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Abstract: This work is concerned with unconstrained two—dimensional
non—guillotine cutting problems, where a. rectangular plate is cut into a
number of rectangular pieces in such a way as to optimise an objective
function. We reduce the space of states by considering non-guillotine cutting
patterns which are combinations of guillotine and simple non-guillotine cuts.
These cutting patterns can be represented as complete paths in an AND/OR—graph

and a branch and bound method is given. Moreover, we provide some rules and

heurístics that reduce the graph search and present Cºmputational results from
some example problems.
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1 . I ntrodut 1 on

The Unconstrained Two—Dimensional Cutting Problem consists of cutting &

rectangular plate (L,W). where L is the plate's length and w its width, in
order to produce rectangular pieces (£1,wi). i=1,2.....m, which are called the
demanded pieces. To each demanded piece i is associated an utility value vl
and there is no limit on the quantity of such pieces (if there were a
limitation on the quantity of pieces the problem would be called constrained).
The problem is to determine a cutting pattern that maximizes the total sum of
utility values. If v1=gua, the problem is equivalent to minimize the total
waste. In addition. the cuts made on the plate are always orthogonal to one

side of the plate.
It is possible to add a number of constraints to the cuts. For example,

in several practical applications the cuts are guillotine— typed (guillotine
cutting problems). This is the most .studied case in the literature. In
particular, a branch and bound method and heurístics based on an AND/OR graph
problem representation to solve guillotine cutting problems were proposed by

Morabito et al [1992] and will be extended in this work to non—guillotine
cutting problems.

Bischoff and Dowsland [1982] studied the problem we are focusing in this
paper for m=1, i.e., identical demanded pieces (the pallet loading problem).
Their method produces a homogeneous cutting pattern which will be considered
in section 5 and provides a lower bound to our branch and bound method.

Beasley [1985] dealt with constrained non—guillotine two- dimensional
cutting problems. He modelled the problem as a (bi linear program. It is
interesting to note that (at least to our kmmdedge) there is no similar
modelling to general guillotine problems . i.e., there is no

equation/inequation system to represent guillotine cutting patterns. An

exception to this are two—staged guillotine cutting problems (see Gilmore and
Gomory [1965]). Beasley proposed an exact tree-search method and used
Lagrangean relaxation to provide bound.

There are other interesting approaches in Biró and Boros [1984] or
Dowsland [1987], for example. The approach used here is more related with
Morabito et al [1992] and Bischoff and Dowsland [1982].



2. Non—guillotine cutting
In this section we define the cutting types which will be used to

determine cutting patterns. In all of our definitions orthogonal cuts will be

implicit.

Definition 1. (guillotine cut) A cut is guillotíne—typed if it produces two

new rectangles. We call these new rectangles as partners. A cutting pattern
is guíllotine-typed if it is obtained by successive guillotine cuts.

(a) (b) (c)

FIGURE 1 &) vertical guillotine cut
b) horizontal guillotine cut
c) guillotlne cutting pattern

Defintion 2. (lºt-order cut) A cut is first—order non—guillotíne — typed
(or simply lºt-order) if it produces five new rectangles arranged in such a
way not to form a guillotine cutting pattern. These new rectangles are also
called partners.

The result of making a lºt-order cut in a rectangle (Lan) is the
following five rectangles (see figure 2):

((c1.c3), (£—c1,c4). (ªcena-cê). (c2.w-ca),(lc1—czl, les-cªl )) (1)

with clacz, c3$cª, ci=1,..,£—1, i=1,2 and ci=1,..we1, i=3,4.

A lºt-order cut is well defined by the 4-vector: (c1,c2,c3,c4), in the
sense that when applied to & rectangle (Len), it produces the set in (1). The

coordenates c1 and c2 are called vertical cuts and c3 and c4 horizontal cuts.
Figure 2 illustrates two possible lºt—order cuts, where the rectangles

A,B,C,D and E are the ones in (1). recpectively.



FIGURE 2. FIRST-ORDER CUTS

Observe that the condition: c1>c2 implicates in: c3<c4 and the
degeneration c1= c2 or c3 = 04 implicates in a guillotine cutting pattern.

Definition 3. (Isº-order cutting pattern) A cutting pattern is Isº—order

—typed if it is obtained by successive guillotine or lºt-order
non-guillotine cuts.

FIGURE a. iSt-ORDER currlnc PATTERN

In the next section we shall propose & scheme to generate all possible
lºt—order cutting patterns.

It is worth noting that there are non—guillotine cutting patterns which

are not lºt-order typed, such as the one illustraded in figure 4.

FIGURE !. SUPERIOR ORDER NON—GUILLOTIKE CUTTING

Non-guillotine cutting patterns of superior orders are not considered in
this Work.



3. AND/OR graph approach

3.1 The Graph Definition

In order to produce smaller rectangular pieces (li,wi), i=1,2,...,m, we

firstly cut the plate (L,W) to obtain new rectangles. Then, the intermediary
rectangles produced are successively cut in order to obtain the demanded

pieces. The cutting of each rectangle is restricted to guillotine or lºt-order
cuts.

Suppose that in & first stage the plate (L,N) (A in figure Sa) is cut by

a vertical guillotine cut producing rectangles B and C. These are called
successors or partner—successors of A. The two new rectangles are then
independently cut. Rectangle B is cut by a horizontal guillotine cut producing
D and F, and rectangle C is out by a iSt—order non—guillotine cut producing C,

H, I, J and K. Figure 5a depicts the sequence of cuts leading to the cutting
pattern in figure Sb.

(ª) * (b)

tFIGURE 5. A SCHEHE T0 PRODUCE 1s —0RDER CUTTING PATTERN

There are different manners of cutting a rectangle which indicate
different cutting patterns. If we examine all possibilities of cutting,
including the option of mantaining a rectangle intact, called O-cut, we

generate all possible lºt-order cutting patterns.

node definition
For each new generated rectangle we have a subproblem similar to the

original problem, which consists of determining all possible cutting patterns
for that rectangle. Each rectangle is represented by a node in a graph, where

the plate (L,w) is represented by the initial node.



arc definition
The decision of cutting a rectangle (branching a node) is represented by

an AND—arc which points to the successor nodes (successor—partners) generated.
A guillotine cut is represented by an AND—arc pointing to two new nodes

(definition 1) whereas a lºt—order cut is represented by an AND—arc pointing
to five new nodes according to (1). The O-cut is represented as an ordinary
arc which points to a single successor node that represents the same rectangle
at the node which it emerges from.

Different options of branching a node are indicated by OR-arcs. The

resulting set of nodes and arcs is called an AND/OR—graph.

3.2 Feasibilíty Properties

Definition 4. (final node) A node obtained from a (%cut (that is, the
option of mantaining a rectangle intact) does not allow any extra. arc
emanating from it and is called final.

Definition 5. (complete path) Consider the following sequence of ares in
the AND/OR graph: From the initial node choose one arc (and only one) which

points to its successors. From each successor node choose again one arc and

so on, until all the nodes obtained are final nodes. This sequence is
called a complete path.

We have defined a ]Ft—order cutting pattern (see definition 3) as the
successive application of guillotine or lºt—order non—guillotine cuts. In
addition to these basic cuts, we also introduced the O—cut in order to stop
the cutting process. This corresponds to following a path in the AND/OR—graph

where each arc represents a cut.

Theorem 1: Every lºt—order cutting pattern can be represented as a complete
path in the AND/OR-graph described above. And vice—versa, a complete path
in the AND/OR-graph corresponds to & lºt—order cutting pattern.

The Cºrrespondence in theorem “1 is not an one—to—one Cºrrespondence,
since different paths can correspond to the same cutting pattern. In the next
section we shall discuss some rules to avoid duplications.



3. 3 Optimaiity Properties

Definition 6. (solved node) A node is called solved if its optimal
isº—order cutting pattern is known.

Theorem 2: If ali successors of a node are solved, then this node is also
solved and the optimal ISL—order cutting pattern is given by re—composing
the partner—successors and choosing the most valuable one amongst them.

To prove theorem 2 it is enough to remember that, by definition 3, a
lºt—order cutting pattern (in particular the optimal one) is obtained from a
sequence of guillotine and/or lºt—order cuts. That is, there is no chance of
obtaining a cutting pattern for a rectangle whithout handling its successors.

Up to now the possibility of rotating (by 900) the demanded pieces was
not explicitly taken into account. In definition 6 the knowledge of an optimal
solution may or not consider the possibility of rotation. But in order to
state the value of a final node it is necessary to consider or not piece
rotation and we shall consider it since if rotation is not permitted the
process is straightforward simplified.

Definition 7. (final node value) If a final node represents a demanded

rectangle (tvuºl) or (wrli) then its value is vi, otherwise it is zero.
That is, if (Lua) is a final node, its value, denoted by Fº(£,w), is
defined as:

v . if (£,w)=(£,w) or (un.!)
Fonº“):

i i 1 li
0 , otherwise.

Theorem 2 suggests a recursive formula to solve the problem:

recursi ve formula:

let F(£,w) be the optimal lºt-order cutting pattern to the rectangle (Lui).
Then,

F(£.w) = max ( rou»). P(X.w)+F(£—x,w). F(£.y)+F(£.w—y),

P(cl, c3)+F(t—c1,c4)+F(£—c2, w—c4)+F(c2,w—c3)+F( ICI-Czl , lca-CJ ) )



where x.y and c1,c2,c3,c4 assume proper values which will be discussed in the
next section.

We will not emphasize this method in this work.

Note that a node representing a rectangle (£,w) such that: i) na, or
w<wl and il) £<usI or axei for i=1“..,m, accepts only a O-cut. Such node

corresponds to waste on the cutting pattern.

Definition 8. (complete path value) The value of a complete path is the sum

of the values of its final nodes.

Corollary 1: The problem of determining the optimal ISL-order cutting
pattern consists of determining the most valuable complete path in the
AND/OR-graph. This path is determined as soon as the initial node is
solved.

A search strategy is a particular way of traversing the graph, or a way

of enumerating its nodes that defines a method to solve the problem.

The complete enumeration (or generation) of the nodes is, in general,
computationally unfeasible. In practice it is enough to generate a few of
them. Several rules can be designed in order to avoid unnecessary branchings,
without loss of generality. The rules designed for guillotine cuttings (see
Herz 1972, Christofides and Whitlock 1977 or Morabito and Arenales 1992) can
also be used here. In section 4 we describe an additional rule to avoid
symmetric lºt-order cuts.

The search can also be reduced with the use of bounds to avoid
nonpromising paths, implicitly' enumerating the nodes (a branch and bound

method). The 'guillotine branch and bound method' described in Morabito and
Arenales (1992) can be straightforwardly extended to the non-guillotine case
and the lower and upper bounds presented there, as well as the heurístics they
provided are also valid. Bischoff and Dowsland (1982) described a specific
non—guillotine homogeneous cutting pattern which can also be used as a lower
bound. Their work is reviewed in section 5.

In section 6 we shall extend the search strategy described in Morabito

and Arenales (1992) to deal with lºt—order non—guillotine cuts.



4. Avoiding Equivalent Patterns

Definition 8. (equivalent cutting patterns) Different arrangements of the
same set of demanded pieces on &. rectangle produce equivalent cutting
patterns.

Herz (1972) showed that, without loss of generality, the guillotine cuts
can be considered in the following discretization sets:

m .

vertical cut: X ( x | x = E ai «, ISXSL—€“ aizo and integer)
i=1

(yly=ZBlw
i=1

horizontal cut: V , iSySW—wg, 8120 and integer)i

where £ =min(£i,i=1...,m) and wg=min(uª,i=1,..m).O

That is. if any guillotine cutting pattern has cuts taken out of the
discretization sets, there is an equivalent guillotine cutting pattern with
all cuts belonging to the discretization sets. Christofides and Whitlock
(1977) gave recursive formulae to generate these sets (see also Morabito and

Arenales, 1992).

The same assertion is still valid for the cutting patterns considered in
this work. As we are considering the possibility of rotating the pieces, the
cuts can be taken as integer linear combinations of length and width of the
pieces, that is, in the discretization sets above X and V

D m

X = y =xêlal % + lªisilªl

Theorem 3: Consider any lºt-order cutting pattern. There is an equivalent
lºt-order cutting pattern so that all cuts belong to the discretization
sets.

proof: We give a sketch of the proof. Consider that the first cut is a
let—order cut with c1>c2 (see figure 2a). By not overlaying the pieces in the
northwest rectangle (D in figure 2a), pull them to the left in such a way that
the left side of any rectangular piece always touches either a right side of
another piece or the left side of the plate. Then, pull c2 to the left up to



touching & right side of the most eastern rectangular piece in rectangle D.

The new value for c2 is a number in X. This process enlarges the northeast and

the inner rectangles (C and E respectively in figure 2a), so that an
equivalent cutting pattern is obtained but with a new cz in X. Similar
processes can be applied to to bring c1 into X, c3 and c4 into V. |

Actually, this theorem is valid for any orthogonal cutting pattern.
In order to avoid equivalent cutting patterns the discretization sets can

be more reduced. Here we give a rule to avoid symmetric lºt-order cuts.

Figure 6 shows four symmetric equivalent non—guillotine cuttings.

II

Nf

III IV

tFIGURE 6. SYHHETRIC EQUIVALENT ls —DRDER CUTS

If the I—cut in figure 6 is characterized by (c1,c2,cª,c4), then II—cut
will be (L—c1,L-c2,c4,c3), III—cut will be (c2,c1,vºc3,W-c4) and IV—cut will
be (L—c2,L—c1,W—c4,W-cs).

Note that if c1>c2 then c:] = L—c1 < cil = L-cz, and cªll = c2 < cªll =

c1 where c:], cªl and cªll, cªll are the vertical cuts in II—cut and III—cut

respectively. Then if we restrict vertical cuts such that c1>c2, II and 111

cuts will be avoided.

Let Civ = L-cz, câv = L—c1 be the vertical cuts in IV—cut. In order to
avoid the duplication IV—cut, note that

Iv Ivc + c = L-c +L-c = - c +
1 2 2 1

ZL (
1 02)

Then. (c1+c2)<L if and only if cív+ c;v>L. Therefore, by avoiding lºt-order
cuts where the sum of vertical cuts is greater than L we avoid the duplication

10



in IV—cut. However, if c1+c2=L (that is. rectangles B and D in I—cut have the
same length) it implicates that civ+ Câv = L. In this case, the duplication
can be avoided by imposing c3 + C4 5 W.

These rules can be summarised as the following:

lºt-order symmetry rule:
Consider (cl,c2,c ,cª) such that3

i) c , c e X and c , c e V
1 2 3 4

ii) c > c (then c < c )
1 2 3 4

iii) (01 + c2 < L) or ((:1 + G2 = L and c3 + c4 : W).

From the above remarks and theorem 3 follows:

Theorem 4: The lºt-order simmetry rule does not lose generalíty.

All the rules which avoid equivalent patterns should be included in the
graph search.

5. Bounds and heurístics

Definition 9. (homogeneous guillotine cutting) A guillotine cutting pattern
that produces the maximum number of one type of piece, without rotating it,
is called homogeneous guillotine cutting.

The homogeneous guillotine cutting for & rectangle (x,y) using the piece
i: (11,wl) produces [x/lijly/wbl of such pieces. If the piece 1 is rotated,
that is, the piece (w,,ll) is considered, then the homogeneous guillotine
cutting produces [x/wíij/llj of such pieces. See figure 7a.

Definition 10. (homogeneous lºt—order cutting) Consider & lºt-order cut and

its five rectangles in the order given in (1). Fill up each of the
rectangles with Just one type of piece using homogeneous guillotine
cuttings in such a way the piece is successively rotated. To the fifth

11



rectangle choose the best possibility of rotating or not the piece. The

result is & homogeneous lºt—order cutting. (See figure 7b).

(a) (b)

FIGURE 7 - HOHOGENEOUS CUTTINGS

The definition 10 produces patterns used by Bischoff and Dowsland. Both
homogeneous cutting in definitions 9 and 10 produce easy feasible solutions to
the problem and then lower bounds.

Consider a node N representing the rectangle (x,y) and let
M(N) = ( i | either lisx and ViSy, or wi5x and lisy, í=1,...,m )

be the set of the pieces that can be produced at node N. Of course, if N[N) =

0 then the only possible cut is the O—cut indicating a final node whose value
is zero (waste).

Lower bounds based on homogeneous guillotine cutting

A homogeneous guillotine cutting using the piece (11,wi) gives:
+

2x (N) - ( vilx/liij/wij )

Similarly, if we rotate the piece (li,wi) to obtain (w1,ll) the homogeneous

cutting provides:

£;(N) = ( V,LX/W,JiY/1,J )

Besides, we can define an improved lower bound as:
:eºuv) = Max ( f*(m, :((") >

l€M(N)

Suppose a tmanching from node N leading to N1 and Né (representing &

guillotine cut). Then the composition of homogeneous guillotine cutting of N1

and N; provides !P(N1)+£0(N2) which is also a lower bound to node N.

12



Lower bounds based on homogeneous lºt—order cutting

Consider & lºt—order cut as in figure 2a. The A-rectangle is (c1,c3L
B—rectangle is (x-c1,c4) and so on. The value of the homogeneous lºl-order
cutting, according to definition 10, using piece (11,w,) is given by:

rim) = max ( £:(A)«ºf;(B)+Á€:(C)+2;(D)+max(2:(E)JIU-J)),
(c,c,c,c)1 234

2;(A)+$I(B)+2;(C)+£:(D)+max(1€:(E),2;(E)) )

where £:(A) is obtained similarly to the definition of £:(N) by changing (x,y)
with (c1,c3) and analogously to $;(A), 2:(B), etc. Moreover, the vertical cuts
cl, c2 and horizontal cuts cs. c4 no more need to be in the complete
discretization sets X and V respectively. It is enough consider them as
positive multiples of 1i and "Y

The lower bound £Í(N) is the method in Bischoff and Dowsland where just
one type of piece is considered.

Improved lower bounds can also be defined as:

fªm = nª“ 21(N) )
i€M(N)

01"

e (m = max ( $º(A)+$º(B)+$0(C)+20(D)+£º(E) >

(note that $a can produce a non—homogeneous lºt-order cutting pattern)

Upper bounds based on area

A simple upper bound used by Beasley(1985) and Morabito and Arenales
(1992) can also be useful here. Consider again a node N representing a
rectangle (x,y). Consider a relaxation by taking only the Cºnstraint involving
area. So, we have an upper bound:

13



“(N) = maximum 2 vial
xeM(N)

subject to: 2 (1 W )a s (xy) (10)
ieM(N) ' i

alto . i€M(N).

The solution of the above problem is:

H(x,y) = max ( V1(X/li)(y/w1)' íeM(N) ) (11)

with U(x,y)=0 if M(N) = 2. Note that this upper bound is not dependent on

rotatíon since llw, = wilr

A Branch & Bound Method

The previous lower and upper bounds can be used to implicitly enumerate a
number of nodes in the graph.

Let V(N) be the current best value attached to node N (it is given by a
lower bound or by a known complete path emanating from N). It is updated when

a better solution is obtained from the successors of N. For example, consider
a branching from N, representing a guillotine cut, pointing to N1, N2 and

suppose that
vw) < max( zºmlmºmz), f(nlmeíwz) )

then V(N) is updated to:

vm (— maxi £º(N1)+£º(N2), imprima) )

Similarly if a lºt—order cut is made pointing to 'N;,N:2,N'3,N'4,Ng and

vun<
maxtíeºUJ;)+$0(N'2)+20(Ng)+3fº(N;)+20(Ng), rªw;)+£1(n'2)+2ª(n'3)+£ª(u;Mªmªn

then V(N) is updated to:
V(N)e

maxueºm;)+:eº(u'2)+£º(n'3)+2ºw;)+£º(ng). rªw;)+£*(N'2)+2ª(wg)+£1(n;mim;);

(of course 22 or any other lower bound can be considered).

14



Note that if
V(N)zU(N1)+U(N2)

then N1 and N2 need not be explicitly considered.

Analogously. if
1/(N)t'll(N'l )+11(N'2)+11(N;)+11(N'4 )+'U(N's)

then N', N', N', N', N' need not be also considered.
1 2 3 4 5

X

In addition, observe that if
V(N) = H(N)

then V(N) provides the best value to node N, and then the node is solved.

When the initial node is solved, we will have found the optimum cutting
pattern to plate (L.W).

heurístícs

The bounds defined above can also be used in order to produce heurístics
that reduce the search space. These heurístics bet that some branchings do not
lead to an optimal solution, and so they are discarded.

Heurístíc 1 (HI)

Consider a node N and the partner—successors N!, N2 (or analogously N;,
”2” Na' ”4' Ns)' We expect ”(N1)+'U(N2) (or MNI) + MHZ) + “INN—ji) + um;) +

U(Ng) ) to be "substantially" larger than V(N). ºtherwise, it might be a sign
that V(N) will not be overcome on the branching leading to N1 and NE (or to
NI, ”2” "a' Nª, Nª ).

Let A1 a fraction defined a priori. Supposing that a guillotine cut is
made (if & lºt—order cut is made the heurístic is analogous) we define
heurístic HI as:

If: (1+A1)V(N) ! "(N1) + ”(Na)

Then: abandon the branching leading to nª and Nº.

Note that if A1=0, the previous procedure to discard branchings is not a
heurístic anymore.

15



Heurístic 2 (HZ)

Consider & node N and the partner- successors N1, N2 (or N;, Nª, N;. N;,
Ng if the branching corresponds to & lºt-order cut). Let £ be one of the lower
bounds defined previously which can be applied to any node. Observe that the
current value f(N) can be greater. smaller or equal to 2(N1)+2(N2). However,

if £(N) is "substantially" greater than 2(N1)+$(N2), it might be a sign that
this branching will not produce better values.

Let A2 be & fraction previously defined. Supposing that a guíllotine cut
is made (it is similar if the cut is of lºt—order— typed) the heurístic H2 is
defined as:

If: Ã2$(N) & º(Nl) + f(Nz)

Then: abandon the branching leading to N1 and "2'

Note that if AZ=0, the above procedure to discard branchings is not a
heurístíc anymore.

If the number of elements in X and X is large, then the graph's size is
computationally untreatable. The following two heurístics discard a number of
elements in the discretization sets before the search begins. The first one
was suggested by Beasley(1985a), where smaller pieces are not considered in
building the discretization sets. The second heurístíc imposes & kind of
symmetry in the 1St order cutting pattern.

Heurístic 3 (H3)

This heurístic redefines it and v until |M 5 M and |v| : M, where M is a
number previously chosen. The redefinition of X is described as (the set V can
be redefined in a similar way):

first step:

Let N=í1,...,m) be the set of the pieces to be used in determing X.

Build the set X:

X = (x such that x= Z a & s L—min(€). « to and integer)15" 11 jem
x

16



second step:

While ([X] > M) do:

1. Determine a = min(€. i e N)

2. Redefine N e N - (J)
3. Rebuild X with the new N.

The above procedure removes from N the pieces with the smallest length,
until set X reaches the desired size. However, with X and V reduced in this
way, we cannot assure optimality, since the optimal solution may depend on the
discarded cuts. The reduced sets can even exclude very good ease to find
guillotine cutting patterns (see Morabito and Arenales(1992)).

Heurístic 4 (H4)

The cutting pattern in figure 8a is called self-symmetric in opposition
to the one in figure 8b.

(a) (b)

FUGURE B

Another heurístic to reduce the state space consists in avoiding patterns
like the one in figure 8b, restricting the search to self-symmetric 1St order
cutting patterns. The heurístic H4 is described as:

Restrict c , c , c , c in (1) to:
1 2 3 4

C1 2 L - L/K

s L/K

: W/K

W - W/K

C
2

C
3

C IV
4

where Kal.

ºf course if K=1 then the above procedure of restricting cuts is not a
heuristic anymore.

17



6. A search strategy

In this section we present the search strategy used to traverse the graph
described in section 3. It is a hybrid strategy combining two basic
strategies: BackTracking and HillClimbing.

BackTrackíng (BT) is an important implementation of depth—first search.
It always chooses to explore the newly not final generated node.

HillClimbing (HC) is a strategy based upon local optimization that after
expanding a node (i.e. generating all its successors) chooses the best
successor to be futher expanded and discards the remaining ones.

If a depth bound is imposed to BT, both strategies can be combined by

firstly generating all nodes up to the depth bound (using the backtracking
strategy) and then choosing the best path whose not final nodes are again
expanded up to the depth bound and so on.

It is the same strategy implemented by Morabito and Arenales [1992] who

obtained there very good results when apllied to guillotine cutting problems.

Algoríthm BT—HC

1. Let ROOT be a list which contains initially only the initial node (A node
in ROOT is called root—node). Define DB the depth bound for each expanding
from a root node.

2. While ROOT is not empty, do:

3. Let s be the first node in ROOT. Generate all the successors of the
root—node s, using the backtracking strategy and respecting DB. Take 5
out of ROOT.

4. Choose the most valuable path from 5 and discard the remaining paths
(híllclímbíng strategy). If there are nodes in this path whose depth
is equal to DB and are not final, put them in ROOT.

Remarks
1) In step 3 the generation of the successors from the root—node s should take
into account the rules discussed in section 4, the branch and bound method and

heurístics discussed in section 5.
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ii) For simplicity it was implemented an AND/OR-tree instead of AND/OR—graph,

that is, there is no checking to test whether a newly generated node (a

intermediary rectangle) has already been generated. Indeed, only the most

valuable path is kept in memory. This turns the BT—HC algorithm almost
independent of memory limitation which is very convenient for micro-computers,
quite the opposite of dynamic programming. Note also that, in this
implementation, step 4 is actually implicitly considered in step 3. It was

specified to make clear of the use of the HillClibing strategy.
iii) In step 4 each chosen path from 5 corresponds to a section of the
complete path from the initial to the final nodes with depth at most equal to
DB. Observe that the HC strategy, based upon local optmization in each
section, does not ensure that the most valuable path (that is, the optimum

cutting pattern to the problem) is obtained even in the absence of the
heurístics presented in section 5. That is, the algorithm BT-HC is a heurístic
search itself.

7 . Computat i onal resul ts

The algorithm was implemented in turbo—PASCAL 5.5 and executed on an
IBM—PC 286 compatible, with numeric co-processor, 20 MHertz and 640 Kbytes
RAM.

Firstly we present the results obtained in a number of examples taken
from Dowsland(1984). She studied the Pallet Loading. Problem where

non-guillotine cutting pattern should be generated for just one type of piece,
with rotation allowed. As the implementation of the algorithm does not
consider rotation, then m=2 and the dimensions of the demanded pieces are
(21,431) and (431,11). As the objective is to minimize waste, we define
vi=£iusi/LW (since v1=v2, the objective is equivalent to maximizing the number

of pieces in the plate). Table 1 summarizes data for 8 examples.

example piece plate example piece plate
D1: (5, 3) (22, 16) D5: (9, 7) (53, 51)
D2: (7, 4) (30, 22) D6: (11, 8) (63, 60)
D3: (11, 6) (46, 34) D7: (13, 10) (76, 73)
D4: (11, 7) (50, 36) D8: (15, 11) (86, 82)

Table 1 — Dowsland's examples for the Pallet Loading Problem
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Experiments with constrained guillotine cutting problems (see Morabito
and Arenales 1992) suggest we should to take Al=0.01, A2=0.9 and DB=3. Here,

these values proved not to be a good choice. In fact, DB=3 makes the graph's
size unbearably large and we used DB=2 for all examples that were run. Table 2

shows the performance of our algorithm on the data of table 1.

In table 2 the parameters of heurístics ”1 and HZ, A1 and A2 were

initially taken as 0.01 and 0.9 respectively. The parameter M in heurístic H3

was large enough to consider all discretization points. The parameter K in
heurístíc H4 was assumed to be 2. Then, the parameters A1 and A2 were chosen

depending on data in the following way: A1= v1 and A2=1— 0.5 v1 (in this case,
v1=v2=£1wl/LW) .

Example 1 (Dl) was the only one for which the algorithm with the
parameters as described above failed to find the optimal solution. In this
case, a pattern with 23 pieces (an optimal solution) was obtained by the
algorithm only with K=1, that is, H4 was switched off. Assuming K=1, the
generated graph from Di with A1=O.01 and A2=0.9 had 46519 nodes and the
running time was 928 seconds; on the other hand, with A1= v1 and A2=1—0.5 v1

the graph had 4201 nodes generated and the running time was 173 seconds. Just
to illustrate the effect of heurístics, we switched off H1, H2, H3 and H4,

that is, we took A1=A2=0, K=1 and M large enough. Then, the example Dl

generated a graph with 167063 nodes in 1610 seconds.

K=2

A = 0.01 and A = 0.9 A = v and A = 1-0.5 v
1 2 1 1 2 2

example objective1 time number objective1 time number
(sec) of nodes (sec) of nodes

131 222 20 3543 22.2 9 1031
D2 23 24 3855 23 8 907
DB 23 24 3875 23 7 701
D4 23 22 3759 23 8 905
DS 42 14 11 15570 1 42 62 5625
DS 42 1348 152895 42 70 6221
D7 42 1393 153957 42 58 5479
D8 42 1339 154305 42 396 42955

1NUMBER OF PIECES IN THE CUTTING PATTERN

2THE PARAHETER K=2 HAS LIMITED THE ALGORITHH TO THIS SOLUTION

TABLE 2 — ALGORITHH PERFORMANCE ON THE DOWSLAND'S EXAHPLES
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It is worth of note that the cutting pattern presented by Dowsland(1984,

pp.899) for the example D8 is not a lºt-order cutting pattern. But there is
another one which is of lºt—order type and produces 42 pieces. Figure 9 shows

the path in the AND/OR—graph which produces that cutting pattern (homogenous

cutting patterns are used in the leaves).

82 x 86

[22 >< 75] So x 11| [60 x 11] 122 )( 75J [38 x Sí]

ºs )( BÍI [33x 30||23 >< BOILIS x 341 [8 X?]

FIGURE 9 - PATH IN THE AND/OR-GRAPH HHICH PRODUCES A SOLUTION
TO THE EXAHPLE DB

In addition, 10 randomly generated examples with different dimensions of
pieces were run with varying values for A1 and A2.

These examples were generated as following: with m=5 (that is, 5

different pieces), L=100, W=100, values 21 and wl, i=1,..,m are uniformly
randomly generated such that Zl/L and uni/W belong to [0.2, 0.5]. The values
are defined as viúva,/LW, i=1,..,m.

Heurístics 113 and H4 had their parameters fixed as M=50 (large enough to
generate all the discretization points) and K=2 (K=1 makes the algorithm
computationally too expensive). The combination K=1 and lower values of M

produced poor heurístic solutions, most of them worse than guillotine
solutions.

Table 3 summarizes the objective function average values (column Value)
and running times in seconds (column Time) for the 10 random examples and for
guillotine (row G) and non—guillotine (row NG) cutting patterns. The upper row
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corresponds to values taken by A1,whereas the left column corresponds to
values taken by A2. The algorithm used for guillotine cutting was the same as
described in section 6 but the successors in step 3 are only due to guillotine
cuttings.

.01 .03 .05 .07 .09 ' .1

Value Time Value Time Value Time Value Time Value Time Value Time

.95 G: .9474 .7 .9474 .9 .9474 .7 .9427 .3 .9333 .1 .9294 .2
NG:.9488 32.4 .9482 28.3 .9477 13.2 .9390 5.9 .9291 2.9 .9260 2.3

.96 G: .9474 .8 .9474 .7 .9474 .4 .9427 .5 .9333 .2 .9274 .3
NG: 9486 29.7 .9482 26.4 .9477 12.5 .9390 5.5 .9291 2.9 .9260 2.3

.97 G: .9471 .7 .9471 .7 .9471 .8 .9424 .4 .9333 .2 .9294 .1
NG:.9483 28.5 .9479 25.2 .9474 12.2 .9387 5.5 .9291 2.6 .9260 2.4

.98 G: .9471 .7 .9471 .6 .9471 .4 .9444 .2 .9333 .2 .9294 .1
NG:.9483 25.6 .9479 23.0 .9474 11.1 .9387 5.2 .9291 2.9 .9245 2.1

.99 G: .9471 .8 .9471 .7 .9471 .5 .9444 .4 .9333 .1 .9294 .4
NG:.9483 22.5 .9479 20.0 .9474 10.7 .9387 5.2 .9291 2.9 .9245 2.1

1.0 G: .9471 .3 .9471 .4 .9471 .3 .9444 .3 .9367 .1 .9307 .3
NG:.9483 17.9 .9479 15.9 .9474 9.1 .9387 4.8 .9333 3.1 .9245 2.4

TABLE 3 - COHPUTATIONAL RESULTS

Table 3 confirms the expected results, namely; if different piece
dimensions are at disposal to be combined, then simpler cutting patterns
(guillotine, for example) provide very good solutions and sometimes the
heurístics (unavoídable) prune those simpler solutions, yielding worse
results. Similar remark was made in Morabito and Arenales (1992) where large
unconstrained two dimensional guillotine cutting problem was focused. There
Z—staged guíllotine cutting patterns proved to be better, in the sense of
objective function and running time than heurístic solutions to multi—staged
guillotine cuttings when the discretization sets were large.

Graphic 1 shows the variation in the number of nodes with A1 and A2. Each
colunm in the graphic gives the average number of generated nodes in the graph
for the 10 randomly generated examples.
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GRAPHIC 1. VARIATION IN TIE NUMBER OF NODES

8. Conclusions

In this paper we presented a new approach to the solution of
Two-Dimensional Non- Guillotine Cutting Problems, where a rectangular plate
must be cut into an arbitrary number of rectangular—shaped pieces and all the
cuts have to be made orthogonal to one side of the plate. We restricted the
solutions to first—order cutting patterns, that is, a combination of
guillotine and the simplest non-guillotine cuts. A branch and bound method was

described to solve the problem, Branchings (represented as AND—aros pointing
to two or five new nodes) are defined by possible cuts on rectangles
(represented as nodes) which altogether produce an AND/OR—graph where complete
paths correspond to 1St order non-guillotine cutting patterns. A specific rule
based on first—order non—guillotine cutting was developed to eliminate
simmetric cutting patterns. In order to search the graph, the Backtracking and

HillClimbing strategies were combined. Lower bounds were defined based oní

simple solutions and an upper bound was defined by considering only the area
Cºnstraint. These bounds were used to design heurístics in order to reduce the
state-space. The algorithm, implemented in PASCAL and run on a 286

micro—computer, was able to generate the optimal solutions for a number of
known examples from the literature.
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