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Abstract
Working within the class of piecewise constant conductivities, the inverse
problem of electrical impedance tomography can be recast as a shape optimiza-
tion problem where the discontinuity interface is the unknown. Using Gröger’s
W1

p-estimates for mixed boundary value problems, the averaged adjoint method
is extended to the case of Banach spaces, which allows one to compute the
derivative of shape functionals involving point evaluations. We compute the
corresponding distributed expression of the shape derivative and show that it
may contain Dirac measures in addition to the usual domain integrals. We use
this distributed shape derivative to devise a numerical algorithm, show vari-
ous numerical results supporting the method, and based on these results we
discuss the influence of the point measurements patterns on the quality of the
reconstructions.

Keywords: electrical impedance tomography, shape optimization, distributed
shape derivative, sharp-interface models, PDE-constrained optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

Electrical impedance tomography (EIT) is a low cost, noninvasive, radiation free and portable
imaging modality with various applications in medical imaging, geophysics, civil engineering
and nondestructive testing. In particular, it is an active field of research in medical imaging,
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where devices based on EIT are already used in practice, with applications to lung imaging
such as diagnosis of pulmonary embolism [19], monitoring patients undergoing mechanical
ventilation, breast imaging, acute cerebral stroke, or cardiac activity monitoring; we refer to
the reviews [8, 12] and the references therein. In geophysics a similar imaging technique using
direct current, called electrical resistivity tomography (ERT), is used for various applications
such as environmental investigation, hydrogeology, archeological and mineral exploration; see
[56, 59].

Two mathematical models for EIT have been actively investigated over the last few decades.
The continuum model has been widely studied in the case where applied currents and volt-
age measurements are supposed to be known on the entire boundary. This model is closely
related to the Calderón problem, which has attracted the attention of a large community of
mathematicians in the last decades; see [8, 12]. It consists of determining the uniqueness and
stability properties of the conductivity reconstruction when the full Dirichlet-to-Neumann map
is known, which corresponds, roughly speaking, to the availability of an unlimited quantity of
applied currents and their associated boundary measurements.

Despite its usefulness, the continuum model is not realistic for applications, indeed, in the
case of medical imaging for instance, it does not take into account the fact that currents are
applied through electrodes attached by small patches to the patient, and that voltage measure-
ments are also performed through these electrodes. Therefore, the applied currents and voltage
measurements are available only on a subset of the boundary. In the literature, this situation is
referred to as partial measurements as opposed to full measurements for the standard Calderón
problem. This leads to the more realistic electrode model [62], which also takes into account
the electro-chemical reaction occurring at the interface between the electrode and the skin.

As the field of EIT has grown more mature, the awareness of these restrictions has increased
also among mathematicians. As a consequence, the study of the continuum model with partial
boundary data has attracted much attention in the recent years. Uniqueness results with partial
boundary data in dimension n � 3 were obtained in [46], in [49] for C2-conductivities, and in
[51] for W3/2+δ,2n-conductivities with δ > 0. Uniqueness results were extended to conductivi-
ties of class C1,∞(Ω) ∩ H3/2(Ω) and conductivities in W1,∞(Ω) ∩ H3/2+δ(Ω) with 0 < δ < 1/2
arbitrarily small but fixed in [52]. We refer to [48] for a review of theoretical results on the
Calderón problem with partial data. Regarding numerical methods, sparsity priors are used to
improve the reconstruction using partial data in [26, 27]. D-bar methods in two dimensions
were investigated in [5, 38] and resistor networks in [13].

Due to the small size of the electrodes compared to the rest of the boundary in many practical
applications, the idea of modelling small electrodes by point electrodes using Dirac measures is
appealing from the mathematical standpoint. This point of view has been introduced as a point
electrode model and justified in [33]; see also [15, 42, 43]. Mathematical models using point
measurements are for instance highly relevant for large-scale inverse problems in geophysics
such as electrical resistivity tomography or full-waveform inversion where the dimensions of
the electrodes or receivers are several orders of magnitude smaller than the dimensions of the
physical domain of the model; see [59, 67].

The problem of reconstructing conductivities presenting sharp interfaces in EIT, also known
as the inclusion detection problem, has attracted significant interest in the last three decades,
starting from the pioneering works [24, 25]. Several numerical methods have been developed
for reconstructing discontinuous conductivities including the factorization method introduced
in [14, 50]; see also the review [34], monotonicity-based shape reconstructions [28, 35, 36], the
enclosure method for reconstructing the convex hull of a set of inclusions [44, 45], the MUSIC
algorithm for determining the locations of small inclusions [7], a nonlinear integral equation
method [22], and topological derivative-based methods [6, 11, 40, 41]. Shape optimization
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techniques, which are the basis of the present paper, have also been employed to tackle this
problem: based on level set methods [16, 54], for a polygonal partition of the domain [9], using
second-order shape sensitivity [3], and using a single boundary measurement [2, 39].

In this framework, the conductivity is assumed to be piecewise constant or piecewise
smooth, and it is then convenient to reformulate the problem as a shape optimization problem
[61] in order to investigate the sensitivity with respect to perturbations of a trial interface. This
sensitivity analysis relies on the calculation of the shape derivative, which can be written either
in a strong form, usually as a boundary integral, or in a weak form which often presents itself as
a domain integral involving the derivative of the perturbation field. The usefulness of the weak
form of the shape derivative, often called domain expression or distributed shape derivative, is
known since the pioneering works [20, 37] but has been seldom used since then in comparison
with the boundary expression. A revival of the distributed shape derivative has been observed
since [10], and this approach has been further developed in the context of EIT and level set
methods in [54], see also [29].

An important contribution of the present paper is to extend the framework developed in [54]
to the case of point measurements in EIT. The main issue for shape functionals involving point
evaluations is that one needs the continuity of the state, for which the usual H1-regularity in
two dimensions is insufficient. Functionals with point evaluations and pointwise constraints
have been studied intensively in the optimal control literature; see [32, 66]. In particular, a
convenient idea from optimal control is to use Gröger’s W1

p-estimates [30, 31] with p > 2 to
obtain continuity of the state in two dimensions. Here, we adapt this idea in the context of
shape optimization and of the averaged adjoint method, in the spirit of [65]. We show that
in general the shape derivative contains Dirac measures, and that the adjoint state is slightly
less regular than H1 due to the presence of Dirac measures on the right-hand side. Another
important contribution of this paper is to investigate the relations between the domain and
boundary expressions of the shape derivative depending on the interface regularity, and the
minimal regularity of the interface for which boundary expressions of the shape derivative can
be obtained in the context of EIT with point measurements.

We start by formally describing in section 2 the partial differential equation (PDE) and
the inverse problem with point measurements studied in this paper. We consider a conduc-
tivity equation with mixed boundary conditions, with a Neumann condition representing an
applied current on a part of the boundary and an homogeneous Dirichlet condition on the com-
plementary part. The Dirichlet condition can be used in geophysics to approximate dissipating
potentials on regions which are sufficiently far from the source [58, 60], or to model a grounded
region such as a grounded electrode in EIT. In section 3, we recall Gröger’s W1

q -estimates for
mixed boundary value problems [30], which we use for proving existence of solutions in W1

q .
We then formulate in section 4 the shape optimization approach for the inverse problem of
EIT and show how the averaged adjoint method for proving shape differentiability can be
adapted to the context of Banach spaces. Then, we compute the distributed shape derivative
and prove its validity for conductivity inclusions which are only open. When the inclusion is
Lipschitz polygonal or C1, we also obtain boundary expressions of the shape derivative. Finally,
in section 5 we explain the numerical algorithm based on the distributed shape derivative and
we present a set of results showing the efficiency of the approach. Introducing an error measure
for the reconstruction, we also discuss the quality of reconstructions depending on the num-
ber of point measurements, applied boundary currents and noise level. More details about the
averaged adjoint method are given in an appendix for the sake of completeness.
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Figure 1. Partition D = Ω ∪ Ωc.

2. EIT with point measurements: problem formulation

We start with a formal description of the inverse problem with point measurements considered
in this paper. The detailed function space setting will be described afterwards. For sufficiently
smooth data, we consider the following conductivity equation with mixed boundary conditions:

−div(σ∇u) = f inD,

∂nu = g onΓ,

u = 0 onΓ0,

(1)

where D ⊂ R
2 is bounded, Γ ⊂ ∂D and Γ0 = ∂D\Γ.

The boundary value problem (1) is slightly more general than the usual forward model for
EIT. In the particular case of EIT, g represents an input, in this case an electric current applied on
the boundary of D, u is the corresponding potential, and f ≡ 0. Depending on the application,
Γ0 may be interpreted as a grounded region, i.e. u = 0 on Γ0, or as a region distant from the
source where the potential u has dissipated to zero. Then, measurements h of the potential on
a subset Γh of D are performed. In EIT the measurements are usually made on the boundary,
i.e. Γh ⊂ ∂D, but our results apply to the more general case Γh ⊂ D. Given the Cauchy data
(g, h), the task in EIT is to find the best possible approximation of the unknown conductivity
σ. To obtain a better reconstruction, we apply several input currents gi, i = 1, . . . , I, and the
corresponding measurements are denoted by hi. Denoting ui the solution of (1) with g = gi,
the EIT problem becomes

given {(gi, hi)}I
i=1, find σ such that ui = hi on Γh for i = 1, . . . , I. (2)

In this paper we study the case of piecewise constant conductivities σ. Let Ω ⊂ D and denote
by χΩ the characteristic function of Ω, Ωc :=D\Ω, and n the outward unit normal vector to Ω.
Introduce the piecewise constant conductivity σΩ = σ1χΩ + σ0χΩc , where (σ0, σ1) are known
positive scalars with σ1 > σ0. Note that Ω may have several connected components, as illus-
trated in figure 1, and we have assumed that σ = σ1 on each of these components. Observe
also that, in this setting, u depends on Ω through σΩ. Then, we may recast the EIT problem as
the following shape optimization problem, in the sense that the geometry Ω is the unknown:

given {(gi, hi)}I
i=1, find Ω such that ui = hi on Γh for i = 1, . . . , I. (3)

4
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The inverse problem (3) is idealized since in practice the measurements hi are corrupted by
noise, therefore we cannot expect that ui = hi be exactly achievable, but rather that |ui − hi|
should be minimized. When Γh is a manifold of one or two dimensions, a common approach
is to minimize an appropriate cost functional such as

J(Ω) =
1
2

I∑
i=1

∫
Γh

(ui − hi)2. (4)

Another popular approach is to use a Kohn–Vogelius type functional; see [54].
In this paper we are interested in the case where Γh = {xk}K

k=1 ⊂ D is a finite set of points,
i.e. we only have a finite collection of point measurements. We observe that a Kohn–Vogelius
type functional does not seem appropriate for point measurements as this requires to know h
on all of ∂D. The functional (4) on the other hand can be adapted to the case Γh = {xk}K

k=1 in
the following way. For i = 1, . . . , I, assume that measurements {hi(xk)}K

k=1 ∈ R
K are available.

For Ω ⊂ D we consider the shape functional

J(Ω) :=
1
2

I∑
i=1

μi

K∑
k=1

δxk ((ui − hi)2) =
1
2

I∑
i=1

μi

K∑
k=1

(ui(xk) − hi(xk))2, (5)

where δxk : C(D) → R is the Dirac measure concentrated at xk and μi are given constants. The
weights μi can be used to balance the terms in the sum over the currents indices i. In particular,
in our optimization algorithm we choose μi as the inverse of

∑K
k=1 (ui(xk) − hi(xk))2 computed

at the initial guess. In this way, each term in the sum over i = 1, . . . , I, is equal to 1 at the first
iteration, and the initial value of J(Ω) is equal to I/2.

Note that in order to have well-defined point evaluations in the cost function (5), ui needs to
have a higher regularity than the usual H1-regularity. The main idea of this paper is to work with
solutions ui ∈ W1

q (D) with q > 2. Indeed, thanks to the continuous embedding W1
q (D) ⊂ C(D)

for q > 2 in two dimensions, the point evaluation ui(xk) in (5) is well-defined.
Without loss of generality, we will compute the shape derivative of J(Ω) for the simpler case

I = 1 and μ1 = 1, in which case the cost functional becomes

J(Ω) =
1
2

K∑
k=1

δxk ((u − h)2) =
1
2

K∑
k=1

(u(xk) − h(xk))2. (6)

The formula of the shape derivative in the general case (5) can then be obtained by summation.

3. Mixed boundary value problems in W1
q

In order to study existence of solutions of (1) in W1
q (D) for q > 2, which allows us to con-

sider point evaluations, we need an appropriate function space setting. We start with several
definitions and notations.

Definition 3.1 ([30, 32]). Let D ⊂ R
2 and Γ ⊂ ∂D be given. We say that D ∪ Γ is regular

(in the sense of Gröger) if D is a bounded Lipschitz domain, Γ is a relatively open part of
the boundary ∂D, Γ0 := ∂D\Γ has positive measure, and Γ0 is a finite union of closed and
nondegenerate (i.e., not a single point) curved pieces of ∂D. The set of regular domains in the
sense of Gröger is denoted

Ξ := {(D,Γ) | D ⊂ R
2,Γ ⊂ ∂D, andD ∪ Γ is regular}. (7)

5
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We also define

P(D) := {Ω ⊂ D | Ω open and compactly contained inD}. (8)

Definition 3.2 (W1
q (D) spaces). Let (D,Γ) ∈ Ξ and Γ0 := ∂D\Γ. For d � 1 we define

C∞
Γ (D,Rd) := { f |D | f ∈ C∞(R2,Rd), supp f ∩ Γ0 = ∅}.

In the scalar case, i.e. for d = 1, we write C∞
Γ (D) instead of C∞

Γ (D,R) and use a similar notation
for the other function spaces. We denote by W1

q (D), 1 � q � ∞ the Sobolev space of weakly
differentiable functions with weak derivative in Lq(D). For q, q′ � 1 satisfying 1

q + 1
q′ = 1, we

define the Sobolev space

W1
Γ,q(D,Rd) := C∞

Γ (D,Rd)W1
q ,

where W1
q stands for the usual norm in W1,q(D,Rd), and the dual space

W−1
Γ,q(D,Rd) := (W1

Γ,q′(D,Rd))∗.

Notations. The notation id denotes the identity function in R
2, and I is the 2 × 2 identity

matrix.

We can now state the variational formulation corresponding to the strong formulation of the
mixed boundary value problem (1) in the appropriate function space: find u ∈ W1

Γ,q(D) solution
of ∫

D
σ∇u · ∇v =

∫
D

fv +

∫
Γ

gv for all v ∈ W1
Γ,q′ (D), (9)

with (D,Γ) ∈ Ξ, g ∈ L∞(∂D), f ∈ Lq(D) and the conductivity σ ∈ L∞(D) satisfying
σ � σ > 0.

In order to study existence of solutions for (9), we recall the framework introduced in [30]
for obtaining a W1

q -estimate for solutions to mixed boundary value problems for second order
elliptic PDEs. Let 2 � q < ∞ and 1 � q′ � 2 satisfying 1

q + 1
q′ = 1. Let A ∈ L∞(D,R2×2) be

a matrix-valued function satisfying for all η, θ ∈ R
2 and x ∈ D:

A(x)θ · θ � m|θ|2 and |A(x)η| � M|η|, with m > 0 and M > 0, (10)

where | · | denotes the Euclidean norm and m � M. Introduce

a : W1
Γ,q(D) × W1

Γ,q′(D) → R

(v,w) 
→
∫
D
A∇v · ∇w.

(11)

Then, define the corresponding operator

Aq : W1
Γ,q(D) → W−1

Γ,q(D),

v 
→ Aqv := a(v, ·).
(12)

Let P be defined by, for u, v ∈ W1
Γ,2(D),

〈Pu, v〉 :=
∫
D
∇u · ∇v + uv.

6
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By Hölder’s inequality it follows thatP : W1
Γ,q(D) → W−1

Γ,q(D) is a well-defined and continuous
operator for all q � 2. We also introduce the constant

Mq := sup{‖v‖W1
q (D) | v ∈ W1

Γ,q(D), ‖Pv‖W−1
Γ,q(D) � 1}.

It is easily verified that M2 = 1.

Definition 3.3. Denote by Rq, 2 � q < ∞, the set of regular domains (D,Γ) ∈ Ξ for which
P maps W1

Γ,q(D) onto W−1
Γ,q(D).

We can now state an adapted version of [31, theorem 1] which plays a key role in our
investigations. The principal application of theorem 3.4 is to prove existence of solutions u
in the space W1

Γ,q(D) for the conductivity equation (9), with q > 2. Recall that thanks to the

continuous embedding W1
Γ,q(D) ⊂ C(D), the W1

Γ,q-regularity of u allows us to work with the
point evaluations u(xk), where {xk}K

k=1 are the positions of the point measurements.

Theorem 3.4 [31, theorem 1]. Let (D,Γ) ∈ Rq0 for some q0 > 2. Suppose that A satisfies
conditions (10) for q0 and let Aq be defined by (12). Then Aq : W1

Γ,q(D) → W−1
Γ,q(D) is an

isomorphism provided that q ∈ [2, q0] and Mqk < 1, where k := (1 − m2/M2)1/2, and

‖A−1
q ‖L(W−1

Γ,q(D),W1
Γ,q(D)) � cq, (13)

where cq :=mM−2Mq(1 − Mqk)−1. Finally, Mqk < 1 is satisfied if

1
q
>

1
2
−

(
1
2
− 1

q0

)
| log k|
log Mq0

.

Remark 3.5.

• If (D,Γ) ∈ Rq, then Mq < ∞.
• For every regular (D,Γ) ∈ Ξ, there exists a q0 > 2 so that (D,Γ) ∈ Rq0 ; see [30,

theorem 3].
• For sufficiently small q > 2, the constant cq in (13) can be chosen to be independent of q;

see [65, corollary 5].

We now explain how a particular case of the theory described in this section can be applied
to the EIT problem with point measurements. Let (D,Γ) ∈ Ξ and suppose that the conductivity
σ ∈ L∞(D) satisfies pointwise a.e. σ � σ � σ > 0, where σ, σ > 0 are constants. It is clear
thatA :=σI ∈ L∞(D,R2×2) satisfies conditions (10). In view of remark 3.5, there exists q0 > 2
such that (D,Γ) ∈ Rq0 . For q ∈ [2, q0], f ∈ Lq(D) and g ∈ L∞(∂D), the functional

〈F, v〉 :=
∫
D

fv +

∫
Γ

gv, v ∈ W1
Γ,q′ (D),

defines an element in (W1
Γ,q′(D))∗ = W−1

Γ,q(D).
In view of (11), (12) and A :=σI, we have

〈Aqu, v〉W−1
Γ,q(D),W1

Γ,q′ (D) =

∫
D
σ∇u · ∇v.

Thus, the equation: find u ∈ W1
Γ,q(D) such that∫

D
σ∇u · ∇v =

∫
D

fv +

∫
Γ

gv for all v ∈ W1
Γ,q′ (D),

7
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can be written as 〈Aqu, v〉W−1
Γ,q(D),W1

Γ,q′ (D)=〈F, v〉W−1
Γ,q(D),W1

Γ,q′ (D). SinceAq : W1
Γ,q(D) → W−1

Γ,q(D)

is an isomorphism if the conditions of theorem 3.4 are satisfied, there is a unique u ∈ W1
Γ,q(D)

solution to ∫
D
σ∇u · ∇v =

∫
D

fv +

∫
Γ

gv for all v ∈ W1
Γ,q′ (D),

provided q ∈]2, q0] is sufficiently close to 2.

4. Shape optimization

In this section we start by recalling the definition of the Eulerian shape derivative, then we
apply the averaged adjoint method to prove the shape differentiability of the cost functional
J(Ω) and compute the shape derivative.

Let (D,Γ) ∈ Ξ, for k � 0 we define

Ck
c (D,R2) := {V ∈ Ck(D,R2) | V has compact support in D},

and C∞
c (D,R2) similarly, and we equip these spaces with their usual topologies; see [1, 1.56, pp

19–20]. Consider a vector field V ∈ C1
c (D,R2) and the associated flow Tt : D →D, t ∈ [0, t0]

for some t0 > 0, defined for each x0 ∈ D as Tt(x0) := x(t), where x : [0, t0] → R
d solves

ẋ(t) = V(x(t)) for t ∈ [0, t0], x(0) = x0. (14)

For Ω ∈ P(D), we consider the family of perturbed domains

Ωt :=Tt(Ω). (15)

Definition 4.1 (Shape derivative). Let J : P(D) → R be a shape functional.

(a) The Eulerian semiderivative of J at Ω in direction V ∈ C1
c (D,R2) is defined by, when the

limit exists,

dJ(Ω)(V) := lim
t↘0

J(Ωt) − J(Ω)
t

. (16)

(b) J is shape differentiable at Ω if it has a Eulerian semiderivative at Ω for all V ∈ C∞
c (D,R2)

and the mapping

dJ(Ω) : C∞
c (D,R2) → R, V 
→ dJ(Ω)(V)

is linear and continuous, in which case dJ(Ω)(V) is called the Eulerian shape derivative
at Ω, or simply shape derivative at Ω.

4.1. Distributed shape derivative via averaged adjoint method

The averaged adjoint method is a Lagrangian-type approach introduced in [64] to compute
the derivative of shape functionals with PDE constraints. In this section we apply this method
to compute the distributed shape derivative of J(Ω). We refer to the appendix for a detailed
description of the method.

8



Inverse Problems 36 (2020) 095006 Y F Albuquerque et al

ForΩ ∈ P(D) (see (8)) and V ∈ C1
c (D,R2), defineΩt as in (15). Since V has compact support

in D, we have Ωt ⊂ D for all t ∈ [0, t0]. In the rest of the paper, we assume that the conduc-
tivity is piecewise constant, i.e. σΩ = σ1χΩ + σ0χΩc , where (σ0, σ1) are positive scalars with
σ1 > σ0, and also that fΩ = f1χΩ + f0χΩc where f0, f1 ∈ H1(D).

We consider the Lagrangian L : P(D) × W1
Γ,q(D) × W1

Γ,q′(D) → R associated with the cost
functional (6) and the PDE constraint in variational form (9) defined by

L(Ω,ϕ,ψ) :=
1
2

K∑
k=1

(ϕ(xk) − h(xk))2 +

∫
D
σΩ∇ϕ · ∇ψ − fΩψ −

∫
Γ

gψ. (17)

Following the methodology of the averaged adjoint method (see appendix for details), we
introduce the shape-Lagrangian G : [0, t0] × W1

Γ,q(D) × W1
Γ,q′(D) → R as

G(t,ϕ,ψ) :=L(Ωt,ϕ ◦ T−1
t ,ψ ◦ T−1

t )

=
1
2

K∑
k=1

(ϕ ◦ T−1
t − h)2(xk) +

∫
D
σΩt∇(ϕ ◦ T−1

t ) · ∇(ψ ◦ T−1
t ) − fΩtψ ◦ T−1

t

−
∫
Γ

gψ ◦ T−1
t .

Notice that for all q � 1 we have ϕ ∈ W1
Γ,q(D) if and only if ϕ ◦ Tt ∈ W1

Γ,q(D); see
[68, theorem 2.2.2, p 52]. Observe that

σΩt ◦ Tt = σ1χΩt ◦ Tt + σ0χΩc
t
◦ Tt = σ1χΩ + σ0χΩc = σΩ.

We also introduce the notation

f t := fΩt ◦ Tt = f1 ◦ Tt χΩt ◦ Tt + f0 ◦ Tt χΩc
t
◦ Tt = f1 ◦ Tt χΩ + f0 ◦ Tt χΩc . (18)

Using the fact that Tt = id on ∂D and proceeding with the change of variables x 
→ Tt(x)
inside the integrals in G(t,ϕ,ψ), we obtain using the chain rule

G(t,ϕ,ψ) =
1
2

K∑
k=1

(ϕ ◦ T−1
t − h)2(xk) +

∫
D
σΩA(t)∇ϕ · ∇ψ − f tψ −

∫
Γ

gψ, (19)

where

A(t) := det(DTt)DT−1
t DT−T

t . (20)

For t ∈ [0, t0], let us define the perturbation At
q of Aq defined in (12) as follows:

At
q : W1

Γ,q(D) → W−1
Γ,q(D),

v 
→
(
w 
→ 〈At

qv,w〉 :=
∫
D
σΩA(t)∇v · ∇w

)
.

(21)

By continuity of t 
→ A(t) : [0, t0] →C(D,R2×2), for every ε > 0 there exists δ > 0 so that the
following result (see [65, lemma 13]) follows immediately:

A(t)(x)η · η � (1 − ε)|η|2 for all η ∈ R
2 and all (t, x) ∈ [0, δ] ×D, (22)

|A(t)(x)| � 1 + ε for all (t, x) ∈ [0, δ] ×D. (23)

9
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The core element of the averaged adjoint method is the so-called averaged adjoint pt defined
in (55), which is the solution to a PDE involving the adjoint of the operatorAt

q; see the proof of
theorem 4.3 for more details. In order to obtain a solution of the averaged adjoint equation in
the desired space W1

Γ,q(D), we need the following perturbed version of theorem 3.4, showing
that At

q is an isomorphism for t in a small neighbourhood of 0. We also need this result to
prove existence of a solution for the perturbed state ut ∈ W1

Γ,q(D), see (31). Such a result can
be achieved using properties (22) and (23).

Theorem 4.2. For each (D,Γ) ∈ Ξ there exists q0 > 2, ε > 0 and δ > 0 so that for
all t ∈ [0, δ] and all q ∈ [2, q0] satisfying Mqk < 1, where k := (1 − m2/M2)1/2 < 1 with
m = σ0(1 − ε) and M = σ1(1 + ε), the mapping At

q : W1
Γ,q(D) → W−1

Γ,q(D) defined by (21) is
an isomorphism. Moreover, we have for all t ∈ [0, δ] that

‖(At
q)−1‖L(W−1

Γ,q(D),W1
Γ,q(D)) � cq, (24)

where cq :=mM−2Mq(1 − Mqk)−1 is independent of t. Finally, Mqk < 1 is satisfied if

1
q
>

1
2
−

(
1
2
− 1

q0

)
| log k|
log Mq0

.

Proof. We have σ1 � σ � σ0 > 0 with σ0 < σ1. Let us choose ε < 1 and δ such that
(22), (23) is satisfied, and let t ∈ [0, δ). In view of (22), (23) it immediately follows that
A = σΩA(t) ∈ L∞(D,R2×2) satisfies assumptions (10) with m = σ0(1 − ε) and
M = σ1(1 + ε). Hence, the result follows directly from theorem 3.4, since M and m are
independent of t. �

The main statement of this section is the following theorem 4.3, for which we first need
several notations.

Notations. For vectors a ∈ R
d and b ∈ R

d , the outer product a ⊗ b is defined as the
second order tensor with entries [a ⊗ b]ij = aibj and the symmetric outer product as
a � b := (a ⊗ b + b ⊗ a)/2. For second order tensors S ∈ R

d×d and T ∈ R
d×d whose entries

are denoted by Sij and Tij, the double dot product of S and T is defined as S : T =
∑d

i, j=1 Si jTi j.

Theorem 4.3 (distributed shape derivative). Let D ∪ Γ ⊂ R
2 be a regular domain in the

sense of Gröger, Ω ∈ P(D) (see (8)) and J : P(D) → R be defined in (6). Assume that
Γh ∩ ∂Ω = ∅ and fΩ = f1χΩ + f0χΩc where f0, f1 ∈ H1(D). Then the shape derivative of
J at Ω in direction V ∈ C1

c (D,R2) is given by

dJ(Ω)(V) = S0(V) +
∫
D

S1 : DV , (25)

where S1 ∈ L1(D,R2×2) and S0 ∈ (C(D,R2))∗ are defined by

S1 = −2σΩ∇u �∇p+ (σΩ∇u · ∇p− fΩp)I, (26)

S0(V) = Ss
0(V) +

∫
D

Sr
0 · V , (27)

Sr
0 = −p∇̃ fΩ, (28)

Ss
0 = −

K∑
k=1

((u − h)∇u) (xk)δxk , (29)

10
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where ∇̃ fΩ :=∇ f1 χΩ +∇ f0 χΩc and Sr
0 ∈ L1(D,R2).

Also, there exists q > 2 such that the adjoint p ∈ W1
Γ,q′ (D) is the solution to

∫
D
σΩ∇p · ∇ϕ = −

K∑
k=1

(u(xk) − h(xk))ϕ(xk) for allϕ ∈ W1
Γ,q(D). (30)

Proof. We employ the averaged adjoint approach of [64] and follow the arguments of
[65], we refer to the appendix for details about the method. Let us define the perturbed state
ut ∈ W1

Γ,q(D) solution of∫
D
σΩA(t)∇ut · ∇ϕ =

∫
D

f tϕ+

∫
Γ

gϕ for all ϕ ∈ W1
Γ,q′(D), (31)

where f t is defined in (18) and A(t) in (20). The mapping Ft : W1
Γ,q′ (D) → R defined by

〈Ft, v〉 :=
∫
D

f tv +

∫
Γ

gv for v ∈ W1
Γ,q′(D)

is well-defined and continuous. Consequently, thanks to theorem 4.2 there is a unique solution
to (31) in W1

Γ,q(D) for q > 2 sufficiently close to 2. Using (24) we get

‖ut‖W1
Γ,q(D) � cq‖Ft‖W−1

Γ,q(D) � C(‖ f t‖L2(D) + ‖g‖L∞(∂D)).

It follows that for some constant C independent of t, we have

‖ut‖W1
Γ,q(D) � C. (32)

Following (55), the averaged adjoint equation reads: find pt ∈ W1
Γ,q′(D), such that∫ 1

0
dϕG(t, sut + (1 − s)u0; pt)(ϕ) ds = 0 for all ϕ ∈ W1

Γ,q(D), (33)

which is equivalent to, using the fact that A(t)T = A(t),

∫
D
σΩA(t)∇pt · ∇ϕ

=
1
2

K∑
k=1

(ut ◦ T−1
t (xk) + u0 ◦ T−1

t (xk) − 2h(xk))ϕ ◦ T−1
t (xk) for allϕ ∈ W1

Γ,q(D).

(34)

In view of the definition (21) of At
q, the adjoint operator is defined as

(At
q)∗ : W−1

Γ,q(D)∗ = W1
Γ,q′(D) → W1

Γ,q(D)∗ = W−1
Γ,q′ (D),

w 
→
(
v 
→ 〈(At

q)∗w, v〉 := 〈w,At
qv〉

)
.

(35)

Using (21) and the fact that A(t)T = A(t) we get for w ∈ W1
Γ,q′(D) and v ∈ W1

Γ,q(D),

〈(At
q)∗w, v〉 =

∫
D
σΩA(t)∇w · ∇v.

11
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Now, in view of theorem 4.2 there exists q > 2 and δ > 0 such that the mapping
At

q : W1
Γ,q(D) → W−1

Γ,q(D) is an isomorphism for all t ∈ [0, δ]. Thus, the adjoint mapping

(At
q)∗ : W1

Γ,q′ (D) → W−1
Γ,q′ (D) is also an isomorphism.

Now the functional Rt : W1
Γ,q(D) → R defined by

〈Rt, v〉 :=
1
2

K∑
k=1

(ut ◦ T−1
t (xk) + u0 ◦ T−1

t (xk) − 2h(xk))v ◦ T−1
t (xk) for v ∈ W1

Γ,q(D).

is well-defined and continuous. Therefore, since (At
q)∗ is an isomorphism, the averaged adjoint

equation (34), which can be written as (At
q)∗pt = Rt, has a unique solution pt ∈ W1

Γ,q′(D).

Using the continuous embedding of W1
Γ,q(D) into the space of continuous functions C(D)

for q > 2 in two dimensions, it also follows that

‖pt‖W1
Γ,q′ (D) � C max

k∈{1,...,K}
|(ut ◦ T−1

t + u0 ◦ T−1
t − 2h)(xk)|

� C

(
‖ut‖W1

Γ,q(D) + ‖u0‖W1
Γ,q(D) + max

k∈{1,...,K}
|h(xk)|

)
.

Then using (32) we get, for some constant C independent of t,

‖pt‖W1
Γ,q′ (D) � C. (36)

The estimate (36) yields that pt ⇀ p0 weakly in W1
Γ,q′ (D) as t ↘ 0. Using (56) and the fact that

G(0, u0, p0) = G(0, u0,ψ) for all ψ ∈ W1
Γ,q′ (D), we have

G(t, ut, pt) − G(0, u0, p0)
t

=
G(t, u0, pt) − G(0, u0, pt)

t
, (37)

and then, in view of (19),

G(t, u0, pt) − G(0, u0, pt)
t

=
1
2

K∑
k=1

(u0 ◦ T−1
t − h)2(xk) − (u0 − h)2(xk)

t

+

∫
D
σΩ

A(t) − I

t
∇u0 · ∇pt − f t − f 0

t
pt. (38)

Using the assumption Γh ∩ ∂Ω = ∅, we have for all k = 1, . . . , K that xk belongs either to Ω,
to D\Ω or to ∂D. Assume first that xk belongs either to Ω or to D\Ω. Since σΩ is constant in
Ω and in D\Ω, u is harmonic in these sets, therefore using elliptic regularity results we have
u ∈ C∞(B(xk, rk)) for sufficiently small rk, where B(xk, rk) denotes the open ball of centre xk

and radius rk. Thus, the first term on the right-hand side of (38) converges as t ↘ 0. Now if
xk ∈ ∂D, then Tt(xk) = xk due to V ∈ C1

c (D,R2), and the first term on the right-hand side of
(38) is equal to zero, so we obtain the same formula as in the case xk ∈ D\Ω. Also, using
V ∈ C1

c (D,R2) we have the following convergence properties (see [47, lemma 3.1] and [63,
lemma 2.16])

A(t) − I

t
→ A′(0) := div(V) − DV − DVT strongly in C(D,R2×2), (39)

f t − f 0

t
→ fΩ div(V) + ∇̃ fΩ · V strongly in L2(D), (40)

12
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and we conclude that the right-hand side of (38) converges to

−
K∑

k=1

(u0 − h)(xk)∇u0(xk) · V(xk) +
∫
D
σΩA′(0)∇u0 · ∇p0 − ( fΩ div(V) + ∇̃ fΩ · V)p0. (41)

In view of (19), (37) and (38) this shows

lim
t↘0

G(t, ut, pt) − G(0, u0, p0)
t

= ∂tG(0, u0, p0), (42)

which shows that assumption 6.2 is satisfied.
Using tensor calculus, the property div(V) = I : DV , the notations u = u0 and p = p0, we

can further transform (41) in the following way:

σΩA′(0)∇u · ∇p = σΩ div(V)∇u · ∇p− σΩDV∇u · ∇p− σΩDVT∇u · ∇p

= σΩ(∇u · ∇p)I : DV − σΩDV : (∇p⊗∇u) − σΩDV : (∇u ⊗∇p)

= σΩ((∇u · ∇p)I− 2∇u �∇p) : DV ,

and ( fΩ div(V) + ∇̃ fΩ · V)p0 = ( fΩpI) : DV + p∇̃ fΩ · V . Gathering these results, (41) can be
brought into expression (25).

The regularity S1 ∈ L1(D,R2×2) is due to u ∈ W1
Γ,q(D), p ∈ W1

Γ,q′ (D) and fΩ ∈ Lq(D), and
the regularity of Sr

0 is a consequence of the regularity of p and fΩ. �

4.2. Boundary expression of the shape derivative

An interesting feature of theorem 4.3 is to show that the distributed shape derivative exists even
when Ω is only open. Another relevant issue is to determine the minimal regularity of Ω for
which boundary expressions of the shape derivative can be obtained. This section is devoted to
the study of this question. We start with the following well-known result which describes the
structure of the boundary expression of the shape derivative; see [21, pp 480–481].

Theorem 4.4 (Zolésio’s structure theorem). Let Ω be open with ∂Ω compact and of class
Ck+1, k � 0. Assume J has a Eulerian shape derivative at Ω and dJ(Ω) is continuous for the
Ck(D,Rd)-topology. Then, there exists a linear and continuous functional l : Ck(∂Ω) → R such
that

dJ(Ω)(V) = l(V|∂Ω · n) for all V ∈ Ck
c (D,Rd). (43)

Theorem 4.4 requires Ω to be at least C1, however we show in proposition 4.5 that even
for Lipschitz domains one can obtain a boundary expression for the shape derivative, see (47),
even though we get a weaker structure than (43) since the tangential component of V may be
present in (47). Recall that a bounded domain is called Lipschitz if it is locally representable
as the graph of a Lipschitz function. In this case, it is well-known that the surface measure is
well-defined on ∂Ω and there exists an outward pointing normal vector n at almost every point
on ∂Ω; see [23, section 4.2, p 127].

Notations. For Ω ∈ P(D) and a given function φ : D → R
d×d, the notations φ+ and φ−

denote the restrictions of φ to Ω and to D\Ω, respectively. If φ+
1 ∈ W1,1(Ω,Rd×d) and

φ−
1 ∈ W1,1(D\Ω,Rd×d) then [[φ]] :=φ+|∂Ω − φ−|∂Ω denotes the jump of the traces of φ across

the interface ∂Ω.

Notations. Let S : Rd →R
d×d be a second order tensor, then div(S) is defined as the vector

of the divergence of the rows of S.

13
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Proposition 4.5. Suppose that the conditions of theorem 4.3 are satisfied, and that
V ∈ C1

c (D\Γh,R2), then we have

div(S+
1 ) = (Sr

0)+ a.e. inΩ\Γh, (44)

div(S−
1 ) = (Sr

0)− a.e. in (D\Ω)\Γh. (45)

If S+
1 ∈ W1,1(Ω,R2×2) and S−

1 ∈ W1,1(D\Ω,R2×2), then

dJ(Ω)(V) =
∫
Ω

div(ST
1 V) +

∫
D\Ω

div(ST
1 V). (46)

If in addition Ω is Lipschitz, we also have the boundary expression

dJ(Ω)(V) =
∫
∂Ω

[[S1]]n · V. (47)

If in addition Ω is of class C1, we obtain the boundary expression

dJ(Ω)(V) =
∫
∂Ω

([[S1]]n · n) V · n. (48)

Proof. In view of [54, theorem 2.2], if V has compact support in Ω then the shape
derivative vanishes. Assume V ∈ C1

c (Ω\Γh,R2) and denote U := suppV ⊂ Ω\Γh, then u
and p are clearly harmonic in U since σ is constant in U. In view of (26) and the
regularity of fΩ, this yields S1 ∈ L1(U,R2div2) and div(S1) ∈ L1(U,R2). Thus, we have
div(ST

1 V) = S1 : DV + V · div(S1) ∈ L1(U). For such V we also have Ss
0(V) = 0, so we obtain

dJ(Ω)(V) = Ss
0(V) +

∫
D

S1 : DV + Sr
0 · V

=

∫
U

div(ST
1 V) + V · (Sr

0 − divS1) = 0 for all V ∈ C1
c (Ω\Γh,R2). (49)

Since suppV = U ⊂ Ω\Γh, we can extend ST
1 V and V · (Sr

0 − divS1) by zero on B, where B is
a sufficiently large open ball which contains U. We keep the same notation for the extensions
for simplicity. Since the extension satisfies ST

1 V ∈ W1,1(B,R2), using the divergence theorem
(for instance [23, section 4.3, theorem 1]) in B we get∫

U
div(ST

1 V) + V · (Sr
0 − divS1) =

∫
B

div(ST
1 V) + V · (Sr

0 − divS1)

=

∫
∂B

(ST
1 V) · n +

∫
B

V · (Sr
0 − divS1)

=

∫
Ω

V · (Sr
0 − divS1) = 0, for all V ∈ C1

c (Ω\Γh,R2),

which proves (44). Then, we can prove (45) in a similar way by taking a vector V ∈
C1

c ((D\Ω)\Γh,R2).
Now, let us assume that V ∈ C1

c (D\Γh,R2) and denote U2 := supp V ⊂ D\Γh. By standard
elliptic regularity, we have u ∈ H1(U2) and p ∈ H1(U2). Assuming S+

1 ∈ W1,1(Ω,R2×2) and

14
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Figure 2. Reconstruction of two ellipses using I = 3 currents and K = 70 point mea-
surements with 1.13% noise.

S−
1 ∈ W1,1(D\Ω,R2×2), and using (44) and (45) we obtain

dJ(Ω)(V) = S0(V) +
∫
D

S1 : DV + Sr
0 · V

=

∫
Ω

S1 : DV + Sr
0 · V +

∫
D\Ω

S1 : DV + Sr
0 · V

=

∫
Ω

div(ST
1 V) + V · (Sr

0 − divS1) +
∫
D\Ω

div(ST
1 V) + V · (Sr

0 − divS1)

=

∫
Ω

div(ST
1 V) +

∫
D\Ω

div(ST
1 V),

which yields (46). If in addition Ω is Lipschitz, applying the divergence theorem to (46) we
get (47).

In view of (47), we have that dJ(Ω) is continuous for the C0(D,Rd)-topology. Thus, ifΩ is of
class C1, we can apply theorem 4.4 with k = 0. If Ω is of class C1, we also have n ∈ C0(∂Ω,R2)
and (V|∂Ω · n)n ∈ C0(∂Ω,R2). Let V̂ ∈ C0

c (D\Γh,R2) be an extension of (V|∂Ω · n)n, then using
theorem 4.4 and (47) we obtain

dJ(Ω)(V) = l(V|∂Ω · n) = l(V̂ |∂Ω · n) = dJ(Ω)(V̂)

=

∫
∂Ω

((S+
1 − S−

1 )n) · V̂ =

∫
∂Ω

([[S1]]n) · ((V · n)n) =
∫
∂Ω

([[S1]]n · n)V · n,

15
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Figure 3. Reconstruction of a concave shape using I = 3 currents and K = 34 point
measurements with 0.55% noise.

which yields expression (48). �

Remark 4.6. Proposition 4.5 is in fact valid for any shape functional whose distributed
shape derivative can be written using a tensor expression of the type (25), and which satis-
fies appropriate regularity assumptions. Note that in general, one should not expect that the
assumption S+

1 ∈ W1,1(Ω,R2×2) and S−
1 ∈ W1,1(D\Ω,R2×2) in proposition 4.5 can be satisfied

for any Lipschitz set Ω. For instance in the case of the Dirichlet Laplacian, one can actu-
ally build pathological Lipschitz domains for which S1 does not have such regularity; see
[17, corollary 3.2]. However, these regularity assumptions for S+

1 , S−
1 can be fulfiled for

polygonal domains, as shown in corollary 4.7.

Corollary 4.7. Suppose that the conditions of theorem 4.3 are satisfied, and that in addition
f0 ∈ C∞(D) and V ∈ C1

c (D\Γh,R2). If Ω is Lipschitz polygonal or if Ω is of class C1, then we
have

dJ(Ω)(V) =
∫
∂Ω

([[σΩ∂nu∂n p]] + [[σΩ]]∇∂Ωu · ∇∂Ωp− [[ fΩ]]p)V · n, (50)

where ∇∂Ω denotes the tangential gradient on ∂Ω.

Proof. In the case where Ω is of class C1, a quick calculation using (48) and (26) yields (50).
In the case where Ω is polygonal, we can proceed in the following way. Let D̂ be a smooth

open set such that supp V ∪ Ω ⊂ D̂ ⊂ D and the boundaries of Ω and D̂ are at a positive dis-
tance. Since f0 ∈ C∞(D), using elliptic regularity we get that u and p are C∞ on ∂D̂. Thus, u|

̂D
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Figure 4. Reconstruction of three ellipses using I = 7 currents and K = 70 point
measurements with 0.63% noise.

and p|
̂D are also solutions of transmission problems defined in D̂ with smooth inhomogeneous

Dirichlet conditions on ∂D̂, and consequently we are in the framework considered in [57].
Denote L the number of vertices of the polygonΩ. We apply [57, theorem 7.3] in the case k = 0,
m = 1 and for the regularity W2,4/3. This yields the decomposition u|

̂D = u0 +
∑


∈LS
 with

u+
0 ∈ W2,4/3(Ω), u−

0 ∈ W2,4/3(D̂\Ω) and S
 are singular functions with support in the neigh-
bourhood of the vertices of Ω. Here S
(r
, θ
) are of the type rλ

 v(r
, θ
), where (r
, θ
) are local
polar coordinates at the vertex 
 and v(θ
) is a linear combination of sin(λ
θ
) and cos(λ
θ
).
It is shown in [18, theorem 8.1(ii)] that λ
 > 1/2 for all 
 = 1, . . . , L. Thus, we also obtain∑


∈LS+

 ∈ W2,4/3(Ω) and

∑

∈LS−


 ∈ W2,4/3(D̂\Ω).
Proceeding in a similar way for p and gathering the results, we obtain the regularity u+,

p+ ∈ W2,4/3(Ω) and u−, p− ∈ W2,4/3(D̂\Ω). Then we have ∇(∇u · ∇p) = (D2u)p + (D2p)u
and using (D2u)+, (D2 p)+ ∈ L4/3(Ω) and (∇u)+, (∇p)+ ∈ W1,4/3(Ω) ⊂ L4(Ω) and the same
regularity on D̂\Ω, we obtain S+

1 ∈ W1,1(Ω,R2×2) and S−
1 ∈ W1,1(D̂\Ω,R2×2).

Then, using the fact that V ∈ C1
c (D\Γh,R2) we obtain in view of (47) of proposition 4.5

dJ(Ω)(V) =
∫
∂Ω

[[σΩ∂nu]]∇∂Ωu · V + [[σΩ∂n p]]∇∂Ωp · V

+

∫
∂Ω

([[σΩ∂nu∂n p]] + [[σΩ]]∇∂Ωu · ∇∂Ωp− [[ fΩ]]p)V · n.

Finally, using the fact that [[σΩ∂nu]] = 0 and [[σΩ∂np]] = 0 we obtain (50). �
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Figure 5. Reconstruction of two ellipses using I = 3 currents and three different sets of
point measurements shown in the first row.

Remark 4.8. Expressions similar to (50) are known when Ω is at least C1, see [2, 54]. It
is remarkable that one obtains the same expression (50) when Ω is only Lipschitz polygonal.
Also, note that (50) is similar to the formula obtained in [9] for a polygonal inclusion in EIT,
which was obtained in the framework of the perturbation of identity method. In [9], an estimate
of the singularity of the gradient in the neighbourhood of the vertices of the polygonal inclusion
was used to obtain the boundary expression. Here, we have used higher regularity of u and p in
the subdomains Ω and D̂\Ω to obtain (50). The core idea of these two approaches is to control
the singularity of the gradients of u and p near the vertices of the polygonal inclusion.

5. Numerical experiments

We use the software package FEniCS for the implementation; see [4, 53, 55]. For the
numerical tests the conductivity values are set to σ0 = 1 and σ1 = 10. We choose fΩ ≡ 0,
D = (0, 1) × (0, 1) and

Γ = ∂D\([0.4, 0.6] × {0} ∪ [0.4, 0.6] × {1}).

The domain D is meshed using a regular grid of 128 × 128 elements. For the measure-
ment points we choose Γh = {xk}K

k=1 ⊂ Γ. Recall that no measurements are performed on
Γ0 = ∂D\Γ and that u satisfies Dirichlet boundary condition on Γ0.

Synthetic measurements {hi(xk)}K
k=1 are obtained by taking the trace on Γ of the solution

of (9) using the ground truth domain denoted by Ω�, fΩ� ≡ 0 and currents gi, i = 1, . . . , I. To
simulate noisy EIT data, each measurement hi is corrupted by adding a normal Gaussian noise
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Figure 6. Reconstruction of a concave shape using I = 3 currents and three different
sets of point measurements shown in the first row.

with mean zero and standard deviation δ ∗ ‖hi‖∞, where δ is a parameter. The noise level is
then computed as

noise =

∑I
i=1 (

∑K
k=1 |hi(xk) − h̃i(xk)|2)1/2∑I

i=1 (
∑K

k=1 |hi(xk)|2)1/2
, (51)

where hi(xk) and h̃i(xk) are respectively the noiseless and noisy point measurements at xk

corresponding to the current gi.
In the numerical tests, we use two different sets of fluxes, i.e. I ∈ {3, 7}, to obtain measure-

ments. Denote Γupper, Γlower, Γleft and Γright the four sides of the square D. When I = 3 we take

g1 = 1 onΓleft ∪ Γright and g1 = −1 onΓupper ∪ Γlower,

g2 = 1 onΓleft ∪ Γupper and g2 = −1 onΓright ∪ Γlower,

g3 = 1 onΓleft ∪ Γlower and g3 = −1 onΓright ∪ Γupper.

When I = 7 we take in addition a smooth approximation of the following piecewise constant
function:

g4 = 1 onΓleft ∩ {x2 > 0.5}, g4 = −1 onΓleft ∩ {x2 � 0.5} and g4 = 0 otherwise,

and g5, g6, g7 are defined in a similar way on Γright, Γupper, Γlower, respectively.
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Figure 7. Reconstruction of three ellipses using I = 7 currents and different sets of point
measurements shown in the first row.

For the numerics we use the cost functional given by (5):

J(Ω) =
1
2

I∑
i=1

μi

K∑
k=1

(ui(xk) − hi(xk))2, (52)

where ui is the potential associated with the current gi. The weights μi associated with the
current gi are chosen as the inverse of

∑K
k=1 (ui(xk) − hi(xk))2 computed at the initial guess.

In this way, each term in the sum over i = 1, . . . , I, is equal to 1 at the first iteration, and the
initial value of J(Ω) is equal to I/2.

To get a relatively smooth descent direction we solve the following partial differential
equation: find V ∈ H1

0(D,R2) such that∫
D
α1DV : Dξ + α2V · ξ = −dJ(Ω)(ξ) for all ξ ∈ H1

0(D,R2). (53)

Supposing V �= 0 and choosing ξ = V in (53), we obtain

dJ(Ω)(V) = −
∫
D
α1DV : DV + α2V · V < 0,

which shows that the solution V of (53) is a descent direction for J. The regularity of the
reconstructed shape can be controlled via the coefficient α1 > 0: a larger ratio α1/α2 yields
a smoother reconstruction. For the numerical tests, we have found that the heuristic values
α1 = 0.3 and α2 = 0.7 give good results.

To simplify the implementation, we use Dirichlet conditions on ∂D instead of the compact
support condition V ∈ C1

c (D\Γh,R2) (see section 4). Considering that fΩ ≡ 0 in D, V = 0 on
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Table 1. Influence of noise and number of point measurements on the reconstruction of
two ellipses using I = 3 currents (the noise value is the average over the noise values for
the three levels of point measurements).

Noise (%) K = 16 points K = 34 points K = 70 points

0%

0.51%

1.16%

∂D and that the points {xk}K
k=1 belong to Γ, in view of theorem 4.3 we get Ss

0(V) = 0 which
leads to the following equation for V:∫

D
α1DV : Dξ + α2V · ξ

= −
∫
D
− 2σΩ(∇u �∇p) : Dξ + (σΩ∇u · ∇p)I : Dξ for all ξ ∈ H1

0(D,R2).

The relative reconstruction error E(Ωr) is defined as

E(Ωr) :=

∫
D
|χΩ�−χΩr |∫
DχΩ�

,

where Ωr is the set obtained in the last iteration of the minimization algorithm. We use E(Ωr)
as a measure of the quality of the reconstructions.

We present three numerical experiments. In the first experiment, the ground truth consists
of two ellipses and we use I = 3 currents; see figure 2. In the second experiment, the ground
truth is a concave shape with one connected component and we use I = 3 currents; see figure 3.
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Table 2. Influence of noise and number of point measurements on the reconstruction
of a concave shape using I = 3 currents (the noise value is the average over the noise
values for the three levels of point measurements).

Noise (%) K = 16 points K = 34 points K = 70 points

0%

0.54%

1.12%

In the third experiment, the ground truth consists of two ellipses and one ball and we use I = 7
currents; see figure 4. For each experiment, we study the influence of the point measurements
patterns by comparing the reconstructions obtained using three different sets Γh = {xk}K

k=1
with K ∈ {16, 34, 70}.The point measurements patterns and the corresponding reconstructions
are presented in figures 5–7, for the respective experiments. We observe, as expected, that the
reconstructions improve as K becomes larger. However, one obtains reasonable reconstructions
in the case of the concave shape with I = 3 currents and in the case of the two ellipses and ball
with I = 7 currents, even for K = 16 points and in the presence of noise; see figures 6 and 7.
In the case of two ellipses, the deterioration of the reconstruction for K = 16 points is much
stronger compared to the case K = 70. This indicates that the number of currents I = 3 is too
low to reconstruct two ellipses with only K = 16 points. We conclude from these results that
the number of applied currents is more critical than the number of point measurements to obtain
a good reconstruction.

For each experiment, we also study how the noise level affects the reconstruction depending
on the number of point measurements. The results are gathered in tables 1–3, where the rows
correspond to three different levels of noise, and the columns to three different numbers of
points K ∈ {16, 34, 70}. In the case of two ellipses (table 1), the reconstruction using K = 70
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Table 3. Influence of noise and number of point measurements on the reconstruction of
three ellipses using I = 7 currents (the noise value is the average over the noise values
for the three levels of point measurements).

Noise (%) K = 16 points K = 34 points K = 70 points

0%

0.59%

1.14%

is very robust with respect to noise, whereas it deteriorates considerably using K = 16. In the
cases of the concave shape (table 2) and of the two ellipses and ball (table 3), the degradations
of the reconstructions when the noise becomes larger are of a similar order in terms of recon-
struction error, independently of the value of K. These results indicate that a larger number of
points K may improve the robustness of the reconstruction with respect to noise mainly when
the number I of currents is low compared to the complexity of the ground truth.
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Appendix. Averaged adjoint method

In this appendix we describe the averaged adjoint method introduced in [64], see also [54]. Let
t0 > 0 be given and E = E(D), F = F(D) be two Banach spaces, and consider a parameteri-
zation Ωt = Tt(Ω) for t ∈ [0, t0] such that Tt(D) = D, i.e. which leaves D globally invariant.
Our goal is to differentiate shape functions of the type J(Ωt) which can be written using a
Lagrangian as J(Ωt) = L(Ωt, ut, ψ̂), where ut ∈ E(D) and ψ̂ ∈ F(D). The main appeal of the
Lagrangian is that we actually only need to compute the partial derivative with respect to t of
L(Ωt, ϕ̂, ψ̂) to compute the derivative of J(Ωt), indeed this is the main result of theorem 6.3.

In order to differentiate L(Ωt, ϕ̂, ψ̂), the change of coordinates x 
→ Tt(x) is used in the
integrals. In the process appear the pullbacks ϕ̂ ◦ Tt ∈ E(D) and ψ̂ ◦ Tt ∈ F(D) which depend
on t. The usual procedure in shape optimization to compensate this effect is to use a repa-
rameterizationL(Ωt,Ψt(ϕ),Ψt(ψ)) instead of L(Ωt, ϕ̂, ψ̂), where Ψt is an appropriate bijection
of E(D) and F(D), and ϕ ∈ E(D), ψ ∈ F(D). Now the change of variable in the integrals
yields functions ϕ and ψ in the integrands, which are independent of t. In this paper we
take E(D) = W1

Γ,q(D), F(D) = W1
Γ,q′(D), and Ψt(ψ) = ψ ◦ T−1

t is then a bijection of E(D) and
F(D); see [68, theorem 2.2.2, p 52].

Thus we consider the so-called shape-Lagrangian G : [0, t0] × E × F → R with

G(t,ϕ,ψ) :=L(Ωt,ϕ ◦ T−1
t ,ψ ◦ T−1

t ).

The main result of this section, theorem 6.3, shows that in order to obtain the shape derivative
of L, it is enough to compute the partial derivative with respect to t of G while assigning the
values ϕ = u and ψ = p, where u is the state and p is the adjoint state. The main ingredient is
the introduction of the averaged adjoint equation described below.

Let us assume that for each t ∈ [0, t0] the equation

dψG(t, ut, 0; ψ̂) = 0 for all ψ̂ ∈ F, (54)

admits a unique solution ut ∈ E. Further, we make the following assumptions for G.

Assumption 6.1. For every (t,ψ) ∈ [0, t0] × F

(a) [0, 1] � s 
→ G(t, sut + (1 − s)u0),ψ) is absolutely continuous.
(b) [0, 1] � s 
→ dϕG(t, sut + (1 − s)u0,ψ; ϕ̂) belongs to L1(0, 1) for all ϕ̂ ∈ E.

When assumption 6.1 is satisfied, for t ∈ [0, t0] we introduce the averaged adjoint equation
associated with ut and u0: find pt ∈ F such that

∫ 1

0
dϕG(t, sut + (1 − s)u0, pt; ϕ̂) ds = 0 for all ϕ̂ ∈ E. (55)
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In view of assumption 6.1 we have

G(t, ut, pt) − G(t, u0, pt) =
∫ 1

0
dϕG(t, sut + (1 − s)u0, pt; ut − u0) ds = 0 for all t ∈ [0, t0].

(56)
We can now state the main result of this section.

Assumption 6.2. We assume that

lim
t↘0

G(t, u0, pt) − G(0, u0, pt)
t

= ∂tG(0, u0, p0).

Theorem 6.3. Let assumptions 6.1 and 6.2 be satisfied and assume there exists a unique
solution pt of the averaged adjoint equation (55). Then for all ψ ∈ F we obtain

dt(G(t, ut,ψ))|t=0 = ∂tG(0, u0, p0). (57)
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