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Summary:

Estimating the fraction of population in an income bracket by using the Pareto Dis-
tribution, Shanmugam (1987) points out that a maximum likelihood (m.l) estimate is
clearly inefficient as compared to a minimum variance unbiased (m.v.u) estimate when
the income inequality parameter is known. In this note we define a family of m.v.u.
estimators which includes the estimator of Shanmugam and by comparing the precision
of this family and m.l. estimators we find a way to evaluate how much more efficient
the estimator proposed by Shanmugam is when compared to the m.l. estimator.

Keywords: Pareto Distribution, Survival Function, Maximum Likelihood - Minimum
Variance Unbiased Estimates, Reduced Random Sample, Mean Square Error.

1. Introduction

- Denoting by X the person’s income in a population, V]lfredo Pareto (1897) showed -
that, if
R(z) = P(X > 2) ‘ | (L.1)

theﬁ, at least for large values of z,

InR(z) & a(lnf - Inz) (1.2)

where a -and f are parameters, a being representative of distribution shape and known
as “constant of Pareto” and 8 meaning the minimum income.
A random variable .X is called a classrc Pareto type if its probability density function

(p.df.) is



af°®

f(x)"z_aﬁ’ 28>0, a>0 (1.3)

It is a known result that, if X1, X5,...,X, is a random sample from the density
(1.3), then S = min(X;, X3,...,X,) is a complete sufficient statistic for parameter ,

exhibiting the p.d.f.

naﬂna

g@wﬂ:;ﬁﬁ, $26>0 a>0 (14)

Furthermore, since S; is also the m.]. estimator of 8 then‘ the m.l. estimator of the
fraction R(z) when the parameter « is known is, due to the invariance property of the
m.]. principle, given by

- S o .
R(z) = (?’) (1.5)
The expectation, variance and mean square error of fZ(:c) obtained are ‘
Eéu)=nf1(§) | (1.6)
o n ﬂ 2a
VarR(z) = =2 =) (;) (1.7)
i 9 ﬂ 2a
m.s.e.R(z) = Ty (;) (1.8)

The m.l. principle provides as the m.l. estimators of those quantities, respectively,

-2 (2)

n—1\z

VarR(x). (n _ 2)(n —17 (52)

—_ 2 52 20
m.s.e.R(z) = (n=1)(n-2) (-;)
Among the (m.v.u.) estimates which have been proposed for R(z) in the espe-
cific case when a is the parameter known, the one established by Shanmugam from



Prob(X, > z/8,), is obtained by adopting an approach of transformation of random
- variables which brings out the estimator
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Although we agree with Shanmugam’s opinion that the m.. estimator has been
proved not so much efficient as compared to the estimator (1.9), we do believe that
further attention should be given to the result he achieved once his argumentation is
based on an analytic expression which is incorrect for the m.s.e. of the estimator as well
as it doesn’t clarify how much more efficient the proposed estimator is when compared
to the m.l. estimator. By reducing the sample and using the correct analytic expression,
we make it possible to establish a way of quantifying the Shanmugam’s result and reach
the conclusion that his estimator is more efficient than the m.]. estimator even in cases
when the size of the sample has been considerably reduced.

2. A class of estimators for R(z) when o is known.

Let X;,, X,,...,X;,_, the random sample resulting of one obtained from the density
(1.3) after j of its n components had been disregarded.
The statistic S, ; = min(X;,, Xy, ..., Xi,_;) is, like 5;, a complete sufficient statistic
for the parameter § having as p.d.f. the density g(sz;;n — j) given in accordance with
(1.4).
o Iz’laking use of the Rao Blackwell theorem, the (m.v.u) estimator for R(z), built on
S,;, is given by Prob(X; > z/S,;). Then, employing the Shanmugam approach, we
obtain as such estimator the expression N

Rj(m) = (n —J - 1) (Sz’j) , T>825, 0=Zj<n -2 (21)

n-—) z

The Vzgria,ncés of these estimators are obtained as follows:
' . S 2
~ -3-1 S2.:\°
VarR;(z) = (-’}——]———) Var (——2—’-)
n—j T

" As we have



Var (:5_‘:_])" = '[: [(s_:,_>° - (n i;i 1) ('5‘)0]29(82,]';71 -7) dsg.j

_ Tl“j _ﬂ_ 2¢ o
m=7-2m—7-1F \2 22)
then . .
e (rmi=1) (n - j) B\*
Varkj(z) ( n—j ) (n—j—2)(n—-j—l)2(;)
That is,
. _ 1 ﬂ 2a . . _
VarR;(z) = s T (;) , 0<j<n-3 (2.3)

Now, denoting by U(S, ;;n — j) the (m.v.u.) estimator of Var R;(z) and making
use of the expectation inversion technique, the expression for U(sz;;n — ) is obtained
as follows: ’

/m ) ) d ] ﬂ 20

u(sy;;n — - = . : L
[ uesgin = letensin = i¥dsss = i (£
" That is,

o (=g el =2
(S9.im — dsy ;=1
—/ﬁ u(52.1 n ]) sgr;—j)a+l (E)% $2,7
Or then

20 .
e . . T .
| /ﬁ u(sy33m — j)(n — 7)? (—-S ) g(s2jin—j—2)dsy; —1=0

2,3
Hence
- 0o T 2a
/ [u(sz,,-;n —-Jj)n -~ 7)? (—-—) - 1] g(se;m—j—2)dsy; =0
B 82,5 .
As we have

w(sazin — 3)(n - §)? (—‘”—) _1=0

S2,5
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then

) 1 S A\ 20
u(sz.,';n—y)=(n‘j),(;"), t>8;, 0<j<n-3  (24)

Note that the expression (2.3) and (2.4) which have been obtained improve those .
(3.5) and (3.7) exhibited in Shanmugam (1987) when j = 0.

3. Comparing the precision of m.v.u. and m.l. estimators.

In order to establish a comparison of the efficiencies of the (m.v.u.) and the (m.l.)
estimators, we examine the precision of each one which is given by the inverse of the
mean square error which is equal to the variance plus the square of the bias.

Since the m.s.e. of R;(z) is its variance, exhibited in (2.3), and the m.s.e. of ﬁ(\z) is
~ the one given in (1.8), we observe that, in order to have R ;i(z) more efficient than R(z),
we must have

1 2
. <
(n=j)n~-j=2) " (n-1)(n=2)"

0<j<n-3 (3.)
That is,
oi(n;7) =272 ~4(n-1)j+ (n*-n~-2)20, 0<j<n-3
A straightforward calculation shows that the roots of that polinomial expression are
jum)=(n-1)=& and  jip(n)=(n-1)+6

where

2 (n? — 3n + 4)]'/*
< 2 ,

So, in order to get the validity of the relationship (3.1), the value of j must be such
that j < ji11(n) or j > j12(n). As ji2(n) > n — 3 then, by restriction in (3.1), it must
be ignored. ‘And since j;,1(n) < n —3 for n > 4, then we can establish that

8 = (3.2)

m.s.e.R;(z) <mscR(:r)

for values of j in the interval [0, [j11(n)]] with n > 4, where [j;, 1(n)] is the greatest
integer minor or equal to j1,1(n). ,



4. Analysis of the m.s.e. estimates

Since the m.s.e. Rj(z) and m.s.e. R(z) estimates are based, respectively, on the
statistics Sz ; and S, it also becomes necessary an analysis of those quantities.
We have, all the time, s;; > s2. Thus:

(i) if s ; = s, then, the requirement

u(syj3n — j) < m.s.e.R(z) ' (4.1)
that is,
(3" < e )
(m=j32\z T (n-1)(n-2)\z
or then

0an;5) =252 —dnj+ (n® +3n-2) >0,
would bring to values of j satisfying j < ja1(n) or j 2 ja2(n) where
jaa(n)=n-~46é, and  j2(n)=n+6

with | | (4.2)
[2(n2~3n+2)]*
62 = 2

Now, as we have j,(n) > n—3 then it must be ignored and, in order to assure
‘that jy;(n) < n — 3, we must have n > 6. Furthermore, jz:(n) > j1,1(n),Vr > 0.

Thence, if s;; = s7, in order that the validity of both the (3.1) and (4.1) rela-

tions be established, the values of j must be in the interval [0, [7(n)]], with n > 6,
where [j(n)] = [71a(n)}- .

‘ N
(1) if sp; > s, then, denoting (%) - q, the requirement (4.1) becomes

2(n—j5)?
m-Dn-2) =7

or then



. . . 3
$(n; i) = 3> - 2nj - [(g - l) n’ — n + q] >0

The roots of that expression are given by

filn;g)=n—§& and  jy(n;q)=n+6

where (4.3)

6=

[2(n? - 3121 +2)q]'?

Here we also have j;(n;q) > n — 3 and, in order to make sure that j;(n;q) <

1/2
n — 3, we must require n > 3+(1 +272/q)

results in n > 6.

which, in extreme case when ¢ = 1

Consequently, when s;; > s, the validity of (4.1) is verifyed for values of j in
the interval [0, [j(n; ¢)]] with n > 6, where [j(n, )] = [5:1(n, ¢)).

Now, through a comparative analysis with the expressions j(n) and j(n;q), we
obtain

j(n) <j(n;q) for 1 <qg<my(n), with n>6

and

j(n;q) < j(n) for m(n),< ¢ < ma(n), with n>6
where

_ 4+42[2(n~1)(n~2)+4)'?
m(n) =1+ r=1)(n2)

o2 (4.4)

(") = G =2

Therefore, if s, ; > 9, the requirements (3.1) and (4.1) must be valid for values
of j in the interval [0, [j(n)]] when 1 < ¢ < m1(n), and for values of j in the interval



[0, [(n, g)]] when m(n) < ¢ < 72(n).

5. Analysis of the results.

Considering the expression (4.3) we find that the quotient [j(n,q)]/n is close
tol - \/g when n has large values. When ¢ = 1 (or s;; = s;), that is, when
you discard [j(n)] data of the sample and the minimum s; is maintained, such
quotient remains around 0.29 for large values of n(n > 100). For the other val-
ues, straight forward calculi can be made. You will find an expressive reduction in
the size of the sample. Some examples will be found in Table (A) in the next page.

On the other hand, the expressions given in (4.4) assure that n;(n) — (i = 1,2)
as n gets bigger. This fact indicates that, for ¢ > 1 and 71(n) < ¢ < 2(n), the
values of the minimum s, ; remain under control. Particularly for « = 1.5 and for
large values of n, you will find s;;/s; < 1.28. For small values of n, Table (B)
that follows, shows possibilities of reduction as well as it displays the domains of
g in each case.



TABLE

A B
n | [i(n)] | G(»)}/n | m(n) | n2(n) | domain of ¢ | [i(n,q)) | [i(n,q)l/n
6 1 0,1666 | 1.863 { 3.600 | 1.863-2.500 1 0,1666
2.501-3.600 0
10 2 | 02000 | 1.393 | 2.777 | 1.393-1.777 2 0.2000
1.778-2.250 1 0.1000
2.251-2.777 0
20 5 0.2500 1 1.165 | 2.339 | 1.165-1.315 5 0.2500
’ 1.316-1.497 4 0.2000
1.498-1.690 3 0.1500
1.691-1.894 2 0.1000
1.895-2.111 1 0.0500
2.112-2.339 0
30 8 0.2666 | 1.104 | 2.216 | 1.104-1.192 8 0.2666
1.193-1.302 7 0.2333
1.303-1.418 6 0.2000
1.419-1.539 5 0.1666
1.540-1.665 4 0.1333
1.666-1.795 3 0.1000
1.796-1.931 2 0.0666
1.932-2.071 1 0.0333
2.072-2.216 0
|50 14 | 0.2800 | 1.060 | 2.125 | 1.060-1.102 14 0.2800
e 1.165-1.227 12 0.2400
1.294-1.360 10 0.2000
1.430-1.500 8 0.1600
1.647-1.721 5 0.1000
| 1.800-1.878 3 0.0600
©2.042-2.125 0
100 | 29 | 02000 {1.029|2061 | 1.029-1.039 | 29 0.2900
1.129-1.159 25 0.2500
1.287-1.319 20 0.2000
14551489 | 15 0.1500
1.633-1.669 10 0.1000
1.822-1.860 5 0.0500
2.021-2.061 0 - ‘
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