Sales and Operations Plan) and the amount of products below the 
required level of safety stock. The model is solved using a genetic algorithm after 
having its solution space reduced by adding restrictions suggested by experienced 



1 3

Operations Research Forum (2023) 4:47	 Page 5 of 30  47

planners. Mateus et  al. [15] approached the lot sizing and scheduling problem by 
considering a refractory brick factory with different machines in parallel. Unlike 
the problem addressed in this work, the authors did not consider setup carryover, 
i.e., when the preparation of the machines is not maintained from one period to the 
next. The proposed iterative solution method is composed of two modules: the first 
solves the problem of lot sizing considering aggregate capacity and estimated setup 
times, while the second searches for a feasible sequencing for pre-sized lots through 
a GRASP metaheuristic. Meyr and Mann [16] dealt with the GLSPPL composed 
of heterogeneous parallel machines with the objective of minimizing inventory and 
sequence-dependent setup and production costs without backlogging. The authors 
proposed a heuristic that iteratively decomposes the multiline problem into a series 
of single-line subproblems, which can be easily solved by the heuristic TADR pro-
posed by Meyr [4]. Two strategies for decomposing the problem into subproblems 
are proposed: (i) a strategy based on priority rules and (ii) another strategy based on 
aggregating the original problem, solving the aggregate problem, and disaggregat-
ing the results to define the demand and initial inventory for each line. Xiao et al. 
[17] also examined the parallel-machine lot sizing and scheduling problem with 
sequence-dependent setup times. In addition, the release times of the items and 
machine eligibility and preference constraints are considered. However, the setup 
cost is sequence-independent, and the production costs are not considered. The 
authors initially propose a MILP model; next, the original problem is decomposed 
into a lot sizing subproblem and a set of single-machine scheduling subproblems by 
Lagrangian decomposition. A Lagrangian-based heuristic algorithm, which incor-
porates the simulated annealing algorithm to improve the solution of the scheduling 
problem, is proposed.

Considering the GLSPPL with secondary resources, [18] approached a problem 
in the health-related injection molding industry where a number of resources, avail-
able in limited quantities (e.g., grinders and driers), are installed on machines to 
perform certain tasks. The authors tackled the problem through a two-stage decom-
position. In the first phase, the machines are grouped according to their criticality 
(machines that produce products with fewer machine options to be processed are 
more critical). In the second phase, the subproblems represented by a MILP model 
are solved using an open-source solver. Almeder and Almada-Lobo [19] presented 
MILP models to tackle the synchronization of a secondary resource in lot sizing 
and scheduling problems with parallel unrelated machines. The machines have to 
be equipped with a special kind of resource (e.g., a tool) with limited capacity, and 
multiple products can be produced with the same tool; therefore, the tool changeover 
costs and times are considered instead of product changeovers. A GLSPPL inspired 
by a real-world production environment in the food industry was addressed by Soler 
et al. [20]. In the problem at hand, due to the scarcity of resources, only a subset of 
production lines can operate simultaneously, and these lines need to be assembled 
at each production period. Due to this feature, no setup carryover between adjacent 
periods exists; only a subset of products can be produced in a given period, and 
for each product, only one production line is capable of producing it. The authors 
define a branching rule to accelerate the performance of the branch-and-bound 
algorithm of the CPLEX solver, and a relax-and-fix procedure is also implemented. 
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More recently, [21] tackled a GLSPPL to maximize the profit of assembled prod-
ucts where pieces are produced using auxiliary equipment (molds) to form finished 
products. Each piece may be processed in a set of molds with different production 
rates on various machines. An iterative heuristic that decouples the lot sizing and 
scheduling decisions is proposed. First, the lot size of the products is determined 
through the solution of a MILP model where a mold can be used in more than one 
machine at a time. Next, another MILP model is presented that, based on the lot 
size and mold-machine assignment previously obtained, allows us to determine the 
mold schedule in the machines in each planning period. de Armas and Laguna [22] 
addressed the GLSPPL in the context of pipe insulation manufacturing, in which a 
limited number of resources must be shared by parallel machines and sets of make-
to-stock (MTS) and make-to-order (MTO) units must be considered simultaneously. 
The stock level of each MTS stock keeping unit (SKU) must be within specified 
limits at the end of each period, while each MTO SKU must be produced within 
its specified time frame. The objective is to maximize the total amount of produc-
tion in a given planning horizon considering sequence-dependent setup times; the 
setup costs are not considered. The authors propose a two-phase procedure. First, a 
MIP model in which the setup times are considered independently of the sequence is 
formulated and solved. Next, a one-pass heuristic is applied to search for setup time 
savings by reordering the products assigned by the MIP model to each machine in 
each period. An overview of simultaneous lot sizing and scheduling involving sec-
ondary resources can be found in [23].

3 � Mathematical Model

In the GLSPPL, n types of products are manufactured on a shop floor composed 
of m different machines over a horizon divided into T time periods. In a period t (the 
time interval that extends from instant t − 1 to instant  t), a machine can produce 
more than one type of product, provided its time availability is not exceeded. 
Machines have different production rates and efficiency levels. Some machines, due 
to their manufacturer, model, or preservation status, can achieve a higher production 
speed with lower scrap rates than others. Consequently, the production time pi� and 
the production cost cP

i�
 to produce product i on machine � depend on the product and 

the machine. Furthermore, due to technical constraints, not all products can be man-
ufactured by all machines. Between production batches of different types of prod-
ucts, it is necessary to prepare the machine and to set the correct product parameters, 
which generally generate loss of material. These setup times eij� and, consequently, 
their respective costs cS

ij�
 , are sequence dependent. Preemption is not permitted. The 

demand dit of each product i at the end of period t is dynamic and deterministic, i.e., 
it is known and varies over time. Backordering is allowed, but each backordered unit 
of product  i is penalized by gi per period of delay. Finished goods are transferred 
from the factory to a centralized distribution center with limited warehousing capac-
ity CW . Each stored unit of product  i costs an inventory cost hi per period. In the 
considered problem, in addition to defining the quantities of each product to be 
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produced and the production sequence, the solution determines the machine by 
which each batch is manufactured to minimize the sum of the costs of inventory, 
setup, production, and backordering.

The MILP formulation presented in the current section is based on the MILP for-
mulation introduced in  [5], which does not consider the allowance of backorders, 
machine eligibility constraints, or the limited capacity of warehousing. In the formu-
lation, many products can be produced by a machine in a certain period of time. The 
machine availability is consumed by the time necessary to set up the machine and to 
produce the lot. The setup time and cost depend on the sequence of products that are 
produced by the machine. The planning horizon is divided into T periods. Within 
each period t, each machine � has w

�t variable-length subperiods. A machine can 
produce a single type of product within each subperiod, and the duration of the sub-
period is given by the duration of the production of the lot that is being produced. 
There may be subperiods with zero length, even though the machine is set up to 
produce some product. The division into subperiods determines the sequence of the 
jobs on each machine and defines the associated setup times and costs.

To present the proposed model, we introduce the following notation:

Main constants:

m:	� number of machines,
n:	� number of products,
T:	� time horizon (assumed to start at 0).

Indexes:

i, j:	� products,
�:	� machines,
t:	� periods (a period t corresponds to the time interval between instants t − 1 

and t),
s:	� subperiods.

Sets:

I = {1,… , n}:	� products,

L = {1,… ,m}:	� machines,

I
�
⊆ I :	� products that can be produced by 

machine � ( � ∈ L),

Li ⊆ L:	� machines that can produce product i 
( i ∈ I),
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T = {1,… , T}:	� periods,

S
�
= {1,… ,W

�
}:	� subperiods of machine � ( � ∈ L ), 

where w
�t is the number of subperiods 

of machine � within period t ( � ∈ L , 
t ∈ T  ) and W

�
=
∑

t∈T w�t ( � ∈ L),

S
�t = {s ∈ S

�
| w̄

�t + 1 ≤ s ≤ w̄
�t + w

�t}:	� subperiods of machine � within period 
t ( � ∈ L , t ∈ T  ), where w̄

�t = 0 for 
t = 1 and w̄

�t = w̄
�,t−1 + w

�,t−1 for 
t = 2,… , T .

Parameters:

CW:	� capacity of warehousing,

CP
�t

:	� amount of time machine � is available (for production and setup) within 
period t ( � ∈ L, t ∈ T ),

dit:	� demand for product i at the end of period t, i.e., at instant t ( i ∈ I  , t ∈ T ),

hi:	� inventory cost per period of a unit of product i ( i ∈ I),

gi:	� backordering cost per period of a unit of product i ( i ∈ I),

pi�:	� time required to produce a unit of product i in machine � ( � ∈ L , i ∈ I
�
),

cP
i�

:	� cost of producing a unit of product i in machine � ( � ∈ L , i ∈ I
�
),

qlb
i�

:	� minimum lot of product i that can be produced in machine � ( � ∈ L , i ∈ I
�
),

eij�:	� setup time required to produce product j immediately after i in machine � 
( � ∈ L , i, j ∈ I

�
),

cS
ij�

:	� cost of the setup required to produce product j immediately after i in 
machine � ( � ∈ L , i, j ∈ I

�
),

I+
i0

:	� inventory (quantity) of product i at instant t = 0 ( i ∈ I),

I−
i0

:	� backordering (quantity) of product i at instant t = 0 ( i ∈ I),

xi�0:	� 1, if machine � is prepared to produce product i at instant t = 0 ; 0, otherwise 
( � ∈ L , i ∈ I

�
).
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Variables:

qi�s:	� quantity of product i produced in machine � within subperiod s ( � ∈ L , 
s ∈ S

�
 , i ∈ I

�
),

xi�s:	� 1, if machine � is prepared to produce product i at the beginning of subpe-
riod s (i.e., at instant s − 1 ); 0, otherwise ( � ∈ L , s ∈ S

�
 , i ∈ I

�
),

yij�s:	� 1, if the setup required to produce product j immediately after i in machine 
� occurs within subperiod s, i.e., between instants s − 1 and s; 0, otherwise 
( � ∈ L , s ∈ S

�
 , i, j ∈ I

�
),

I+
it
:	� inventory (quantity) of product i at the end of period t, i.e., at instant t ( i ∈ I  , 

t ∈ T ),
I−
it
:	� backordering (quantity) of product i at the end of period t, i.e., at instant t 

( i ∈ I  , t ∈ T ).

The proposed mathematical formulation is presented below:

(1)

Minimize
∑

i∈I

∑

t∈T

hi I
+
it
+
∑

i∈I

∑

t∈T

gi I
−
it
+
∑

�∈L

∑

i∈I
�

∑

j∈I
�

∑

s∈S
�

cS
ij�

yij�s +
∑

i∈I

∑

�∈Li

∑

s∈S
�

cP
i�
qi�s

subject to

(2)I+
i,t−1

− I−
i,t−1

+
∑

�∈Li

∑

s∈S
�t

qi�s − I+
it
+ I−

it
= dit, i ∈ I, t ∈ T,

(3)
∑

i∈I

I+
it
≤ CW , t ∈ T,

(4)
∑

i∈I
�

∑

s∈S
�t

(
pi� qi�s +

∑

j∈I
�

eij� yij�s

)
≤ CP

�t
, � ∈ L, t ∈ T,

(5)pi� qi�s ≤ CP
�t
xi�s, � ∈ L, t ∈ T, s ∈ S

�t, i ∈ I
�

(6)qi�s ≥ qlb
i�
(xi�s − xi,�,s−1), � ∈ L, t ∈ T, s ∈ S

�t, i ∈ I
�

(7)
∑

i∈I
�

xi�s = 1, � ∈ L, s ∈ S
�
,

(8)yij�s ≥ xi�,s−1 + xj�s − 1, � ∈ L, s ∈ S
�
, i, j ∈ I

�
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Objective function  (1) corresponds to the sum of the costs of inventory, back-
ordering, setup, and production. Constraints (2) define inventory and backordering 
conservation flow, i.e., the relations between inventory, backordering, demand, and 
produced quantities. Constraints  (3) determine that the total amount of inventory 
cannot exceed the warehousing capacity of the distribution center. In the problem 
under consideration, the existing storage capacity cannot be increased or violated. 
(If desired, it would be possible to consider, in the objective function, an additional 
cost associated with exceeding the current capacity.) Constraints (4) guarantee that 
the sum of the production time and setup time of each machine within each period 
does not exceed the corresponding machine’s availability. Constraints (5) ensure that 
machine � produces product i within subperiod s only if the machine has been previ-
ously configured for this purpose. Constraints (6) impose a minimum lot size restric-
tion. Constraints  (7) determine that, for every machine, within every machine’s 
subperiod, a single product can be produced. Constraints  (8) indicate that if the 
machine � switch from producing product  i to producing product  j occurs within 
subperiod s, then the corresponding setup must be accomplished over the course of 
subperiod s. Constraints (9, 10, 11 and 12) determine the variables’ domain. Note 
that it is not necessary to impose variables yij�s to be binary because they naturally 
assume values in {0, 1} at an optimal solution. This is because constraints (8) restrict 
them to be larger than or equal to −1 , 0, or 1, while constraints (11) inhibit the pos-
sibility of the variables being negative. The minimization of the objective function 
forces them to assume binary values at the optimal solution.

4 � Relax‑and‑Fix Heuristics

The main idea of the relax-and-fix (RF) heuristic [24] for solving a MILP problem 
is to partition the set X of integer variables into K subsets X1,… ,XK and to solve a 
sequence of K smaller MILP problems. In the kth subproblem, the variables in Xk 
are restricted to integers, while the integrality of the variables in Xk+1 ∪⋯ ∪ XK is 
relaxed and the variables in X1 ∪⋯ ∪ Xk−1 are already fixed; see Fig. 2.

Model  (1–12), which will be named “Model M ” from now on, needs 
to be modified to be used within the context of an RF-based heuristic. Let 
X = {(i,�, s) | � ∈ L, s ∈ S

�
, i ∈ I

�
} be the set of all valid indices’ 3-uples of 

variables xi�s . The RF-based heuristic relies on the partition of the set X into K 

(9)xi�s ∈ {0, 1}, � ∈ L, s ∈ S
�
, i ∈ I

�

(10)qi�s ≥ 0, � ∈ L, s ∈ S
�
, i ∈ I

�

(11)yij�s ≥ 0, � ∈ L, s ∈ S
�
, i, j ∈ I

�

(12)I+
it
, I−

it
≥ 0, i ∈ I, t ∈ T.
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subsets Xk ( k = 1,… ,K ) that verify ∪K
k=1

Xk = X and Xk1
∩ Xk2

= � for all k1 ≠ k2 . 
Let Model M1 be defined as Model M , in which constraint (9) is substituted with

We can now define Model Mk , for k = 2,… ,K , as Model M in which con-
straint (9) is substituted with

where in (14), x̂w
i�s

 for (i,�, s) ∈ Xw correspond to the optimal values obtained when 
solving Models Mw for w = 1,… , k − 1 . This expresses the fact that, in Model Mk , 
variables xi�s with (i,�, s) ∈ ∪k−1

w=1
Xw are fixed, variables xi�s with (i,�, s) ∈ Xk pre-

serve their integrality constraint, and variables xi�s with (i,�, s) ∈ ∪K
w=k+1

Xw are var-
iables whose integrality constraint is relaxed. Note that in Model M , constraint (9), 
which states that xi�s ∈ {0, 1} for all (i,�, s) ∈ X , implies that all variables yij�s , for 
all � ∈ L , ∈ S

�
 , i, j ∈ I

�
 , assume binary values at an optimal solution. On the other 

hand, a different relation holds in Model Mk ( k = 1,… ,K ). Due to (8), a variable 
yij�s is guaranteed to assume binary values in an optimal solution of Model Mk only 
if (i,�, s − 1) and (j,�, s) ∈ Xk.

The key feature of an RF-based heuristic is the determination of the number of sub-
problems K and the sets X1,… ,XK . Problem-dependent and problem-independent strat-
egies will be considered. The problem-dependent strategies divide variables xi�s con-
sidering the dimensions related to machine, product, and period, and they are based on 
several metrics associated with machines, products, and periods that we now describe. 
We define the demand di of a product i as

(13)
x
i�s

∈ {0, 1}, (i,�, s) ∈ X1,

0 ≤ x
i�s

≤ 1, (i,�, s) ∈ ∪K

w=2
X
w
.

(14)xi�s = x̂w
i�s
, (i,�, s) ∈ Xw for w = 1,… , k − 1,

(15)xi�s ∈ {0, 1}, (i,�, s) ∈ Xk,

(16)0 ≤ xi�s ≤ 1, (i,�, s) ∈ ∪K
w=k+1

Xw,

Fig. 2   Relax-and-fix algorithm working structure. In the second subproblem, x̂1
i
 , i ∈ X1 , correspond to 

the optimal values found when solving the first subproblem
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and the flexibility fi of a product i as the number of machines that can produce it, 
i.e.,

for all i ∈ I  . In addition, inspired by Vogel’s approximation method for the trans-
portation problem [25, 26]), we define the discrepancy ai of a product i as the differ-
ence between its two smallest processing times, given by

Following [18], we consider a machine to be critical if it is able, and thus it poten-
tially will need to process products with low flexibility. Therefore, we define the criti-
cality �

�
 of a machine � as

for all � ∈ L . We also associate with a machine � a metric of efficiency �
�
 , given by 

the sum of the machine’s average processing times and costs, i.e.,

for all � ∈ L . Finally, for a period t ∈ T  , we define its overall demand �t as

As a whole, nine different problem-dependent and two problem-independent 
partition strategies are considered. Each strategy consists of a way of sorting the 
3-uples of indices (i,�, s) ∈ X , where X is the set of valid 3-uples of the variables 
xi�s . After sorting, the first ⌊�X�∕K⌋ variables constitute the set X1 , the next ⌊�X�∕K⌋ 
variables constitute the set X2 , and so on. If |X| is not a multiple of K, then we have 
that K⌊�X�∕K⌋ < �X� . Therefore, in the first r = �X� − K⌊�X�∕K⌋ subsets, we con-
sider ⌈⋅⌉ instead of ⌊⋅⌋ for the cardinality of X1,… ,Xr . In most strategies, the sug-
gested order does not imply a total order of the 3-uples. Therefore, tie-breaking 
criteria play an important role in the strategies. In the suggested strategies, the tie-
breaking criterion will always consist of applying a second strategy. Thus, the strate-
gies are intrinsically hybrid. As a second tie-breaking rule, the lexicographic order 
of the index 3-uples is used. The description of each strategy follows:

(17)di =
∑

t∈T

dit;

(18)fi = |Li|

(19)ai = pi�̂2
− pi�̂1

, �̂1 = argmin
�∈Li

{pi�}, and �̂2 = argmin
�∈Li⧵{�̂1}

{pi�}.

(20)�
�
= m −min

i∈I
�

{fi}

(21)�
�
=

1

|I
�
| (
∑

i∈I
�

pi� + cP
i�
)

(22)�t =
∑

i∈I

dit.
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•	 Time-dimension-based strategies:

	 (S1)	 Chronological time: Given (i,�, s) ∈ X , we have that s ∈ S
�t for some 

t ∈ T  . 3-uples are sorted in increasing lexicographical order of (t, s), 
where t is the period t to which subperiod s corresponds.

	 (S2)	 Periods with larger demand first: The same as (S1), but 3-uples (i,�, s) ∈ X 
are sorted in decreasing order of �t (instead of increasing order of t), 
where �t is the demand of period t given by (22).

•	 Product-dimension-based strategies:

	 (S3)	 Most demanded products first: 3-uples (i,�, s) ∈ X are sorted in decreasing 
order of the item demands di given by (17).

	 (S4)	 Less demanded products first: The same as (S3) but in increasing order.
	 (S5)	 Less flexible products first: 3-uples (i,�, s) ∈ X are sorted in increasing 

order of the item flexibility fi given by (18).
	 (S6)	 First, the products with the largest discrepancy between the two shortest 

production times: 3-uples (i,�, s) ∈ X are sorted in decreasing order of the 
item discrepancy ai given by (19).

•	 Machine-dimension-based strategies:

	 (S7)	 Less efficient machines first: 3-uples (i,�, s) ∈ X are sorted in increasing 
order of the machine efficiency �

�
 given by (21).

	 (S8)	 More efficient machines first: The same as (S7) but in decreasing order.
	 (S9)	 More critical machines first: 3-uples (i,�, s) ∈ X are sorted in decreasing 

order of the machine criticality �
�
 given by (20).

•	 Problem-independent strategies:

	 (S10)	 More fractional variables first: In this strategy, we first solve a linear 
programming (LP) problem that corresponds to Model M in which the 
constraint xi�s ∈ {0, 1} is relaxed to 0 ≤ xi�s ≤ 1 for all (i,�, s) ∈ X . Let 
x̂0
i�s

 , for (i,�, s) ∈ X , be the optimal solution of the LP problem. For each 
variable xi�s for (i,�, s) ∈ X , we compute the “distance to integrality” 
given by 

 3-uples (i,�, s) ∈ X are sorted in decreasing order of their distance to 
integrality d0

i�s
 . In fact, there is no need to sort all 3-uples since, to con-

struct X1 , only the ⌊�X�∕K⌋ or ⌈�X�∕K⌉ 3-uples with the largest d0
i�s

 are 
required. In general, after having solved the kth subproblem ( k < K ), dis-
tances dk

i�s
= min{x̂k

i�s
, 1 − x̂k

i�s
} for (i,�, s) ∈ X ⧵ ∪k

w=1
Xw are computed, 

where x̂k
i�s

 is the optimal solution of the kth subproblem, and the ⌊�X�∕K⌋ 
or ⌈�X�∕K⌉ 3-uples with the largest dk

i�s
 are selected to constitute Xk+1.

d0
i�s

= min{x̂0
i�s
, 1 − x̂0

i�s
}.
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	 (S11)	 More influential variables first: In this strategy, variables with more “influ-
ence” in the objective function are considered first. This “influence” could 
be directly related to the cost associated with the variable in the objective 
function, and this is the most direct interpretation of this rule. However, 
in the problem at hand, variables xi�s with (i,�, s) ∈ X do not appear in the 
objective function. However, their values influence the value of variables 
qi�s and yij�s . Thus, the influence �i�s of variable xi�s is defined as 

 Note that, in fact, �i�s does not depend on s and, therefore, variables xi�s1 
and xi�s2 with s1 ≠ s2 have the same influence measure. Therefore, in the 
particular problem at hand, this problem-independent strategy depends 
on the products and the machines. More specifically, products that take a 
long time to process and/or demand a time-consuming machine prepara-
tion after production are thought to be more influential.

Note that strategy (S10) is a dynamic strategy that differs from all other strat-
egies because set Xk is determined after having solved subproblems from  1 to 
k − 1 , while other strategies determine all subsets X1,… ,XK a priori. Moreover, 
strategy (S10) requires solving an LP problem first. In the present work, we con-
sider hybrid strategies that consist of applying a problem-dependent strategy 
between (S1) and (S9), using (S10) or (S11) as the first tie-breaking rule and the 
lexicographic order in the 3-uples (i,�, s) ∈ X as the second tie-breaking rule. 
(Hybrid strategies that combined two problem-dependent strategies were also 
evaluated numerically, but they showed marginal benefits in relation to those 
presented in this paper.)

5 � Numerical Experiments

In this section, we evaluate the performance of the partition strategies described in 
the previous section. In the first set of experiments, strategies are evaluated with 
respect to a set of randomly generated instances. In a second experiment, selected 
strategies are applied to a set of ten real-world instances of the industry of personal 
care products. The section ends with a basic sensitivity analysis regarding the stor-
age capacity restriction of the warehouses. The experiments were carried out with 
an Intel Xeon X5690 3.47 GHz machine with 64 GB of RAM. The RF algorithms 
and the formulations were solved using CPLEX 12.10.0 using default parameters 
with the concert library and C++ programming language. The code was compiled 
using the gcc 6.3.0 compiler with Code::Blocks 16.01 IDE. Benchmark instances 
and code are available at https://​github.​com/​kenne​dy94/​GLSPPL-​RF.

�i�s = (
∑

j∈I
�

cS
ij�
) + cP

i�
.

https://github.com/kennedy94/GLSPPL-RF
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5.1 � Experiments with Randomly Generated Instances

The benchmark test suite is composed of 50 randomly generated instances inspired 
by the production environment of the target industry. All instances have a planning 
horizon composed of 16 time periods divided into 7 subperiods each. As each period 
corresponds to 1 week, the planning horizon comprises approximately 4 months. 
(This does not mean that each subperiod corresponds to 1 day. This means that a 
machine can produce at most seven different products in a period of 1 week. The 
subperiods correspond to the production of different products on the machine and 
are of varying duration.)

Five groups of instances were considered (A, B, C, D and E), and ten different 
random instances were generated within each of the groups, with a total of 50 
instances. The random generation used either discrete or continuous uniform distri-
butions, depending on the nature of each parameter. The number of machines m for 
groups A, B, C, D, and E is 2, 3, 4, 5, and 7, respectively, while the number of prod-
ucts n for groups A, B, C, D, and E is 8, 12, 16, 20, and 28, respectively. It is consid-
ered that the machines are not ready for the production of any item at the beginning 
of the planning horizon, i.e., xi�0 = 0 for all i ∈ I  and � ∈ Li . Table 1 shows details 
of the random generation of all instance parameters. It should be noted that the ran-
dom instances were generated from real-world data. In the table, ē is the average of 
the setup times eij� for � ∈ L and i, j ∈ I

�
 , and dt (for t ∈ T  ) corresponds to an 

aggregated period demand. For each item i ∈ I  , a proportion dp
i
∈ [0.05, 0.9] is ran-

domly generated (independent of t), and dit is defined as dit = dt d
p

i
∕(
∑

i∈I d
p

i
) . The 

production and setup time intervals for each group were obtained from the average 
times and standard deviations provided by the company. The range for the minimum 
lot qlb

i�
 of product i on machine � relative to each group was calculated based on the 

average and the standard deviation, informed by the industrial area of the company, 
of the minimum feasible quantity to be produced with productivity and material loss 
within the required standards. In fact, the average and standard deviation were 
reported for each group in working shifts q̂lb and transformed into units of products 
qlb
i�

 considering the processing times pi� and the fact that each working shift corre-
sponds to 8 h of labor, i.e., qlb

i�
= 8 q̂lb∕pi� . Production costs cP

i�
 (for i ∈ I  and 

� ∈ Li ) are random with a continuous uniform distribution within the range given in 
the table. However, they are then redefined as cP

i�
− cP

i�i
 , where �i = argmin

�∈Li
{cP

i�
} 

corresponds to the most efficient machine that produces item i (for i ∈ I  ). The 
ranges for the amounts of products in stock and backordered products at the begin-
ning of the time horizon were calculated using averages and standard deviations 
based on historical data provided by the company. The last line of each group dis-
plays average values. Table  2 shows detailed information about the generated 
instances. In the table, columns IV, CV, and CO correspond to the numbers of inte-
ger variables, continuous variables, and constraints of Model M , respectively.

Initially, to decide which of the problem-independent strategies would be used as 
the tie-breaking rule, we ran strategies S10 and S11 while varying K ∈ 1, 2,… , 10 . 
The two rows at the bottom of Table  3 show the results. In the table, the results 
obtained with K ≥ 2 are compared with the result obtained with K = 1 , which 
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simply corresponds to solving Model M using CPLEX. The results appear sepa-
rated by group and refer to the 10 instances of the group solved with 9 values of 
K ∈ {2,… , 10} . Under the heading (W,G(%)) is displayed for how many, out of 
the 90 cases, the relax-and-fix strategy found a better result (W stands for “win”) 
than CPLEX and what the average gap was in these cases ( G(%) stands for “average 
gap in percentage”). Under the heading (L,G(%)) appears for how many of the 90 
cases the relax-and-fix strategy performed worse (L stands for “lost”) than CPLEX 
and the average gap in these cases. Since there were no ties, if the number of wins 
and losses does not add up to 90, it is because for some instances and values of K, 
relax-and-fix could not find a feasible solution within the running time limit. The 
last column of the table shows the average gap considering the 50 instances and 
the 9 tested values of K. The results show that strategy S11 obtained better results 
than strategy S10 and, for this reason, it will be used as a tie-breaker for all the 
other strategies that depend on the problem. The performance of strategies S1 to 
S9, using S11 as the tie-breaker strategy, is shown at the top of Table  3. At this 
point, it is important to mention that for both CPLEX and the relax-and-fix strategy, 
a time limit of 1 h was used. (The influence of this time limit on the comparison 
will be analyzed later in this section.) Furthermore, in the relax-and-fix strategy, the 
time was divided linearly between the subproblems such that the first subproblem 
has twice as much time as the last. Preliminary tests when supplying three times as 
much time to the first subproblem and dividing the time evenly among the subprob-
lems showed similar results. The last column of the table shows that, in aggregate, 
that is, without evaluating the different values of K and the groups of instances indi-
vidually, all strategies improved upon the results obtained with CPLEX, with gap 
values ranging from −22% to −37% . The numbers also show that strategy S1 pro-
vided the best results. It is also worth noting that S1 found feasible solutions for all 
instances and all tested values of K.

Table  4 shows the disaggregated results for strategy S1: that is, for each value 
of K separately. Figure 3 graphically shows the same results shown in Table 4. The 
numbers in the table show that, except for the case K = 2 , the results vary little 
depending on the value of K chosen, which can be considered as a positive feature 
of the method. The numbers also show that the relax-and-fix strategies with K ≥ 3 
almost always surpass CPLEX, except for some instances of groups A and B that 
concentrate the smallest instances.

The comparison with CPLEX depends very much on the 1-h time limit being 
used, since if the instance is small and CPLEX is able to find an optimal solution 
(regardless of whether it can prove whether the solution is optimal or not), then 
there is nothing that relax-and-fix can do. Therefore, we decided to test the influ-
ence of the time limit on the comparison. To this end, we reran CPLEX and strategy 
S1 with time limits of 600, 1, 200, 1, 800, 2, 400, 3, 000 and 3, 600 s. We consid-
ered S1 with K = 6 because Table 4 shows that this was the best value of K for such 
a strategy. However, this does not mean that we intend to use these values of K in 
the next experiments, since as already mentioned before, the method is robust and 
shows small variations with respect to the value of K. Figure 4 shows the results for 
strategy S1 (with K = 6 ). Figure 4a shows that when the time limit is reduced, the 
advantage of the relax-and-fix strategy increases. The average gap versus CPLEX, 
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which was −40.62% for the 1-h time limit, extended to −65.79% . This experiment 
shows that with less time available, using the relax-and-fix strategy is even more 
advantageous. However, the question that remains is as follows: With less time, 
how much do the solutions found by relax-and-fix deteriorate? Fig.  4b compares 
the solution obtained by relax-and-fix with a reduced budget against the solution 
found with the 1-h budget. The figures show that the maximum deterioration is, on 
average, approximately 24.23% . The deterioration of the solutions found by CPLEX 
with reduced time is much greater, which is why the advantage of the relax-and-fix 
strategy increases.

5.2 � Experiments with Real‑world Instances

In this section, we apply the presented methods to eight real instances provided by 
the company. All instances, as well as the randomly generated ones, include 16 peri-
ods divided into 7 subperiods. The number of machines varies between 2 and 7, and 
the number of products varies between 8 and 26. Table 5 shows some details of the 
instances and their respective models. Recall that in the table, IV, CV and CO stand 
for “integer variables”, “continuous variables”, and “constraints”. The table also 
shows, for each instance, the solution found by the company, which was calculated 
by an expert with an undisclosed empirical method.

The results with the random instances showed that there is no clear advantage of 
a certain value of K over others (excluding small values of K) and that small varia-
tions in the values of K generate small variations in the results. Because of this and 
because we do not know how the solutions given by the company were calculated, 
we solved the eight instances with strategy S1 while varying the time limit and vary-
ing K, as we did with the random instances. Figure 5 shows the results. On the one 
hand, the figure shows that, for fixed K, the longer the time limit, the better the 
solution found. On the other hand, the figure also shows that strategy S1 finds very 
similar values for any K ≥ 6 . Because of this, we arbitrarily fixed K = 8.

Table 6 shows the results obtained by strategy S1, with K = 8 and varying time 
limit. The table also shows the results obtained by CPLEX while also varying the 
time limit. For each method and time limit, the table shows the solution obtained 
and the gap in relation to the solution presented by the company, calculated as

where Fmethod and Fcompany correspond to the objective function values of the solu-
tions found by the method and the company, respectively. The numbers in the 
table show that the proposed strategy always improves the company’s solution by 
an amount that roughly varies, on average, between 40% and 46%, depending on 
the time limit given for the strategy. The solutions found by CPLEX are, on aver-
age, worse than the solutions reported by the company when the timeout is 600 or 
1,200 s, while CPLEX improves the company’s solutions on average between 24% 
and 35% for longer time limits.

100 ×
(
(Fmethod − Fcompany)∕Fcompany

)
%,
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Figure 6 shows the data from Table 6 in a different way. In the figure, for each 
instance, the solution reported by the company corresponds to 100% and the solu-
tions found by the other methods (CPLEX and strategy S1) appear as percentages 
of the solution reported by the company. In the figure, CPLEX appears in light 
blue, while strategy  S1 appears in violet. Additionally, for each method and each 
instance, there are 6 thin bars that, from left to right, correspond to the time lim-
its 600, 1,200,… , 3,600 . Bars that exceed 100% appear truncated in the figure for 
presentation purposes, and their true values are indicated with numbers near the top. 
Note, for example, that in instances P1 and P3, the 6 thin bars of each method have 
practically the same height. This means that these instances are apparently simple 
for the methods, which practically find the same solutions regardless of the time 
limit. For the other instances, the 6 thin bars associated with different time limits 
seem to have decreasing height from left to right, which shows that, with more time, 
the methods are able to find better solutions.

Overall, as already determined by examining Table 6, both CPLEX and strategy S1 
improve the solutions reported by the company, except for instances P6 and P8, where 
CPLEX found worse solutions for threshold times below 1,800 s. Regardless, the per-
formances of CPLEX and strategy S1 are similar in instances P1, P2, P3 and P4. In 

Fig. 3   Gaps to CPLEX solution (i.e., K = 1 ) of strategy S1 on random benchmark instances
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these  4 instances, the methods improve the solution presented by the company and 
return very similar solutions. It is worth noting that these 4 instances are the small-
est instances, with dimensions similar to the random instances of groups A and B. In 
these instances, using CPLEX would be a reasonable alternative. The situation is dif-
ferent in instances P5, P6, P7 and P8, which are the largest within the set considered. In 
these instances, strategy S1 substantially improves the solutions found by the company 
in a way that is not matched by CPLEX. Note that even in instances P5, P6 and P8, the 
solutions found by strategy S1 with the shortest time limit are better than the solutions 
found by CPLEX with the longest time limit considered.

5.3 � Sensitivity Analysis with Respect to Storage Capacity Constraints

In this section, we perform a basic sensitivity analysis with respect to the storage 
capacity constraint of the warehouse. This analysis is in fact pertinent because, in 
the problem considered, storage capacities can be modified rather quickly and at 
low cost. Leasing or unleasing a warehouse can be done in a few weeks, while, for 
example, buying and installing a new production machine can take 3 to 5 years. 
Moreover, the storage capacities considered in real-world instances are intentionally 
large. On the one hand, the cost of inventory comprises the cost of having resources 
invested in a commodity stalled in inventory, the cost of the physical space itself, 
and the cost of handling the inventory. Because many of the items produced are of 

Fig. 4   a Boxplot of the gaps 
between CPLEX and strategy 
S1 ( K = 6 ) applied to the 50 
random instances varying the 
time limits of the methods. 
(The average gaps are −65.79% , 
−52.86%,−45.62% , −43.14% , 
−39.75% , −40.62% for the time 
limits 600, 1,200,… 3,600 , 
respectively). b Boxplot of 
the gaps between S1 ( K = 6 ) 
applied to the 50 random 
instances varying its time limit 
in {600, 1,200,… , 3,000} 
and S1 ( K = 6 ) with a 1-h 
time limit. (The average gaps 
are 24.23% , 12.73% , 6.82% , 
4.84% , 1.57% for the time limits 
600, 1,200,… 3,000 , respec-
tively)

(a)

(b)
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little value, these three components contribute approximately 20%, 40% and 40% to 
the cost of inventory, respectively. On the other hand, the backordering cost is rela-
tively high in relation to the inventory cost. Because of this, the solution currently 
adopted by the company is to produce in advance and store stock to minimize the 
chance of failing to meet the demand.

To carry out the analysis, we considered, as an example, the real-world instance 
P6. (The scenario is very similar in the other real-world instances.) Solutions were 
computed with strategy S1 with K = 8 and a CPU time limit of 2 h. For the solution 
found for this instance, the warehouse capacity constraint is inactive for every instant 
t ∈ T  ; and maxi∈I, t∈T{I

+
it
} = 457,395 . Therefore, we redefined CW = 457,395 − 1 

and solved the instance again. This procedure was repeated until the instance became 
infeasible. In the particular case of instance P6, the last solved feasible problem had 
CW = 452,939 and maxi∈I, t∈T{I

+
it
} = 452,834 , and the instance is infeasible if we 

consider CW = 452,833 . Figure  7 shows the objective function value of the solu-
tions obtained as a function of the considered value for CW . The first observation 
is that the warehouse capacity can be reduced from its original value of 650, 000 to 

Table 5   Detailed information of 
the real-world instances

Inst. m n IV CV CO Company’s solution

P1 4 9 2,016 12,058 14,336 1,069,419
P2 3 12 2,016 14,872 16,944 64,706
P3 4 8 2,128 14,284 16,672 754,967
P4 5 13 2,800 20,556 23,600 888,172
P5 2 20 3,584 64,186 67,120 51,740
P6 5 24 4,480 45,338 49,648 903,501
P7 7 26 5,040 40,660 45,792 636,216
P8 7 26 5,264 56,028 61,248 2,301,544

Fig. 5   Average gap to the company’s solution of solutions found by strategy S1 varying 
K ∈ {2, 3,… , 10} and the CPU time limit in {600, 1,200,… , 3,600} s
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457, 395 without any impact on the quality of the solution obtained. On the other 
hand, Fig. 7 shows that reducing CW from 457, 395 to 452, 834 produces an increase 
in the objective function value from 451,  067.20 to 494,  141.00. Evidently, this 
reduction in storage capacity would only be justified if it brought savings of more 
than 43, 073.80.

Additionally, it should be noted that this analysis does not consider the poten-
tially negative impact of the reduction of warehouse capacity on the inventory cost 
of products. It would be reasonable to assume that there is a gain of scale when 
considering large warehouses and that a reduction in the warehouse capacity can 
increase the 40% share of the physical space that goes into the inventory cost of each 
product. A deeper parametric analysis, which takes this relationship into considera-
tion, could be performed if the company would effectively be willing to adopt the 
production scheduling suggested in this study instead of the current policy of pro-
duction in advance. Furthermore, the analysis could provide a basis for the discus-
sion of contractual backordering costs in the sense that smaller warehouses could be 
used if the costs for late deliveries were lower or within a certain range.

Fig. 6   Solutions obtained with CPLEX and strategy S1 (with S = 8 ) as a percentage of the company’s 
solutions
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6 � Conclusions

This paper addressed an integrated real-world lot sizing and scheduling problem in a 
complex operating environment that occurs in a large company in the personal care 
consumer goods industry. This problem is composed of distinct parallel machines 
with limited production capacity and sequence-dependent setup times and costs. 
There is also limited storage capacity for finished goods. To solve this problem, a 
MILP model was presented, and several problem-dependent and problem-independ-
ent strategies based on the relax-and-fix heuristic were developed. The performance 
of the heuristics was evaluated by solving randomly generated instances and real-
world cases. Exhaustive details about the parameters of the real instances are given 
(see Table 1) in such a way that new random instances can be generated that pre-
serve the characteristics of the real instances. This allows the generation of new test 
sets to evaluate and compare methods that apply to the problem under consideration.

The relax-and-fix strategies introduced showed the best results overall. Strategy S1, 
which prioritizes chronological time, showed robustly superior performance compared to 
the other strategies. In addition, the performance of the relax-and-fix strategies was com-
pared with actual results achieved by the company and the results obtained by solving 
the MILP model using CPLEX. Compared to the actual solutions used by the company, 
the strategies produced results with lower costs and a cost reduction between 40% and 
46%, mainly from the reduction of inventory levels and better allocation of production 
lots on the machines. The relax-and-fix heuristics also outperformed CPLEX applied to 
the MILP model. The proposed strategy confers the advantages of being applicable with 
minimal technical knowledge and relying on well-established software that solves sub-
problems. This offers the company confidence in its decision-making. Due to the success-
ful application of the proposed methods, the ideas presented in this work are now being 
extended to more complex production and logistics environments with multiple distribu-
tion centers and factories that are also operated by the target company.

Fig. 7   Objective function value at the solution found as a function of the capacity of warehousing CW in 
the real-world instance P6
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