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ABSTRACT

A Digital Twin is a virtual representation of a real-world object or
process, leveraging powerful computational architectures available
both on-premises and in the cloud. By harnessing the increased
availability of real-time data and advancements in machine learn-
ing predictive algorithms, Digital Twins find applications across
various domains such as Earth Science, Oil and Gas, and Health-
care. However, realizing their full potential demands addressing
the technical complexities of integrating numerous components

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).

MODELS Companion '24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3688244

cardoso@lncce.br

Fabio Porto
National Laboratory of Scientific
Computing
Petropolis, Brazil
fporto@Ince.br

during development and operational phases of the system. This pa-
per describes an ongoing effort to build a comprehensive platform
that supports the entire lifecycle of a Digital Twin, from continuous
specialized model training to online prediction and event detection,
by capturing and processing live data. This approach enables timely
updates to the virtual representations of physical elements within
the twin application as they change. We detail each component of
the Digital Twin solution and demonstrate its applicability through
areal use case implemented in the Oil and Gas industry. Specifically,
we focus on monitoring the motion of oil platforms to ensure the
integrity of the mooring systems and respond to adverse conditions
through an alert system powered by our platform.

CCS CONCEPTS

» Computer systems organization — Real-time system architec-
ture; « Information systems — Decision support systems; »
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Computing methodologies — Machine learning; Simulation
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1 INTRODUCTION

Digital Twins (DT) represent a significant breakthrough, enabling
the creation of virtual representations of physical objects or pro-
cesses [21, 39]. These real-time digital counterparts provide pre-
dictive insights, enable proactive maintenance, and optimize op-
erational performance through continuous monitoring and data
analysis [12]. Their relevance and adoption is rapidly growing
across multiple domains, such as Healthcare, Robotics, Smart Cities,
and Energy. By integrating the Internet of Things (IoT), cloud com-
puting, and Artificial intelligence (AI), DTs offer transformative
potential for managing and optimizing complex systems and pro-
cesses across various industries.

In the oil and gas industry, DT applications are particularly suit-
able for monitoring Floating Production Storage and Offloading
(FPSO) units [11]. These units are crucial to offshore operations, and
their performance, security, and longevity depend on the integrity
of their mooring lines, among other factors. In this context, DTs
provide actionable insights by continuously collecting, processing,
and integrating data from sensors and IoT devices [10]. This en-
ables early detection of issues, optimized maintenance schedules,
and failure predictions, thereby improving decision-making and
reducing operational costs and risks.

Despite its potential, implementing and operating a DT platform
for monitoring FPSO mooring lines presents several significant
challenges. The primary issue involves developing and integrating
the multiple components necessary to meet the application’s re-
quirements. Firstly, the system must efficiently handle real-time
data ingestion, processing, and integration while ensuring this data
is easily accessible to subsequent components. Secondly, leveraging
reliable machine learning models to provide predictive insights on
selected metrics is crucial. However, managing the lifecycle of these
machine learning models is complex, requiring careful handling of
related artifacts such as datasets, algorithms, and predictions [33].
Furthermore, the system must accommodate different computa-
tion environments to meet the diverse computational requirements
of various machine learning lifecycle steps. This includes ensur-
ing that the environments can support data preprocessing, model
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training, and real-time inference, each with specific demands. Ad-
dressing these challenges is essential for realizing the full benefits
of a Digital Twin platform in enhancing the safety and efficiency
of FPSO operations.

To address these challenges, we propose a comprehensive Digi-
tal Twin platform designed to support the entire lifecycle of FPSO
mooring line integrity monitoring. This platform comprises various
key components, each developed to tackle the diverse challenges
previously discussed. The first of these components is a Stream
Data Manager, responsible for capturing, processing, and integrat-
ing real-time data from sensors on the FPSOs. This ensures the
platform can efficiently manage the high volume and velocity of
data generated by these sensors, providing a robust foundation for
real-time monitoring. Another crucial data-related component of
the platform is a Domain Data Manager, which manages efficient
access to non-real-time data, encompassing the characteristics and
contextual information of domain objects.

The third key component is a machine learning management
system called Twinscie, which manages the lifecycle of machine
learning models and related artifacts, such as datasets and algo-
rithms. Twinscie also interfaces with the various computational
environments used for different stages of the machine learning
process, ensuring that the platform can meet the specific compu-
tational requirements of data processing, model training, and real-
time inference. Moreover, Twinscie provides a dataflow language
that allows users to define machine learning tasks as a sequence
of independent activities. By means of Twinscie, the proposed DT
platform leverages machine learning models developed specifically
for monitoring FPSO mooring lines.

Finally, the Twin Application component manages the digital
representation of the real twinned application. It composes the
current status of the digital reflection using measured observations
captured by sensors and events detected by the pre-trained ML
models managed by Twinscie component. By integrating this real-
time data with the domain-specific characteristics and contextual
information, the Twin Application ensures a comprehensive and
accurate digital reflection of the physical system. This detailed
and dynamic representation allows for continuous monitoring and
analysis, ultimately enabling proactive maintenance strategies.

As part of our ongoing efforts, key functionalities of the pro-
posed DT platform have been developed and tested at Petrobras,
a leading Brazilian oil and gas company, within their on-premises
environment to support the monitoring of FPSO mooring lines.
The initial results are promising in terms of operational efficiency
and suggest the potential for further enhancements, ensuring the
robustness and adaptability of the platform to a wider range of
scenarios and requirements in mooring line integrity monitoring.

The remainder of this work is structured as follows: Section 2 re-
views related work. Section 3 provides an overview of the proposed
Digital Twin computational platform’s architecture and compo-
nents. The Twinscie component is detailed in Section 4. Section 5
describes how stream and domain data are handled within the plat-
form. Section 6 introduces developed machine learning models for
FPSO mooring system, while Section 7 demonstrates the integration
of one of these models with Twinscie and presents related results.
Finally, Section 8 offers conclusions and discusses perspectives for
future work.
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2 RELATED WORK

Digital Twin (DT) systems have rapidly progressed from a theoreti-
cal concept envisioned by early research [37] to powerful tools im-
pacting various fields. Advancements in Al IoT, and cloud comput-
ing have enabled the development of sophisticated DTs capable of
real-time monitoring, analysis, and optimization [9, 23]. These tech-
nological advancements have led to the successful implementation
of DTs in diverse sectors, ranging from energy [18] to healthcare,
where they are used for personalized medicine, remote patient mon-
itoring with wearable devices, and efficient clinical trials [17, 38].
Furthermore, DTs are transforming industrial robotics by enabling
real-time optimization of control systems for enhanced precision
and adaptability [22]. In smart cities, DTs are leveraged for traffic
management, optimizing resource allocation, and enhancing public
safety [16].

Recent studies highlight the adoption of DTs in the oil and gas
industry for optimizing operations, minimizing risks, and improv-
ing asset management while enhancing productivity and safety in
project lifecycles [41]. DTs are being integrated into diverse offshore
oil and gas production aspects, including drilling, production pro-
cesses, equipment maintenance, and oilfield asset management [1].
Successfully implementing these complex DT systems in real-world
settings requires robust cloud and edge computing infrastructure ca-
pable of handling the substantial computational and data demands
[20].

DTs are proving particularly valuable in optimizing drilling oper-
ations, enabling real-time monitoring of drilling parameters, auto-
mated adjustments to drilling plans, and early detection of potential
problems like stuck pipes or wellbore instability. Mayani et al. [2]
present a drilling well DT that integrates real-time data and ad-
vanced modeling to optimize operations, reduce downtime, and
enhance safety. Similarly, Thomas and Ziatdinov [5] advocate for a
DT-driven methodology to improve drilling processes, emphasizing
performance enhancement, non-productive time reduction, and
maximizing oil and gas production.

DTs are also effective in optimizing production processes and
enhancing oilfield asset management. Shen et al. [35] show that in-
tegrating real-time data from IoT sensors with Al algorithms within
a DT framework can optimize production parameters, predict equip-
ment failures, and enable data-driven decision-making for enhanced
production efficiency. Furthermore, Lai et al. [4] demonstrate how
combining DTs with big data analytics can provide a holistic view
of oilfield operations, enabling operators to identify production
bottlenecks, optimize resource allocation, and proactively manage
asset integrity for improved performance and profitability.

Furthermore, DTs enable predictive maintenance of critical equip-
ment, such as pumps, compressors, and turbines, by leveraging
simulation data and machine learning techniques to predict the
Remaining Useful Life (RUL) of components [6]. By forecasting
potential equipment failures, operators can optimize maintenance
schedules, procure spare parts in advance, and minimize costly
unplanned downtime, ultimately enhancing equipment reliability
and reducing operational risks.

Concurrently, visual inspection techniques are integrated into
DTs, leveraging image processing and deep learning algorithms to
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automate defect detection from marine images [19]. This integra-
tion enables the identification of defects such as corrosion or cracks,
significantly improving the efficiency and accuracy of inspections
and providing valuable data for the DT model.

Mooring system integrity is critical for the safe operation of off-
shore structures like FPSOs, and the rise of sensor data and machine
learning has fueled the development of DTs for comprehensive
mooring system management. These DTs leverage real-time sensor
data, historical information, physics-based models, and advanced
machine learning algorithms to create virtual representations of
physical mooring systems, enabling continuous monitoring and
assessment of their health [7, 30]. Sa’ad et al. [8] employed a neural
network and classifier combination to predict FPSO motion and
assess mooring line failure probability.

Implementing DTs in the oil and gas industry has shown great
potential in enhancing the monitoring and management of moor-
ing systems, which are critical for the stability and performance
of offshore structures [29]. DTs provide a sophisticated means of
combining real-time data with virtual models to predict and analyze
the behavior of these systems under various conditions. Despite
the promise of DTs, challenges remain, particularly in their ability
to generalize across diverse environmental conditions and manage
the vast amounts of data involved in real-time monitoring.

Recent research efforts have focused on overcoming these limi-
tations through domain generalization and transfer learning tech-
niques and integrating advanced visual inspection methods using
image processing and deep learning algorithms [3]. This integra-
tion improves the accuracy and efficiency of defect detection and
enhances the overall robustness of DT-based monitoring systems.

While promising, these data-driven approaches often face chal-
lenges in generalizing to new environmental conditions. Ongoing
efforts are exploring domain generalization and transfer learning
techniques to overcome these limitations and enhance the robust-
ness of DT-based mooring system monitoring [43]. Alternatively,
Ribeiro et al. [31] discuss constructing subset models based on
learned data partitions. The latter approach finds similarities among
different platform behaviors and ocean conditions, building subset
models on data partition that reflect common behavior. The subset
approach leads to multiple candidate models whose application
for a given inference scenario leverages the knowledge about the
training data distribution, as discussed in [26].

This work builds upon these advancements in DT technology
by proposing a novel system specifically designed for the oil and
gas industry, focusing on mooring line integrity monitoring as
an important use case. Our system addresses challenges related
to computational complexity, data integration, and capturing the
complex interactions between mooring lines, platform dynamics,
and environmental factors. By utilizing a multi-model approach that
integrates specialized machine learning models for specific failure
modes and anomalies, coupled with a robust data management
infrastructure and hybrid modeling strategy, our system provides
comprehensive and accurate real-time monitoring for enhanced
mooring system integrity management.
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3 ARCHITECTURE OVERVIEW

Figure 1 depicts the proposed digital twin system architecture. At
the top of the figure stands the Twin Application component, where
the digital representation of the real twinned application is man-
aged. The information required to compose the current status of
the digital reflection includes the measured observations captured
by sensors, characteristics and contextual information of domain
objects, and the events detected by the pre-trained ML models
(see Section 6). The data are obtained by integration interfaces be-
tween the Twin Application and the Twinscie system. The latter
receives the incoming observations from the Stream Data Man-
agement (SDM) system, as well as domain data from the Domain
Data Manager (DDM) runs pre-processing dataflows to validate
and structure the data according to the ML models input data for-
mats, and invokes the models. The models can produce a list of
detected anomalous events or predictions over the input data. Once
this process has been executed, the measured observations and
the models’ results feed the Twin Application component. Finally,
the SDM system accesses the sensor’s control devices to collect
real-time data, updating the status of the mirrored application. The
SDM system collects the data streams (see Section 5), pre-processes,
and materializes the resulting data into a database system. Twinscie
periodically queries the SDM system for new data to refresh the
Twin Application state.

4 THE TWINSCIE SYSTEM

Twinscie is a machine learning management system supporting
the entire ML life cycle [14, 27, 34]. As a component of the digital
twin system, Twinscie provides access to managed artifacts through
the invocation of services made available through its RESTful ap-
plication program interface (API) and web interface. The API is
important for establishing a communication protocol that other DT
components use to request services programmatically. Conversely,
the web interface allows system administrators to interact with
the system’s services. Additionally, Twinscie provides a dataflow
language, which can represent data transformation, training, and
prediction processes as a composition of discrete activities.

Figure 2 depicts the general architecture of the Twinscie system.
The system maintains a catalog for artifacts metadata management,
including provenance information. Twinscie also includes the con-
cept of available Environments, which refers to an infrastructure
where tasks can be scheduled to run. An Environment includes a
computational system (e.g., Big data cluster, Al Workstation, super-
computer, etc.), storage for managed artifacts, and a MLFlow [44]
instance that isolates Twinscie from the heterogeneity found in
different ML engines supported by the system: TensorFlow, pytorch,
scikit-learn, Keras, etc.

The main services that the Twinscie system provides are:

Register a Dataset: all datasets known to the system must
be registered. The action leads Twinscie to save the neces-
sary information to access the corresponding dataset in the
catalog. Observe that a dataset may have been produced
elsewhere and need to be registered, or it could have been
produced by a Twinscie dataflow, in which case the system
automatically registers it.
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Register a Learner: In the context of the Twinscie system,
learners are a package of Python scripts, library dependen-
cies, and execution information used to train a model.

Register a Model: The registration of a model is achieved by
either training or importing actions. The training of a model
is performed by informing a particular learner, a registered
dataset, and a set of hyperparameters’ values.

Set and Run a Dataflow: Twinscie supports the specification
of an abstract dataflow that describes the graph of opera-
tion dependencies. In preparation for running, an abstract
dataflow is associated with input datasets registered in Twin-
scie. It is scheduled to run in one of the available Twinscie
Environments.

Run an Inference: Once a model has been registered, it can
be invoked with an input dataset to compute the predictions.
Twinscie supports different tasks, including event detection,
which is interesting for the Twin Application.

Inform the twin application: The system manages the data
obtained from sensors and the predictions produced by mod-
els. Additionally, metadata information regarding the pro-
cesses, including statistics and metrics, are available for con-
sumption by the Twin Application through the system REST
APL

4.1 Twinscie Users

Twinscie is designed to support users in various roles, each with
distinct responsibilities concerning its services. The Administra-
tor manages the system objects, manually registers artifacts and
metatada information, and specifies environments. The Model De-
veloper registers learners and uses them to build the models. This
user often writes the code for the Learner and creates dataflows
for data preparation and model training. The Application Developer
integrates Twinscie with its application by calling the appropriate
Twinscie APL

4.2 Model Management

Twinscie enables a model to be constructed using other frameworks
and have it imported into the system. Alternatively, the Model de-
veloper can use the provided set of services to collect the necessary
data, process it, and feed it to construct a model, which is per-
formed through the training of a Learner previously registered to
the system. Using the same Learner with a different dataset and
hyperparameters’ values leads to a different model version. The
system tracks the relationship between previous versions and a
recently created one. Once a model has been built, it can compute
inferences. In a DT, an Application user integrates a particular ver-
sion of a model into a dataflow to compute the predictions. There
are two approaches for obtaining model inferences. In a push model,
an inference is computed only when a model inference is requested.
Alternatively, a model may run in a pull model. In the latter mode, a
process continuously invokes a model in a windowed input and cap-
tures its inferences, passing them over to an output consumption
mechanism. Finally, the performance of a model is continuously
monitored, and a flag is set once the metrics signal a performance
deterioration. At this point, some response has to be developed to
avoid providing erroneous predictions.
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4.3 Data Management

Twinscie data management comprehends the following aspects:
dataset files, dataset metadata, dataset interface, model hyperpa-
rameters, and provenance information.

Dataset files are data artifacts physically stored in persistent me-
dia. Datasets need to be registered into the system to be referred to.
An Application or an Administration user can exercise registration
through the system web interface or by an application through the
system APIL One can register a dataset in any storage structure
available in one of the known computational environments. Each

dataset file receives a logical id (i.e., a URI), uniquely identifying it
within the system. Datasets have metadata associated with them,
including the application domain in which they are taken, their
size, and their type.

A dataset interface specifies an in-memory dataset and can be
specialized for the different in-memory structures a dataflow may
implement. This includes distributed in-memory data structures
like Spark RDD or a Pandas DataFrame. Another important type
of data managed by Twinscie is model hyperparameters. These
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hyperparameters assist Model Developers and Application Users
in tuning the parameters for the available models.

Finally, we store provenance information regarding functions
and dataflow executions. This includes dataset files read and written
by dataflows and those imported from external systems.

4.4 Dataflow Language and Execution

Data transformations and the models’ execution processes are mod-
eled in Twinscie as dataflows. A Dataflow definition models a com-
plete data process through a data dependency graph that specifies
the producer-consumer relationship between independent activi-
ties. In Twinscie, activities are Python functions. A user with the
administrator role can register a Python script with a Python func-
tion as an entry point in Twinscie that can be referred to as an
activity in a dataflow. Once the functions of interest for a dataflow
have been registered, an abstract dataflow can be specified as a
directed acyclic graph (DAG), where vertices are either a set of
functions, as described above, or a placeholder for files, and edges
represent the producer-consumer relationship between functions.

The idea of having an abstract representation is to foster the
reuse of the dataflow and to enable its mapping to different dataflow
languages and engines. For example, a dataflow specified to run on
a small-to-medium-size dataset may be mapped to a desktop envi-
ronment running a Kedro dataflow engine 1 while its invocation on
large datasets requires scheduling it on a Big Data platform, such
as Apache Spark 2. A concrete dataflow is produced by mapping
the directed graph dataflow definition onto a dataflow language
and substituting the file placeholders with datasets. Currently, the
system maps the Kedro dataflow engine. Input datasets correspond
to Twinscie registered datasets, whereas a logical address and a
filename specify output datasets. Once a concrete dataflow has been
instantiated, it can be scheduled for execution in one of Twinscie’s
known environments. Twinscie stores provenance data about the
functions that have been run and the files consumed and produced
by running a dataflow.

4.5 Interface with the running environment

The execution of Twinscie dataflows relies on the services provided
by the MLflow system > [44]. Each Twinscie environment runs a
component called Twinscie Server alongside an instance of MLflow.
The Twinscie Server is a gRPC server responsible for receiving
execution requests and delegating them to the MLflow instance,
encapsulating the task execution.

All Twinscie tasks can be modeled as a dataflow, although spe-
cialized API functions exist for individual task invocation. While
executing a Twinscie dataflow, MLflow stores artifacts, metrics,
and parameter values used or generated by the dataflow. Twin-
scie collects these logs and stores them in its catalog. To prevent
each dataflow function or learner from specifying what should be
registered to MLflow, its auto-logging feature automatically cap-
tures metrics, parameters, and models without needing explicit log
statements in the dataflow code.

!https://docs.kedro.org/
Zhttps://spark.apache.org/
Shttps://mlflow.org
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Another feature of MLFlow is its capability to package dataflows
along with their dependencies, creating isolated virtual environ-
ments that include the necessary runtimes and libraries for ex-
ecution. This is especially beneficial because it allows multiple
dataflows with varying dependencies and component versions to
run simultaneously without impacting other instances.

MLflow also offers other valuable features, such as model serving
and versioning. These capabilities are not included in the current
version of Twinscie but will be evaluated for future incorporation.

5 STREAM AND DOMAIN DATA MANAGER

The Stream and Domain Data Managers are the components re-
sponsible for accessing the different data sources, extracting data,
and preparing them to be accessed by the Twinscie system. The do-
main data corresponds to the non-real-time data, including domain
objects’ characteristics and contextual information, while stream
data refers to observational data captured by sensors. Our current
implementation for the Stream Data Manager leverages a combi-
nation of advanced software components to collect, process, and
analyze data in real time. The framework is primarily based on a
data streaming system, the Event Hub, which serves as the core for
ingesting and processing events collected by sensors.

These Data Managers use an API-Server interface to manage
interactions with the Twinscie system. This interface receives re-
quests and responds with requested data. A Query Manager com-
ponent plays a crucial role in controlling the flow of requests and
optimizing traffic between the API-Server and the intermediate
data store.

To ensure scalability and efficient management of computing
resources, the system is orchestrated by Kubernetes, which auto-
mates the distribution and scaling of containers hosting the various
system components. This orchestration improves operational effi-
ciency and ensures high availability and reliability.

6 ML MODELS FOR FPSO MOORING SYSTEMS

In the oil and gas industry, the trend of increasing petroleum ex-
ploration in deep and ultra-deep waters has led to a rise in the
utilization of moored FPSO platforms in recent years. These units
require a sophisticated mooring system to securely maintain their
position. A typical mooring system comprises multiple mooring
lines, each costing millions of dollars.

The integrity of the mooring lines condition cannot be directly
observed by the operation as they are submerged, so the onboard
staff may not immediately notice a line failure. Harsh environ-
mental conditions can escalate the tension on the remaining lines,
potentially triggering a cascade effect where multiple lines could
fail. The failure of several lines poses a substantial risk of environ-
mental damage due to oil leakage. To mitigate this risk, regular
inspections of the mooring system are conducted using remote-
operated underwater vehicles or, in certain cases, human divers.
However, these inspection operations are intricate, hazardous, and
expensive regardless of the method employed. To offer a viable
alternative to these labor-intensive inspections, ML models have
been developed and integrated into digital twins. These models aim
to detect potential failures in the mooring system, thus providing a
proactive approach to maintenance and risk management.
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Four models are been developed and are gradually being inte-
grated into the Digital Twin system. Two models, NeMo and NeRo,
monitor and predict the state of mooring systems using data from
sensors that detect platform motion and environmental conditions.
Another model, NeuroSim, has been designed to simulate these
motions, assisting in the optimization of mooring system designs.
Finally, the SeSO model has been developed to extract critical infor-
mation from the company’s technical reports that is not captured
by sensors.

The real-time monitoring capabilities of the system empower
operators to promptly address emerging issues. By integrating the
models into the DT platform, a comprehensive overview of platform
condition is achieved, facilitating well-informed decision-making
and mitigating the risk of accidents. This improvement in oper-
ational oversight increases the safety and reliability of platform
operations, leading to minimized downtime and reduced repair
expenses. Consequently, this advancement contributes to the op-
timization of oil platform operations, fostering greater efficiency
and sustainability in the long run. In the following subsections, we
will provide detailed descriptions of each of these four models.

6.1 NeMo: Neural Motion Estimator

NeMo detects mooring line breaks by identifying changes in rela-
tion to the expected motion of the FPSO [15]. To do this, NeMo
observes a window of data relating to the six degrees of freedom
of the platform’s motions and predicts the expected future motion
for the intact platform. The six degrees of freedom refer to the
possible motions of a rigid body in three-dimensional space, such
as an FPSO platform at sea. These movements are divided into three
translations (surge, sway, heave) and three rotations (roll, pitch,
heading). The horizontal translation motions can also be referred
in an inertial system such as UTM - universal transverse Mercator.
UTMN referrers to the north-south motion and UTME referrers to
east-west motion. These six degrees of freedom allow for a com-
plete description of a vessel’s movements in a three-dimensional
environment, accounting for both changes in position and changes
in orientation. If the predicted motion differs from the sensed mo-
tion, an alert is generated. NeMo can handle both data generated
by a numerical simulator and data captured by sensors installed
on the platforms. Its architecture combines Recurrent Neural Net-
works (RNNs) with a Graph Neural Network (GNN) [13, 32], being
grounded on three primary principles:

Time Encoding Using Periodic Functions: The instants in
which time series data are captured are encoded with peri-
odic functions and aggregated to the data, making it possible
to capture periodic patterns in the series.

Independent Encoding of Time Series: Independent RNNs
are used to process each data stream (including the respective
encoded time) [36], ensuring effective operation of the model
for different dynamics even if one or more sensors fail.

Information Diffusion with GNN: Each encoded time series
is associated with a node in a GNN [40, 42] that facilitates
the dissemination of information among its nodes, enrich-
ing each representation based on neighboring information.
This enriched information is then decoded to predict future
platform motions.
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The ability to operate with incomplete data makes NeMo a robust
tool for proactive management of mooring systems, demonstrating
good results in preliminary tests [15].

6.2 NeRo: Natural Frequency Regression and
Estimation

Another Al model that detects mooring line breaks is NeRo. It is
based on the hypothesis that the resonant frequency of the plat-
form’s horizontal motions changes when one or more mooring
lines fail. The NeRo model comprises three main modules:

Estimator: Calculates the resonant frequency and damping of
the platform based on its actual motion data.

Regressor: Utilizes the CatBoost [28] algorithm to estimate
the platform’s resonant frequency under normal conditions.
It uses the platform’s displacement, draft, damping, signal
maximum, and minimum to make these estimates.

Classifier: Combines outputs from the Estimator and Regres-
sor to indicate the mooring system’s status. Provides several
outputs: one for the probability of the mooring system being
intact, and others for the probability of failure in each group
of lines.

NeRo’s strategy showed good separation between “intact” and “bro-
ken” data. This approach allows for high-precision identification of
mooring line failures, although it is sensitive to untrained modifica-
tions in the mooring system, potentially leading to false positives.

6.3 NeuroSim: Neural Simulator

Unlike the two previous models, NeuroSim is a simulator for motion
statistics of floating units based on Al Neural Networks (NNs). Its
main applications are:

Mooring System Design: NeuroSim can be trained on high-
precision simulations of critical centennial metocean condi-
tions. After initial training, FPSO motion statistics are pro-
vided almost instantly for new incoming metocean condi-
tions, facilitating the evaluation of numerous conditions
during the design phase.

Monitoring Operational Floating Units: NeuroSim maps in-
cident environmental conditions into FPSO motion statistics,
providing an additional safety layer. Its meta-models are
continuously trained with new measurements, acting as an
online predictor of vessel motion statistics.

NeuroSim comprises two meta-models specialized in predicting
different motion statistics. It receives input variables associated
with environmental conditions and draft. The meta-models predict
statistics such as Maximum Roll, Standard Deviation of Roll, and
projections in the North and East of the Maximum and Average
Offset of the FPSO’s Center of Gravity .

6.4 SeSO: Semantic Search for Offshore
Engineering

The SeSO model has the potential to evolve into a vital compo-

nent of DT architectures. Built using a Retriever-Ranker-Reader

architecture proposed by Nogueira and Cho [25], SeSO operates

by retrieving and ranking documents based on user queries and

extracting relevant information to provide precise answers. This
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robust pipeline ensures that SeSO returns the most relevant in-
formation from a large collection of documents, enhancing the
accuracy and reliability of the answers.

SeSO could seamlessly interact with digital twins as a commu-
nication interface, translating complex data into understandable
and actionable insights for users. The process begins when a user
inputs a question; the Retriever module returns 100 documents
that best match the query. The Ranker module reclassifies these
documents and delivers the top 10 to the Reader, which extracts and
presents the answers. This process ensures that users receive the
most relevant and accurate information, making SeSO a powerful
tool for querying data within a DT platform. By integrating SeSO,
operators could easily access specific data points or trends from the
digital twin, facilitating informed decision-making and operational
efficiency.

Moreover, SeSO can function as an analysis assistant within DT
platforms, leveraging its advanced natural language processing ca-
pabilities to interpret and contextualize sensor data. For instance,
SeSO could analyze patterns in mooring line tensions or environ-
mental conditions, providing predictive insights and recommen-
dations for preventive actions. This integration would enable real-
time monitoring and proactive management of offshore platforms.
Additionally, the availability of domain-specific created language
models, further enhances SeSO’s ability to perform tasks beyond
question-answering, contributing to various natural language pro-
cessing applications within the DT framework. Combining SeSO’s
question-answering framework with real-time data analysis from
digital twins could drive operational safety, efficiency, and sustain-
ability advancements in Offshore Engineering.

7 USE CASE: NEMO

Key features of the proposed DT platform have been developed,
with NeMo being the first model deployed to the Twinscie compo-
nent. Figure 3 illustrates the execution process of NeMo within the
platform.

The process we are implementing begins with an operator in-
putting data from the Dynasim simulator [24]. This entails handling
168 GB of data spread across 98,000 files for a single platform. Twin-
scie then executes the preprocessing and training of this data to
produce a model, which subsequently undergoes expert valida-
tion. In the next step, historical data (currently 5.6 GB) is inputted,
preprocessed, and used to fine-tune the model generated with simu-
lated data, to then create a refined model with measured data. This
refined model undergoes further validation by an expert. The infer-
ence process operates periodically in 6-hour windows, and uses the
refined model to act as a digital sensor to detect deviations from
expected platform behavior. These deviations indicate potential
issues that may require intervention or further investigation.

An example of NeMo results is presented in Figure 4. It shows
the Roll and UTME ground truth plot and simulated data with a
95% confidence interval band in a fixed time window. The training
was conducted on a platform under 800 different environmental
conditions. These conditions were derived from the Hindcast ERA5
dataset for 2021 and 2022, along with data from the Copernicus
Marine Environment Monitoring Service (CMEMS). The training
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process considered five different drafts, ranging from 16 to 20 me-
ters, assuming the mooring lines were intact. The model was trained
on 24,000 hours of simulated data (due to confidentiality), with the
neural network training lasting for 50 hours. For the inference phase
using simulated data, NeMo was tested under 200 environmental
conditions from the ERA5 dataset. Similar to the training phase,
this phase considered five drafts ranging from 16 to 20 meters, with
the remaining mooring lines intact. The inference was conducted
on 6,000 hours of simulated data. This visualization highlights
NeMo’s accuracy in predicting platform behavior, demonstrating
the model’s robustness under varying conditions.
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Figure 3: Execution of NeMo in Twinscie.
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Figure 4: Roll and UTME ground truth and simulated data
with a 95% confidence interval band in a fixed time window.
An alert is generated whenever the predicted motion goes
beyond the confidence interval learned in the training phase.

8 CONCLUSION

Digital Twins supports business decisions and real-time monitoring
of systems and processes through their digital representation and
object state synchronization. They leverage a powerful combination
of new hardware, cloud, supercomputer systems, machine learning
models, and abundant data, both in-stream and in-static modes, to
achieve accurate digital approximations of the mirrored system.
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However, implementing DT systems is challenging as it requires
integrating components to support different stages of a twin system.
This paper presents an ongoing effort to implement a Digital Twin
for the oil and gas industry. We exemplify its adoption in supporting
the integrity monitoring system of FPSO platform mooring lines.

We highlight the Twinscie system, a DT component that manages
the complete machine learning and data life cycles, and support the
Twin Application component. Moreover, we describe the models
NeMo, NeRo, NeuroSim, and SeSO that apply advanced machine
learning techniques to detect mooring system failures, simulate
platform motions, and answer technical questions. Integrating these
technologies with DT allows real-time monitoring and proactive
management, ensuring safer and more efficient operations. The
robust architecture and innovative principles of these models pro-
vide powerful tools for maintaining the structural and operational
integrity of FPSO platforms, contributing to more sustainable oper-
ations in the oil and gas industry.

We conducted tests of our DT platform using the NeMo model in
Petrobras’s on-premises environment. The tests demonstrated not
only NeMo’s capability to accurately predict mooring line failures
by analyzing platform motion data, but also the value of the entire
proposed DT platform in facilitating training, deployment, and
continuous inference. These results have provided valuable insights
that have significantly improved the overall system. While these
initial tests focused on NeMo, we plan to enhance the platform
by integrating additional capabilities and testing the other models,
NeRo, NeuroSim, and SeSO, to further validate and expand the
system’s functionalities.

In the future we intend to design and implement automatic
decision-making within the system components. We plan to auto-
matically select the best candidate models for a given inference.
We also aim to identify concept drifts in the input data and flag
models for updates. Additionally, given the different available exe-
cution environments, we intend to integrate a cost-based pipeline
scheduling model into the pipeline execution process.
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