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Summary:

Estimating the fraction of population in an income bracket by using the Pareto Dis-
tribution, Shanmugam (1987) points out that a maximum likelihood (ml) estimate is
clearly inefficient as compared to a minimum variance unbiased (m.v.u) estimate when
the income inequality parameter is known. In this note we define a family of m.v.u.
estimators which includes the estimator of Shanmugam and by comparing the precision
of this family and mi. estimators we find a way'to evaluate how much more efficient
the estimator proposed by Shanmugam is when compared to the m.l. estimator.

Keywords: Pareto Distribution, Survival Function, Maximum Likelihood - Minimum
Variance Unbiased Estimates, Reduced Random Sample, Mean Square Error.

1. Introduction

_ Denoting by X the person’s income in a population, Vilfredo Paieto (1897) showed ,_

that, if

R(:1:) = P(X 2 z) ' ' (1.1)

then, at least for large values of as,

lnR(:1:) 1“ a(lnfl— lnx) (1.2)

where a and fl are parameters, a being representative of distribution shape and known
as “constant of Pa”reto and fl meaning the minimum income.

A random variable \' is called a classic Pareto type if its probability density function _

(p...df)is



afl"
f(x)=;;-g, w2fl>0, a>0 (1.3)

It is a known result that, if X1,X2,...,X,, is a random sample from the density
(1.3), then S: = min(X1,X2, . . . ,X,,) is a complete sufficient statistic for parameter fl,
exhibiting the p.d.f.

naflna
“snub-£1255, s;2fl>0, a>0 (1.4)

Furthermore, since 32 is also the m. l. estimator of fl then, the m.l. estimator of the
fraction R(x) when the parameter a is known15, due to theinvariance property of the
m. 1. principle, given by

A S 0 .

R(z) = (f) (1.5)

The expectation, variance and mean square error of fate) obtained are ‘

Efi(:c) =
n fl (g)

‘

(1.6)

A
' ’

TI. fl 2a

A 2 fl 2a

Them]. principle provides as the m.l. estimators of those quantities, respectively,

Varnuym (Say

m.s:R(¢) = (TL—1720???) (%)20

Among the r(m.v.u.) estimates which have been proposed for R(.7:) in the espe-
cific case when a is the parameter known, the one established by Shanmugam from



Prob(X1 > 31/52), is obtained by adopting an approach of transformation of random
- variables which brings out the estimator

Mm) = (1 — l) (%)a ,x '> 82 (1.9)
11

Although we agree with Shanmugam’s opinion that the m.l. estimator has been
proved not so much efficient as compared to the estimator (1.9), we do believe that
further attention should be given to the result he achieved once his argumentation is
based on an analytic expression which is incorrect for the m.s.e. of the estimator as well
as it doesn’t clarify how much more efficient the proposed estimator is when compared
to the m.l. estimator. By reducing the sample and using the correct analytic expression,
we make it possible to establish a way of quantifying the Shanmugam’s result and reach
the conclusion that his estimator is more efficient than the m.l. estimator even in cases
when the size of the sample has been considerably reduced.

2. A class of estimators for R(a;) when a is known.

Let X;, ,Xg,, . . . ,Xi“) the random sample resulting of one obtained from the density
(1.3) after j of its 71 components had been disregarded.

The statistic $2,- = min(X.~,, X;,, . . . ,X,-n_,) is, like 32, a. complete sufficient statistic
for the parameter [3 having as p.d.f. the density g(sz,j;n - j) given in accordance with
(1.4 .

'

'

..

lilaking use of the Rao Blackwell theorem, the (m.v.u) estimator for R(:c), built on
52.1“, is given by Prob(X,~1 > 33/5”). Then, employing the Shanmugam approach, we
obtain as such estimator the expression _

f]. 33

~ ._ '_1__ . 0 ~

_

Rj($) = (%—) (£211) '

, (B > 82“, , 0 Sj S n — 2 (2.1)

The Variancesof these estimators are obtained as follows”:
i

i

., . . 2 a
Varftjkr). = (ll—Till) Var (£3,241)

_
n — ] rc

' As we have



Var (ii—J)“ = [600 [(%‘-’-)o — (£7) (§)a]29(sz,j;n —j)dsg.j

= n—j (E)2a 22,(n-j—2)(n—j~1)2 w H

'n_j_12 (n—j) g 2"

(n—j ) (n—j—2)(n—-j—1)2(x)

~ 1 fl 2°
_

-
_

VarR~x=——-.—————.———— -— , 03 511—3 2.3,() (n—an—J—mi) J ( )

Now, denoting by L105”; n — j) the (m.v.u.) estimator of Var fax) and making
use of the expectation inversion technique, the expression for Ll(s2,j;ny— j) is obtained
'as follows:

then

HVariZJ-(m)

That is,
'

co
_

.
_ ' ._

1 IE
20

1/3 M811,” ".7)9(32,J’n —~7)d52” - (n -—j)(17- —j " 2) (g)
" That is,

m
,. . (n — j)2afl‘"""°(n - 5 — 2)/ u(s2'j;n — j) n; a 1 2a (Ism- =1

Sid J) + (5) '
'

Or then
2a .°°

. . 13 .

,

A, “(sum — J)(n ~J)2 (“s ) 982.1171” J — 2)d32,,- - 1 5 0
2.1

Hence
"

00

A

IL‘
20

/ [U(32'j;n —-j)(n -— j)2 (——-) —1]g(32'j;n —— j —- 2)d32'j E O
13 32.j

.

As we have

(C
20:

“(82,1171 - j)(n - j)2 (—) ‘1 5 0
32.1‘

4



then

.
1 S . 20

“(52.j;n—J)=G;_—j)7(-£i) 1 $>82,j, OSJ'Sn—3 (2.4)

Note that the expression (2.3) and (2.4) which have been obtained improve those.
(3.5) and (3.7) exhibited in Shanmugam (1987) when j = 0.

3. Comparing the precision of m.v.u. and m.l. estimators.
In order to establish a comparison of the efficiencies of the (m. v .u. ) and the (m l.)

estimators, we examine the precision of each one whichis given by theinverse of the
mean square error whichIS equal to the variance plus the square of the bias.

Since the m.s.e. of R_,~:r( ) is its variance, exhibited in (23), and the m. s.e of R r) is
' the one given in (1 .,8) we obseive that, in order to have R-j:L() mo1e efficient than R(:c ),
we must have .

1 2
- <
(n ~j)(n—j —2) ’ (n —1)(n’*2) ’ 0991-3 (3.1)

Thatis,

901(n;j)52j2-4(n—1)i+(n2‘n-2)201 0992-3
A straightforivard calculation shows that the roots of that polinomial expression are

11101): (11. -1)—5
'

and mm) = (71 — 1) + 51

where

1/2[2 (n2 -— 3n + 4)l.

So, in order to get the validity of the relationship (3.1), the value of j must be such

that j_< j11(n ) or j_> j12(n). As j12(n) > n - 3 then, by restriction in (3.1), it must
be ignored. And since j1 1(n)_< n -— 3 fm n > 4, then we can establish that

5, = (3.2)

n1.s..eR-(.1:) <m..scR(:r)
for values of j in the interval (0, [j11(n)]] with n _>_ 4, where [j11(n)] is the greatest
integer minor or equal to 31 1(n). ,



4. Analysis of the m.s.e. estimates
Since the m.s.e. RJ-(x) and m.s.e. like) estimates are based, respectively, on the

statistics Su- and SQ, it also becomes necessary an analysis of those quantities.
We have, all the time, 324- 2 32. Thus:

(i) if 32,1- : 52 then, the requirement

A
u(sz'J-;n —j) 5 m.s.e.fi(z) ' (4.1)

that is,

(njjr(%?)u 5 63755735(%>h

or then

(Mini) 3 21'2 — 47114012 + 371 ~ 2) 2 0,

would bring to values of j satisfying j S j2,1(n) or j 2 j2,2(n) where

15,100 = n ~ 62 and 12,2(71) = n + 52
_

w'th _

'

l

52 ___
2 71.2 —- 3n + 2) ”2

,

(4.2)

Now, as we have j2'2(n) > n — 3 then it must be ignored and, in order to assure ,

that j2,1(n) 5 u — 3, we must have n 2 6. Furthermore, j2_1(n) > j1,1(n),Vn 2 O.

Thence, if szj—— 32, in order that the \alidity of both the (3.1) and (4.1) rela-
tions be established, the values of j must bein the interval [0, [j( n.,)]] with n > 6
where [j (n)]=— [11,1(n)]

.

~ 2 'if 32d >152 then, denoting (£8351)
a = q, the requirement (4.1) becomes

2(n — j)?
(n—nw—2)—q

Or then ,.



. . . 3
¢(n;];q) E 12 -— 27m — [cg—0112 — 5an + q] 2 0

The roots of that expressiOn are given by

j,(n; q) = n —- 5 and j2(n;q) = n + 5
where (43)

6 z |2(n"’—3n+2}qll/2

Here we also have j2(n;q) > n — 3 and, in order to make sure that j1(n;q) _<_
’

1/2
11 - 3, we must require n 2 3 + 1 + 72 q which, in extreme case when q = 1

results in n 2 6.

Consequently, when 320" > 32, the validity of (4.1) is verifyed for values of j in
the interval [0, [j(n;q)]] with n _>_ 6, where [j(n,q)] ‘=‘ [j1(n,q)].

Now, through a comparative analysis with the expressions j (n) and J (n; q), we
obtain

j(n) _<_ j(n;q) for 15 q S 77101), with n 2 6

and

j(n;q) S N?) for n1(n),s q S 11201) , with n 2 6

where

17101) = 1+w(fl-1)(n-'2)2112
(4.4)

77201): n—1(n—-2

Therefore, if 32‘1' > 32, the requirements (3.1) and (4.1) must be valid for values
of j in the interval [0, [j(n)]] when 1 S q S 171(n), and for values of j in the interval



[0, U(n,q)l] when 1M”) S q s n(n)-

5. Analysis of the results.

Considering the expression (4.3) we find that the quotient U(n,q)]/n is close
to 1 — fl when n has large values. When q = 1 (or s“- = 32), that is, when
you discard [j(n)] data of the sample and the minimum 52 is maintained, such
quotient remains around 0.29 for large values of n(n > 100). For the other val—

ues, straight forward calculi can be made. You will find an expressive reduction in
the size of the sample. Some examples will be found in Table (A) in the next page.

On the other hand, the expressions given in (4.4) assure that m(n) —» i(i = 1, 2)
as n gets bigger. This fact indicates that, for q > 1 and 17102) _<_ q 5 77201), the
values of, the minimum 32”- remain under control. Particularly for a _= 1.5 and for
large values of n, you will find ski/52 < 1.28. For small values of 11, Table (B)
that follows, shows possibilitiesbof reduction as well as it displays the domains of

q in each case,



TABLE

A B

n U(")] [1001/71 nz(n) Mn) domain of 9 £501.01 [j(n,q)]/n

6 1 0,1666 1.863 3.600 1863-2500 1 0,1666
2501-3600 0

10 2- 0,2000 1.393 2.777 1393-1777 2 0.2000
1778-2250 1 0.1000
2251-2777 0

20 5 0.2500 1.165 2.339 1.165-1.315 5 0.2500
» 1.316—1.497 4 0.2000

1.498-1.690 3 0.1500
'

1691-1394 2 0.1000
18952111 1 0.0500
2112-2339 0

30 8 0.2666 1.104 2.216 1104-1192 '8 0.2666
1193-1302 7 0.2333
1303-1418 6 0.2000
1419-1539 5 0.1666
1540-1665 4 0.1333
1666-1795 3 0.1000

, 1.796-1.931 2 0.0666
1932-2071 1 0.0333
2072-2216 0

“50 14 0.2800 1.060 2.125 1.060-1.102 14 0.2300
'

. 1.165-l.227 12 0.2400
1294-1360 10 0.2000
1430-1500 8 0.1600
1647-1721 5 0.1000

,
1300-1378 3 0.0600

- 2042-2125 0

100 29 0.2900 1.029 2.061 10291039 29 0.2900
1129-1159 25 0.2500
1237-1319 20 0.2000
1455-1489

_

15 0.1500
1.633-1.669 10 0.1000
1822-1860 5 0.0500
2021-2061 0 .

-
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