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Abstract. Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit
of a great many research domains. By mimicking processes in nature and animal societies, these general-
purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information
on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired
algorithm — the imitative learning search — as well as of asexual and sexual variants of evolutionary algo-
rithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total
number of agent updates required by the algorithms to find those global maxima and the baseline per-
formance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in
which the agents explore the problem space (binary strings) by flipping bits at random. We find that even
for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much
better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is
immune to this effect thanks to the deterministic choice of the fittest string in the population, which is
used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is
more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged
landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative
algorithms regardless of whether the task is to find the global maximum or to find the fittest state within

a given runtime.

1 Introduction

Today’s web-enabled collective intelligence enterprises
such as Google and Wikipedia [1] are outstanding imple-
mentations of the familiar notion that the solution of
important real-world problems is beyond the capability of
any single individual and requires the cooperative effort of
many individuals. In fact, the benefits of cooperative work
to tackle problems that endanger survival have long been
explored by nature [2] and nature’s diverse strategies have,
in turn, been developed into a variety of general-purpose
optimization algorithms [3,4].

Perhaps, the first and most popular of these bio-inspired
algorithms are the evolutionary algorithms [5] that rely on
the well-known biological processes of mutation, selection
and recombination to drive a population towards global
or near-global maxima of abstract fitness landscapes. In
this line, there are also the more recent and less known
cultural-inspired algorithms [6,7], where social learning
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(imitation) replaces the biological processes of selection
and recombination [8,9].

Both the evolutionary and the cultural algorithms are
examples of parallel or distributed cooperative problem-
solving systems [10,11] in which a number of equivalent
agents seek to solve the same problem and the activi-
ties of a particular agent offer insight to others about the
configuration of the problem space [12]. This is typically
achieved through the exchange of information among the
agents about their partial success (i.e., their states and
their fitness at the current trial) towards the completion
of the task.

Here we study the performances of the cultural-inspired
imitative learning search [7,13] and of evolutionary algo-
rithms [14,15] for the problem of finding the global
maxima of NK-fitness landscapes [16]. The main advan-
tage of using this problem is the possibility of tuning the
ruggedness of the landscape, which is roughly determined
by the number of local maxima. In addition, the imple-
mentations of the cultural and evolutionary algorithms to
explore the landscape are straightforward since the state
space of the NK-fitness landscapes are binary strings of
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length N. (Hence, in this paper we will use the terms agent
and string interchangeably.) We take the blind search,
in which the agents simply flip bits at random indepen-
dently of each other, as a baseline to gauge the efficiency
of the cooperative search algorithms. Although our main
measure of performance is the number of agent updates
required to find the global maxima, which is essentially
the computational cost of the search, we considered also
other measures such as the probability of finding the
global maximum and the fittest string found for a fixed
runtime.

The cooperative search algorithms we consider here
have only two tunable parameters, viz., the population
size M and the bitwise mutation probability u. In par-
ticular, in the imitative learning (IL) search the agents
imitate the model agent — the fittest agent in the popu-
lation at the generation — by copying one of its bits. The
resulting string then goes through the mutation process
where each bit is flipped with probability u. We consider
two variants of the evolutionary algorithms, namely, the
asexual variant (AGA) that accounts for mutation and
selection, and the sexual variant (SGA) that accounts for
recombination as well. The blind search corresponds to
the choice u = 1/2 in any of these algorithms.

Surprisingly, we find that for simple problems in which
the fitness landscapes are smooth and exhibit a single
maximum, the evolutionary algorithms do not perform
much better than the blind search. This is probably
because the genetic roulette is not effective to select the
fittest agent in the case the agents have similar fitness
values. The genetic drift effect becomes stronger as the
population size decreases and for small sizes the evolu-
tionary algorithms typically perform worse than the blind
search. This finding exposes the pitfall of general-purpose
optimization algorithms that use little or no information
regarding the optimization problem they are set to solve.

The IL search is immune to genetic drift because the
model agent is always chosen as the fittest string in the
population. The tradeoff is that IL is strongly affected by
the trapping effects of the local maxima in rugged land-
scapes, so it performs much worse than the blind search
in the case of low mutation probability or large popula-
tion size. Nevertheless, tuning M and u independently for
the three cooperative search algorithms indicates that IL
is either superior or equivalent to the evolutionary algo-
rithms for rugged landscapes. In addition, we find that
already for mildly rugged landscapes, the blind search
either outperforms or matches the cooperative algorithms.
These conclusions holds true even when the task of the
search algorithms is to find the fittest state within a rel-
atively short runtime so that the chances of reaching the
global maximum are negligible.

The rest of this paper is organized as follows. Section 2
presents the NK model of rugged fitness landscapes and
Section 3 describes the three cooperative search algo-
rithms, as well as the blind search, and introduces our
definition of computational cost. Section 4 offers a com-
parison and discussion of the performances of the search
algorithms on smooth and rugged fitness landscapes.
Section 5 summarizes our main findings and offers our
concluding remarks.
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2 NK-fitness landscapes

The NK model [16] is the choice computational implemen-
tation of fitness landscapes that has been extensively used
to study optimization problems in theoretical immunol-
ogy, population genetics, developmental biology and pro-
tein folding [17]. Although the NK model was widely used
to study adaptive evolution as walks on rugged fitness
landscapes, its repute went way beyond the (theoretical)
biology realm. In fact, today the NK model is considered
a paradigm for problem representation in management
research [12,18,19], as it allows the manipulation of the dif-
ficulty of the problems and challenges posed to individuals
and companies.

More pointedly, the NK model is defined in the space
of binary strings of length N and so the parameter N
determines the size of the state space, 2. The other
parameter K = 0,..., N — 1 determines the range of the
epistatic interactions among the bits of the binary string
and influences strongly the number of local maxima on the
landscape. We recall that two bits are said to be epistatic
whenever the combined effects of their contributions to the
fitness of the binary string are not merely additive. In par-
ticular, for K = 0 the smooth and additive landscape has
one single maximum whereas for K = N — 1, the (uncorre-
lated) landscape has on the average 2%V /(N + 1) maxima
with respect to single bit flips [20]. Since the 2V binary
strings can be arranged in a N-dimensional hypercube, we
can say that IV is the dimensionality of the landscape.

In the NK model, each string x = (z1,za, ..., zy) with
z; = 0,1 has a fitness value ® (x) that is given by the
average of the contributions of each component ¢ in the
string, i.e.,

N
()= D00, (1

where ¢; is the contribution of component 4 to the fitness
of string x. It is assumed that ¢; depends on the state
x; as well as on the states of the K right neighbors of i,
ie., ¢; = ¢; (Ti, Tit1,- .., Titx) With the arithmetic in the
subscripts done modulo N. Hence K measures the degree
of interaction (epistasis) among the components of the bit
string. Here we assume, in addition, that the functions
¢; with ¢ = 1,..., N are distinct real-valued functions
on {0, 1}K+1 and, as usual, we assign to each ¢; a uni-
formly distributed random number in the unit interval
[16]. Because of the randomness of ¢;, we can guarantee
that ® € (0,1) has a unique global maximum and that
different strings have different fitness values.

There are many variants of the NK-model character-
ized by different interaction structures, i.e., different ways
of choosing the K interaction partners of a site (see [21]
for a recent review). Here we consider the adjacent neigh-
borhood variant only, which is one of Kauffman’s original
choices. Whereas in many cases different interaction struc-
tures give rise to similar behavior, they affect the compu-
tational complexity, and hence the efficiency of searches,
in a nontrivial way [22]. In particular, for the adjacent
neighborhood variant there is a dynamic programming
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algorithm that is polynomial in N and exponential in K.
For the random version, where the K interaction partners
are chosen randomly, the optimization of the NK-fitness
landscapes for K > 2 is NP-complete [22], which means
that the time required to solve some particular instances
of the problem using any currently known deterministic
algorithm increases exponentially fast with the length N
of the strings [23].

As pointed out, for K = 0 there are no local maxima
and the sole maximum of ® is easily located by picking
for each component i the state x; = 0 if ¢; (0) > ¢; (1)
or the state x; = 1, otherwise. Increase of the parameter
K from 0 to N — 1 results in the decrease of the correla-
tion between the fitness of neighboring strings (i.e., strings
that differ at a single component) in the state space.
For K = N — 1, those fitness values are uncorrelated
so the NK model reduces to the house-of-cards land-
scape [20,24]. The simplest way to see this is to consider
two neighboring configurations, say x* = (0,0, ...,0) and
x? = (1,0,...,0), and calculate explicitly the correlation
between their fitness. This procedure yields

corr (@ (x*),® (xb)) =1- v (2)

indicating thus that the increase of the dimensionality of
the landscape N while the epistasis parameter K is kept
fixed produces nearly flat fitness landscapes.

We note that since the functions ¢; are random, the
ruggedness measures (e.g., the number of local maxima) of
a particular realization of a NK landscape is not uniquely
determined by the parameters N and K. In fact, the
number of local maxima can vary considerably between
landscapes characterized by the same values of N and
K > 0 [16], which implies that the performance of any
search algorithm based on the local correlations of the fit-
ness landscape will depend on the particular realization of
the landscape. Therefore, in order to produce a meaningful
comparison between the search algorithms we must guar-
antee that they survey the same landscapes. To achieve
that we generate and store a set of 100 landscape realiza-
tions for each value of N and K, which are then used to
test the parallel search algorithms.

3 Parallel search algorithms

Here we describe the three cooperative parallel search
algorithms we use to explore the NK-fitness landscapes,
namely, the imitative learning (IL) search, the asexual
genetic algorithm (AGA) and the sexual genetic algo-
rithm (SGA). In order to render possible a fair comparison
between these algorithms we implement a slight variant of
the IL: instead of considering mutation and imitation as
two independent processes as in the original version [7,13],
here we tie these two processes together so that muta-
tion takes place after imitation, thus mimicking the usual
evolutionary view of mutations as copy errors. For the
sake of completeness, we present also the blind indepen-
dent search where the agents explore the fitness landscape
flipping bits at random.
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We consider a well-mixed population of M agents or
binary strings of length IV that explore the state space
of an NK-fitness landscape searching for its unique global
maximum. Initially, all binary strings are drawn at ran-
dom with equal probability for the digits 0 and 1. The
M agents are updated synchronously following the rules
of the specific search algorithm and the search is halted
when one of the agents finds the global maximum. We
denote by t* the time when this happens.

3.1 Imitative learning (IL)

In the imitative learning search, the synchronous update
of the M agents proceeds as follows. At time ¢ we first
determine the model agent (i.e., the fittest agent in the
population) and then we repeat the following update rule
M times before incrementing the time to ¢ + 1.

The update rule consists of selecting a string at random
with uniform probability (the target string) which will
then imitate the model string. More pointedly, the model
string and the target string are compared and the different
bits are singled out. Then one of the distinct bits in the
target string is selected at random and flipped so that
this bit is now the same in both strings. This imitation
procedure is inspired by the mechanism used to model the
influence of external media [25-27] in the celebrated agent-
based model proposed by Axelrod to study the process
of culture dissemination [28]. After imitation the target
string goes through the mutation process: each of its IV
bits is flipped with probability u so that the mean number
of flipped bits is Nu. This is the usual mutation operation
of the evolutionary algorithms. The resulting string is then
passed to the next generation.

As expected, imitation results in the increase of the sim-
ilarity between the target and the model strings, which
may not necessarily lead to an increase of the fitness of the
target string. If the target string is identical to the model
string, which is not an uncommon situation since the imi-
tation process reduces the diversity of the population, then
imitation does not occur and the target string changes due
to mutation only. This means that for u = 0 the popula-
tion rapidly becomes isogenic and the search for the global
maximum is very likely to fail. We note that a same string
may be chosen as target string more than once and, more
importantly, that there is no guarantee that the model
string will pass to the new generation, as opposed to the
elitist selection strategy of some evolutionary algorithms
[15].

3.2 Asexual genetic algorithm (AGA)

In the context of evolutionary algorithms, the parallel
update of the agents amounts to the usual assumption of
non-overlapping generations in which the offspring replace
the parental population in a single time step. Accord-
ingly, at time t we repeat the following update procedure
M times and then increment the time from ¢ to ¢ + 1.
As usual in evolutionary algorithms, the two operations —
replication and mutation — are applied sequentially [15].
Explicitly, we select a string with probability proportional
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to its fitness and then subject it to the mutation opera-
tion described before. The resulting string is then passed
to the next generation. We note that the same string may
be chosen more than once and that new strings are pro-
duced by the mutation operation only. The inefficiency
of AGA to generate and maintain string diversity is the
culprit for its poor performance reported in this paper.

3.3 Sexual genetic algorithm (SGA)

In this case the two operations that comprise the update
rule are reproduction and mutation. Reproduction con-
sists in selecting two strings (parents) without replace-
ment and with probability proportional to their fitness.
The single offspring of each mating is generated by apply-
ing the one point crossover operation: we pick one point
1 <n < N -1 at random from each of parents’ strings
to form one offspring string by taking all bits from the
first parent up to the crossover point n, and all bits from
the second parent beyond the crossover point. Thus the
offspring will always be a recombinant string. Next, the
offspring is put through the mutation process as before
and then passed to the next generation. This update pro-
cedure is repeated M times before incrementing the time
variable by one unit. As in the previous algorithms, the
same string can be selected more than once as a parent
in the reproduction process. In the SGA, string diver-
sity is generated both by the mutation and the crossover
operations.

We use the word reproduction rather than replication
in the SGA because the offspring may be different from
their parents (it is equal in the case the parents are clones)
in contrast to the AGA where, except for the bits flipped
in the mutation operation, the offspring is always a clone
of the parent.

3.4 Blind search (BS)

In the blind search the agents flip bits at random (i.e., u =
1/2) and so the ruggedness of the landscape has no effect
whatsoever on their chances to find the global maximum,
which depends only on the length of the strings N and
on the population size M. Since the agents explore the
fitness landscape independently of each other, the halting
time of the search is given by

t* = min (¢7,...,ty), (3)
where t7, i = 1,..., M, are identically distributed inde-

pendent random variables distributed by the geometric
distribution

Fun =p—p-i. (4)

Here p = 1/2% is the success probability. (We recall that
a NK-fitness landscape has a unique global maximum.)
The probability distribution of the halting time t* is
also a geometric distribution [29] with success probability
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~ Mpexp (—Mpt*), (6)

where in the last step we have assumed that the system
size is much smaller than the size of the state space, i.e.,
Mp < 1. The mean time to find the global maximum is
then

o 1
) = (7)
1

Mp’

Q

where, as before, the last step assumes that Mp < 1. It is
also of interest to know the probability that the population
of M agents finds the global maximum before or at time
t, which is given by

T (6) =D Pu () =1—(1—p)"". (8)

tr=1
3.5 Computational cost

We measure the computational cost of a search by the
total number of string updates performed by the algo-
rithms until they find the global maximum of the NK-
fitness landscape. Hence we ignore the complexity of the
update procedures which may greatly impact the actual
running time of the algorithms in a computer. Needless to
say, this performance measure is very unfavorable to the
blind search, which has the simplest and fastest update
rule. Of course, the total number of updates is simply Mt*
where t* is the halting time of the algorithm. Since t* is
typically on the order of 2V and in order to compare per-
formances for landscapes of different dimensionality, we
choose to define the computational cost C of a search as

C = Mt*/2V. 9)

This quantity must be averaged over many searches in
a same landscape and the result then averaged over an
ensemble of landscapes with the same parameters N and
K.

For the blind search, the mean computational cost is
simply

Mp

C:—v
© 1-1-p)

(10)

where the notation (...) stands for the average over
independent searches on the same landscape. Since all
landscapes with fixed N and a single global maximum
are equivalent from the perspective of the blind search,
there is no need to average over different landscapes in
equation (10). In particular, for Mp < 1 we have (C) ~ 1
and for Mp > 1 we have (C) ~ M/2N. The first and
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more realistic regime is characterized by a mean compu-
tational cost that is independent of the population size
M and corresponds to the case that the halting time ¢*
decreases linearly with increasing M. The second regime,
where (C) increases linearly with M, corresponds to the
situation t* = 1, i.e., the population size is so large that
the global maximum is likely to be found already during
the assemblage of the initial population.

4 Results

As pointed out, the performances of the cooperative search
algorithms are measured by the mean computational cost
(C), which is estimated by averaging the computational
cost defined in equation (9) over 10% searches on the
same landscape realization. The resulting average cost is
then further averaged over the set of 100 landscape real-
izations with the same values of the parameters N and
K. Whereas the results for the cooperative search algo-
rithms are obtained via simulations, the results for the
blind search are given by the exact analytical expressions
derived before, unless otherwise stated.

4.1 Smooth landscapes

Regardless of the dimensionality N, the NK-fitness land-
scape with K = 0 exhibits a single maximum. Hence, in
principle, finding this maximum should be a very easy
task to powerful search algorithms such as AGA and SGA.
Somewhat surprisingly, this is not the case, as we will see
next.

Figure 1 summarizes the performances of the three
cooperative search algorithms, viz. IL search, AGA and
SGA, as well as of the blind search, for smooth landscapes
with fixed dimensionality N = 12. The performance of the
blind search is used as a baseline to determine the use-
fulness of the cooperative algorithms. This figure reveals
a few surprising results. Although the poor performance
of the evolutionary algorithms for small population sizes
was somewhat expected since the genetic drift (i.e., the
stochastic effects due to the finitude of the population)
overwhelms the selective pressure towards fitter strings, it
comes as a surprise that those algorithms perform much
worse than the blind search for small u. (The AGA does
not appear in panel A of Figure 1 because its mean
computational cost is greater than 2 for all M.) The IL
search does not suffer from the drift effect since it always
picks the fittest string to imitate, i.e., this choice is not
probabilistic as in the evolutionary algorithms. All the
cooperative search algorithms considered exhibit an opti-
mum population size that minimizes the computational
cost of the search. This is due to the duplication of work
(i.e., the presence of multiple copies of a same string) that
occurs for large M and reduces the efficiency of the search.

We note that for low dimensional landscapes the per-
formances of the three cooperative search algorithms are
not remarkably better than the baseline set by the blind
search. More explicitly, by fine tuning the parameters M
and u, the IL search yields a computational cost that
is about 20 times lower than the baseline, whereas the
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Fig. 1. Mean computational cost (C) as function of the
population size M for smooth (K = 0) landscapes with dimen-
sionality N = 12. The bitwise mutation probability is u =
0.001 (panel A), uw = 0.01 (panel B), u = 0.1 (panel C), and
u = 0.2 (panel D). The dashed curve is the analytical predic-
tion for the blind search, equation (10), and the symbols are
the simulation results for the imitative learning (IL) search,
the asexual (AGA) and the sexual (SGA) genetic algorithms
as indicated.
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Fig. 2. Mean computational cost (C) as function of the mean
number of mutations per string uN for smooth (K = 0) land-
scapes with dimensionality N = 12 (panel A), N = 15 (panel
B), N = 18 (panel C) and N = 21 (panel D). The popula-
tion size is M = 10. The dashed straight lines indicate the
performance of the blind search and the symbols are the simu-
lation results for the imitative learning (IL) search, the asexual
(AGA) and the sexual (SGA) genetic algorithms as indicated.

SGA and AGA result in a twofold improvement over the
baseline only. For purpose of comparison, we note that
a greedy heuristics starting from a random string yields
(C) = N/2N*1 2 0.0015 for N = 12 that is about 750
times lower than the baseline.
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Fig. 3. Scaling of the mean halting time (¢*) with the (smooth)
landscape dimensionality N for the imitative learning (IL)
search (panel A) and for the asexual (AGA) and the sex-
ual (SGA) genetic algorithms (panel B) as indicated. The
solid curve fitting the results of the IL search is the func-
tion alN + bN In N with a = —2.30 and b = 1.49. The dashed
curves are the analytical prediction for the blind search (BS),
equation (7). The mean number of mutations per string is
uN = 0.01 and the population size is M = 100.

Figure 2 shows that the performance of the evolutionary
algorithms scales very poorly with increasing dimension-
ality IV, whereas the computational cost of the IL search
decreases exponentially with increasing IV, similarly to the
greedy heuristics. In addition, this figure reveals that for
each cooperative search algorithm there is a mean number
of mutations per string u/N that minimizes the computa-
tional cost for fixed population size M. This is expected
since for ulN = N/2, the performances of the cooperative
search algorithms are identical to the baseline by construc-
tion, whereas for uN — 0 they may not find the solution
for some initial population settings, thus leading to the
divergence of the mean computational cost.

In order to better quantify the effect of the landscape
dimensionality on the performance of the algorithms,
Figure 3 shows how the mean halting time (¢*) scales with
N. For the IL search we find that (¢t*) < NInN simi-
larly to the findings for the random adaptive walk [30,31],
whereas for the evolutionary algorithms our results are
inconclusive due to the limited range of values of N
considered. However, our guess is that (t*) increases expo-
nentially with increasing N for those algorithms as we will
argue below.

The main reason for the superior performance of the
IL over the evolutionary algorithms in finding the single
maximum of NK landscapes with K = 0, especially for
high-dimensional landscapes, is that the genetic roulette
is very inefficient to pick up the fittest string in a sit-
uation where the strings exhibit similar fitness values. In
fact, for large N, the fitness difference between states that
differ by a few bits is vanishingly small so the evolutionary
algorithms are essentially exploring a nearly flat land-
scape, hence our conjecture that their mean halting times
increase exponentially with the landscape dimensionality.
A similar result appears in the context of probabilistic
adaptive walks, where it has been found that the selection
strength must grow logarithmically with N in order that
the walker reaches the fitness maximum efficiently. Other-
wise, the walker cannot efficiently find the maximum, as
the time required to reach it becomes exponential in N
with overwhelming probability [32]. We stress, however,
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that the evolutionary algorithms perform similarly to or
poorer than the blind search for small N only. For large
N, they greatly outperform the blind search even though
(t*) seems to grow exponentially with N (see Fig. 3). In
the Appendix we show that these conclusions hold true
for the Ising model of ferromagnetism as well. In partic-
ular, for the non-interacting version, where the landscape
exhibits a single maximum, we find the same results as
those described here for K = 0. For the ferromagnetic
version, where the landscape exhibits two degenerate max-
ima, we find that all the cooperative search algorithms
considered seem to be exponential in N.

In contrast to the evolutionary algorithms, the imita-
tive learning search always selects the fittest string as the
model string, since its selection criterion uses the fitness
rank rather than the relative fitness. This is, of course, a
huge leverage for smooth landscapes, as shown in Figures 2
and 3, because the fitness value is a reliable indicator of
proximity to the global maximum in this case. Next we
will see whether this leverage holds for rugged landscapes
as well.

4.2 Rugged landscapes

Figure 4 exhibits the performances of the search algo-
rithms for landscapes of fixed dimensionality N = 12 and
increasing ruggedness, as determined by the increasing
values of the epistasis parameter K = 1,3,5,9. These
results reveal a distinctive characteristic of the IL search
on rugged landscapes, namely, the appearance of a peak
on the computational cost for large population sizes [7,13].
In contrast, increase of the ruggedness of the fitness
landscape does not produce qualitative changes on the
dependence of the computational cost on the parameters
M and wu for the evolutionary algorithms.

The poor performance of the IL search for large pop-
ulation sizes is akin to the groupthink phenomenon of
social psychology [33], which occur when everyone in a
group starts thinking alike as the result of people putting
unlimited faith in a leader (the model agent in our sce-
nario). In the IL search, this phenomenon is due to the
rapid loss of diversity of the population that occurs when
the model string is a high fitness local maximum and
the imitation process starts to produce too many clones
of that string. (This explains why this effect does not
appear for small M.) This extreme susceptibility to the
presence of local maxima is the price that the IL search
pays for its good performance on smooth landscapes. The
groupthink-like phenomenon can be circumvented by lim-
iting the influence of the model agent using, for instance,
low connectivity networks [34] or by allowing the agents
to move randomly in an two-dimensional space [35]. It
is curious to note that a similar performance degrada-
tion was reported in models of Parkinson’s law that show
the lessening of bureaucratic efficiency when the size of
administrative staff exceeds a certain number [36].

As expected, the performances of the cooperative search
algorithms degrade gradually as the landscapes become
more rugged. In fact, since the state space size is fixed
in Figure 4, the density of local maxima increases with
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Fig. 4. Mean computational cost (C) as function of the popu-
lation size M for rugged landscapes with fixed dimensionality
N = 12 and epistasis parameter K = 1 (panel A), K = 3
(panel B), K =5 (panel C) and K = 9 (panel D). The dashed
curve is the analytical prediction for the blind search, equation
(10), and the symbols are the simulation results for the imi-
tative learning (IL) search, the asexual (AGA) and the sexual
(SGA) genetic algorithms as indicated. The bitwise probability
of mutation is u = 0.1.

increasing K. It is interesting that for the rugged land-
scapes with N = 12 and K = 9 (panel D of Fig. 4),
for which the fitness correlation between neighboring
strings is 1/6, the blind search equals or outperforms the
cooperative search algorithms for all population sizes.

Figure 5 shows the performances of the search algo-
rithms when the parameters N and K increase such that
the correlation between the fitness of neighboring strings,
equation (2), is kept fixed to 2/3. The results lay bare
the reliance of the cooperative search algorithms on the
mutation operation to produce diversity at the bit level
and that the IL search is much more susceptible to lose
diversity at that level and to get trapped in the local max-
ima. We recall that if all strings exhibit the same bit at a
given position then, in the absence of mutations, this bit
will be fixed in the population since neither the crossover
nor the imitation operation can flip it. This is a major
hurdle if the fixed bit is not the correct one, i.e, the cor-
responding bit in the global maximum, as indicated by
the divergence of the computational cost as u — 0 for all
three cooperative algorithms.

Another interesting result exhibited in Figure 5 is that
the task seems to become easier as the dimensionality
of the landscape increases. This is so because the den-
sity of local maxima actually decreases as both N and
K increase such that the ratio (K + 1)/N is kept con-
stant. For example, for the ensemble of 100 landscapes
with N =12 and K = 3 we find that the mean number
of maxima is 27.18 and the density of maxima is 0.007,
whereas for the landscapes with NV = 21 and K = 6 the
mean number of maxima is 3074.52, which corresponds
to a density of 0.001 maxima per state. In fact, in the
limits of large K and N such that the ratio « = K/N is
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Fig. 5. Mean computational cost (C) as function of the mean
number of mutations per string uN for rugged landscapes with
parameters N = 12, K = 3 (panel A), N = 15, K = 4 (panel
B), N =18, K =5 (panel C) and N = 21, K = 6 (panel D).
The population size is M = 10. The dashed straight lines indi-
cate the performance of the blind search and the symbols are
the simulation results for the imitative learning (IL) search,
the asexual (AGA) and the sexual (SGA) genetic algorithms
as indicated.

fixed, the probability that a random string is a local max-
imum can be analytically shown to decay algebraically as
N~/ [21], so that the density of local maxima must van-
ish for large N. This means that, as NV and K increase,
the number of paths (i.e., learning trajectories) leading
to the global maximum that circumvent the local max-
ima increases very fast [37], explaining thus the qualitative
similarity of the performances of the algorithms illustrated
in Figure 5 for rugged landscapes to those in Figure 2 for
smooth landscapes. In this line, it is interesting to note
that the local maxima of the NK-fitness landscapes are
strongly clustered in the state space [38].

One may argue that since in real-world problems the
state space is very large, the odds that a general-purpose
search algorithm reaches the optimal solution in all runs
within a feasible runtime are negligible for NP-complete
problems. Hence, since it is impractical to estimate the
mean halting time (t*) for problems with a very large state
space, the computational costs exhibited in, say, Figure 4
may not be indicative of the performance of the coopera-
tive search algorithms in the real-world scenario where the
duration of the search is limited a priori. We can partially
assess the significance of this claim by estimating the frac-
tion of runs for which the global maximum is found when
the duration of the search is fixed to . In the case of the
blind search, this fraction is nothing but the probability
mp(t) that the population of M agents finds the global
maximum before or at time ¢ given in equation (5).

Accordingly, Figure 6 shows m(t) for the challenging
case exhibited in panel D of Figure 4 where the blind
search either matches or outperforms all three cooperative
search algorithms. The results indicate that this outcome
holds true for searches of limited duration as well. We note
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Fig. 6. Fraction of runs for which the global maximum is found
before or at time t for the imitative learning (IL) search, the
asexual (AGA) and the sexual (SGA) genetic algorithms as
indicated. The dashed curve is the analytical prediction for the
blind search, equation (8). The bitwise mutation probability
is w = 0.1 and the population size is M = 10 (panel A) and
M = 200 (panel B). The curves for the IL search and SGA
are indistinguishable in panel A. The parameters of the NK-
fitness landscapes are N = 12, K = 9 so that the mean number
of mutations per string is ulN = 1.2.

that, similarly to the observed in the study of searches of
unrestricted duration, the short-time performance of the
IL search is strongly dependent on the population size
whereas the evolutionary algorithms are little influenced
by this parameter.

In a similar vein, an argument that is usually put forth
in support of general-purpose optimization algorithms is
that they excel at finding solutions that are ‘sufficiently
good’ for practical purposes within realistic runtimes. In
this line of reasoning, finding optimal or near-optimal
solutions were never the intent of the bio and cultural
inspired algorithms. This is a fair point, though we think
it is instructive, to say the least, to learn how those algo-
rithms fare when their task is to find the optimal solution,
as done in this paper. However, we can easily check the
validity of this argument by measuring the expected value
of the fittest solution found by the algorithms up to time
t, which we denote by ®,.«(t). More pointedly, for a fixed
landscape we run 10° searches and record the fittest solu-
tion found up to time t for each run. Then we average over
these fitness values to obtain ®,,x(t) for a fixed landscape.
Since we also need to average this result over different
landscapes, we consider a more appropriate, landscape-
independent measure given by the ratio ®max/Pgiobal < 1,
where ®gioba1 is the fitness of the global maximum.

Accordingly, Figure 7 shows the ratio ®max/®global for
the challenging rugged landscapes of panel D of Figure 4.
We note that, in this case, the results for the blind search
were obtained by simulations as the analytical results of
Section 3.4 deal with the distributions of the absorbing
times only. These illuminating results show no evidence
that the cooperative algorithms are more effective than
the blind search in finding good solutions in searches of
short duration. In fact, the very same conclusions hold
true when the task changes from finding the global max-
imum in the minimum runtime to finding high fitness
states within a fixed runtime. Since for large M there
is a good chance of finding high fitness states already
during the assemblage of the initial population, we have
D1,ax(0)/Pgiobal — 1 as M increases, which explains the

Eur. Phys. J. B (2020) 93: 140

1.00
A B
. 0.95
g
S
S
= 0.90 1
S — AGA
13
< i — SGA
0.85 .
— BS
0.80 . ; . ; . .
10° 10! 102 103  10*10° 10! 102 103  10%

t t

Fig. 7. Ratio between the fittest state found up to time ¢,
P ax, and the global optimum fitness, ®giobal, for the imitative
learning (IL) search, the blind search (BS), the asexual (AGA)
and the sexual (SGA) genetic algorithms as indicated. The
bitwise mutation probability is © = 0.1 and the population
size is M = 10 (panel A) and M = 200 (panel B). The curves
for the IL search and SGA are indistinguishable in panel A,
whereas the curves for the BS and SGA are indistinguishable
in panel B. The parameters of the NK-fitness landscapes are
N = 12, K = 9 so that the mean number of mutations per
string is ulN = 1.2.

great difference in the ranges of variation of the ratio
D rnax/Pgiobal between the two panels of Figure 7. There-
fore our results support the (actually) conservative stance
that the algorithms that reach the global maxima more
rapidly are also more likely to visit the fittest states within
a fixed runtime.

5 Conclusion

The imitative learning (IL) search was introduced orig-
inally as a model to study quantitatively the potential
of imitation as the underlying mechanism — the critical
connector — of collective brains [7,13]. A natural baseline
to assess that potential is a scenario where the agents
explore the problem space independently of each other,
performing a sort of blind search on that space. The
finding that IL search performs much worse than the base-
line for certain values of the control parameters and the
apparent similarities between the IL and the popular evo-
lutionary algorithms gave rise to the question of whether
similar negative results could hold for those algorithms
as well. The aim of this paper is to address this issue by
challenging the cultural and biologically inspired cooper-
ative search algorithms to beat the blind search in the
task of finding the unique global maximum of NK-fitness
landscapes [16].

In addition to the IL search, we consider two evolution-
ary algorithms, viz., the asexual (AGA) and the sexual
(SGA) genetic algorithms. The difference between them is
that the former lacks the crossover mechanism to generate
diversity in the string population. The main performance
measure considered here is the total number of agent
updates required by the algorithms to find the global max-
imum of the fitness landscape. Our conclusion is that the
cooperative search algorithms are only marginally supe-
rior to the blind search in the exploration of rugged
NK-fitness landscapes. Moreover, the evolutionary algo-
rithms do not exhibit the catastrophic performance of the
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imitative learning search that is observed for certain pop-
ulation sizes and that has been likened to the groupthink
phenomenon of social psychology [33].

Within a genetic perspective, the model string in the
IL search may be thought of as a mandatory parent in all
mates at a given generation, which contributes a single bit
to the offspring. In the absence of mutations, this offspring
is identical to the other parent, namely, the randomly cho-
sen target string, except for the bit that comes from the
model string. In addition, that bit is not random since it
must differ from the original bit of the target string. In
fact, since the imitation process was based on Axelrod’s
model of cultural dissemination [28], the IL search follows
the rules of cultural, rather than of genetic, evolution.

Our definition of computational cost as, essentially, the
total number of updates performed by the algorithms
to find the optimal solution begets a humbler perspec-
tive on the power of general-purpose search algorithms
(see [39] for another approach to this issue that leads
to a similar conclusion). In particular, we find that even
for simple problems with no local maxima (i.e., K = 0),
the evolutionary algorithms are not much better than
the blind search provided the landscape dimensionality
is not too large. In this simple scenario, the IL exhibits
the best performance since it always guarantees the selec-
tion of the fittest string as a model to be imitated, thus
avoiding the genetic drift that hinders the performance
of the evolutionary algorithms (see Figs. 2 and 3). The
robustness of these findings are confirmed through the
analysis of the Ising model of ferromagnetism offered in
the Appendix.

The prospects of the cooperative search algorithms
are somewhat gloomy in the case of rugged landscapes
plagued with local maxima that may act as traps for
the evolving population. In fact, even for mildly rugged
landscapes (see panel D of Fig. 4) the blind search either
outperforms or matches the cooperative search algorithms
regardless of whether the duration of the search for the
global maximum is limited a priori or not. This conclu-
sion holds true also in the case the criterion to evaluate
the algorithms is the fittest state found within a fixed
runtime.

In many respects, the unenthusiastic performances of
the cooperative search algorithms reported here, as com-
pared with the baseline set by the blind search, are in line
with the very notion of NP-completeness class [23] in the
sense that we should not expect any algorithm to change
substantially the scale of the time needed to find the opti-
mal solution for problems in that class. (Here we assume
without proof that the adjacent neighborhood variant of
the NK-model with a = K/N > 0 fixed is NP-complete.)
Overall we find that if the population size M and the bit-
wise mutation probability v are tuned so as to optimize
the performance of each cooperative search algorithm sep-
arately, then the IL surpasses the evolutionary algorithms,
especially for rugged landscapes characterized by a low
density of local maxima as illustrated in Figure 5.

The somewhat unexpected conclusions of our study
calls into question the efficiency of the mechanisms
of selection and recombination to explore NK-fitness
landscapes. This is probably due to a peculiarity of these
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landscapes, viz., they become flatter as their dimension-
ality increase, thus greatly impairing the capacity of the
genetic roulette to select the best agents for the next
generation. We stress, however, that the performance
advantage of the evolutionary algorithms over the blind
search actually increases with the landscape dimension-
ality (see Fig. 3). As shown in the Appendix, the same
conclusions hold true for a far more popular fitness
landscape, the Ising model of ferromagnetism. We see
the poor performance of the evolutionary algorithms on
single-peak fitness landscapes as the price general-purpose
algorithms have to pay to deliver good solutions using
hardly any information on the optimization problems
they are set to tackle. Like the blind search, for those
algorithms the scaling on the landscape dimensionality
of the time required to find the global maxima is not
very sensitive to the topology of the landscape. This
contrast with the imitative learning search that performs
almost optimally for single-peak landscapes but exhibits
a catastrophic performance for landscapes with local
maxima if its parameters are not tuned properly. There
is indeed no free lunch in optimization.
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Appendix A

In this Appendix we address the robustness of our find-
ings about the performance of the cooperative search
algorithms on smooth fitness landscapes. Although the
NK-model of rugged landscapes is widely used in a vari-
ety of disparate disciplines, such as evolutionary biology,
physics and economics, the wanting performance of the
evolutionary algorithms reported in this paper may raise
concern about the usefulness of the NK model to describe
realistic landscapes. To dispel these doubts, here we briefly
examine the performance of the cooperative search algo-
rithms on a very popular fitness (or energy) landscape,
viz., the Ising model of ferromagnetism [40].

We begin with the non-interaction version of the Ising
model where the fitness (the opposite of the energy) of the
system specified by the binary string x = (21, 22,...,2ZN)
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Fig. A.1l. Scaling of the mean halting time (¢*) on the land-
scape dimensionality N for the non-interacting Ising model.
The results for the imitative learning (IL) search and the ran-
dom adaptive walk (RAW) are shown in panel A, whereas the
results for the asexual (AGA) and the sexual (SGA) genetic
algorithms are shown in panel B, as indicated. The solid curve
fitting the result of the IL search is the function aN 4+ b with
a = 1.23 and b = —18.13, whereas the solid curve fitting the
result of the RAW is N/2. The dashed curve is the analytical
prediction for the blind search (BS), equation (7). The mean
number of mutations per string is u/N = 0.1 and the population
size is M = 100.

with z; = 0,1 is
N
Fn¢:Z(2xifl)+N+1.

i=1

(A1)

Here the spin variable is s; = (22; — 1) = +1 and we have
added the factor N + 1 into the fitness definition so as
to guarantee that it is positive for all configurations and
hence that the genetic roulette behind the evolutionary
algorithms can be applied straightaway. Clearly, this fit-
ness function has a single maximum at z; = 1 Vi and so
it offers an alternative to the NK-fitness landscape with
K =0.

Figure A.1 shows how the mean halting time (¢*) scales
with the landscape dimensionality N for the fitness func-
tion defined in equation (A.1). In addition to the four
search algorithms discussed in the paper, this figure shows
the performance of the random adaptive walk (RAW) as
well [20,38]. This search algorithm considers a single agent
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Fig. A.2. Scaling of the mean halting time (¢t*) on the land-
scape dimensionality N for the one-dimensional ferromagnetic
Ising model. The solid curve fitting the result of the RAW is
the function 0.41N? whereas the dashed curve is the analyt-
ical prediction for the blind search (BS), equation (7), with
p = 1/2N71. The mean number of mutations per string is
uN = 0.1 and the population size is M = 100.

(walker) that at each time step flips a randomly chosen
bit that does not result in a fitness decrease. For the
fitness function (A.1l), this strategy is equivalent to the
greedy heuristics, since all bit flips that do not decrease
the fitness increase it by the same amount. Hence we have
(t*) = N/2 for the RAW. Interestingly, we find that the
mean halting time of the IL search also scales linearly with
N, ie., (t*) < N. Similarly to the findings summarized in
Figure 3 for the case K = 0, the results for the evolution-
ary algorithms are inconclusive due to the limited range
of values of N considered. Nonetheless, it is clear that the
performances of those algorithms scale very poorly with
the landscape dimensionality. Therefore, the conclusions
drawn from the analysis of smooth NK-fitness landscapes
hold true for the well-known case of the non-interacting
Ising model landscape.

We consider now the one-dimensional ferromagnetic
Ising model where the fitness of the system specified by
the binary string x is

N
Fr=Y (2x;— 1) 2wi1 — 1)+ N+1

i=1

(A.2)

with zy41 = x1. This fitness function has two degener-
ate maxima, viz., x; = 1 Vi and x; = —1 Vi. Moreover, it
has several plateaus where a given configuration and its
N neighbors exhibit the same fitness. Actually, the reason
we tolerate flips that do not increase fitness in the RAW is
to allow the walker to escape those plateaus. The results
summarized in Figure A.2 show the disruptive effect of
the two degenerate maxima on the performance of all the
cooperative search algorithms considered. Since the fit-
ness function (A.2) has no local maxima, the reason for
the poor performance of the IL search is probably the
frequent alternation of the model agent between strings
in the neighborhoods of the two degenerate maxima. The
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back and forth motion between those regions, as well as
the blind search on the fitness plateaus, are the reasons
that the halting time of the RAW scales with N2, rather
than with IV, for this landscape.

Finally, we note that the reason the RAW performs bet-
ter than the cooperative search algorithms on the two
landscapes considered in this Appendix is due solely to
the absence of local maxima on those landscapes. We
stress that despite the somewhat wanting performances of
the cooperative search algorithms regarding their scaling
with the landscape dimensionality, they do much better
than the blind search in the case of high dimensional
landscapes.
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