





Wavelets are a contemporary tool, which have found uses in many ar-
eas, including signal processing, image coding and compression, turbulence,
statistics, numerical analysis, etc. Good mathematical references are Chui
(1992) and Daubechies (1992). References for uses of wavelets in statistics
are Donoho and Johnstone (1990), Donoho (1993), Nason (1994). For uses
in time series analysis see Brillinger (1994a, b), Neumann (1996), von Sachs
and Schneider (1996), von Sachs, Nason and Kroisandt (1996), Gao (1997),
Neumann and von Sachs (1997) and Chiann and Morettin (1998).

In section 2 we give the basic ideas on locally stationary processes and
the concept of evolutionary spectra. Section 3 presents two-dimensional or-
thonormal wavelet bases. Wavelet estimators and kernel estimators of the
evolutionary spectrum will be presented in section 4 and 5, respectively. In
section 6, we present time varying linear systems, in section 7 we present
some simulations and we conclude with final comments in section 8.

2 Locally stationary processes and evolution-
ary spectra

Stationary models have always been the main focus of interest in the
theoretical treatment of time series analysis. The classical Cramér spectral
representation of a stationary stochastic process {X:, t € Z} is given by

X = [ explist)dz() = [ Alw)expliwt)de(), (2)

where dZ(w) and dé(w) are orthogonal and orthonormal increment processes,
respectively.

On the other hand, many phenomena in the applied science show a non-
stationary behaviour (e.g. in economics, sound analysis, geophysics), the
second order structure of these processes is no longer time-shift invariant but
changes over time. Priestley (1981) introduced a time dependence in the
amplitude function A(w), i.e., he considered processes having a time varying



spectral representation

Xo= [ explivhAd)dle), €2, 3)

with an orthogonal increment process ¢ (w) and a time varying transfer func-
tion A¢(w). But within the approach of Priestley, asymptotic considerations
are not possible.

Dahlhaus (1997) defined a general class of nonstationary processes having
a time varying spectral representation. In this approach Dahlhaus defines a
sequence of doubly indexed processes as follows.

Definition 1: A sequence of stochastic processes {Xer, t = 1,0, This
called locally stationary if there exists a representation

X = ) + [ explist Al )dE(@), @
where

(i) €(w) is a stochastic process on [—m,n] with Ew) = &(—w), E(§(w)) =0,
with orthonormal increments, i.e.,

Covl[dt(w), d€(w )} = 8(w - w')dw,
and such that
k
Cum{d€(wr), - - »d€(wr)} = '1(_2 w;)gr(wi, -+ + 1 Wh-1)dwr -+ Ak,

where Cum{: - -} denotes the cumulant of k-th order, g1(w) = 0, g2(w) =
1, | ga(wiy- -+ we-1) |< conste for all k and p(w) = =2 _e 8(w +277)
is the Dirac comb;

(ii) A(u,w) is a function on [0,1} x [—m, 7] which is 27 periodic in w, with
Ay, —w) = A(u,w).



The functions A(u,w) and #(u) are assumed to be continuous in u, be-
cause the smoothness of 4 in u guarantees that the process has locally a
stationary behaviour.

For simplicity, we assume that p(u) =0.

Remark: In Dahlhaus (1997), the representation (4) is based on a se-
quence of functions A2 (w) instead of the function A(u,w), the difference
being that it has to fulfill

t
sup | App(w) - A(T’w) |< KT,
tw

for some positive constant K. For reasons of notational convenience, we use
the representation (4), noting that all results will continue to hold for the
broader class.

Now we define for u € (0,1) and fixed 7, the Wigner-Ville spectrum

) [ .
Jr(u,w) = 5 > Cov{Xur-o/21.7, Xput 072,17} €Xp(—iws), (5)

where the X, r is given by (4), with Ay, w) = A(0,w) for t < 1 and Alu,w) =
A(l,w)fort> T and u = % is the re-scaled time to the interval [0,1].

Definition 2: The evolutionary spectrum of {X:7} given in (4) is defined,
for u € (0,1), by
flu,w) =| A(y,w) '2 g (6)

Dahlhaus (1997, theorem 1.2) shows that under smoothness conditions
on A, fr(u,w) tends in squared mean to flu,w).

3 Two-dimensional orthonormal wavelet bases

This section describes the construction of two-dimensional wavelet bases
using different one-dimensional wavelets bases,

There are two possibility to build a two-dimensional wavelet basis:

a) extending two one-dimensional MRA to build a two-dimensional wavelet
basis, with only one scale 7



b) taking the simple tensor products of one-dimensional wavelets with
different scales j1,J2 for each dimension.

Let V; be subspaces of L*([0,1)) satisfying

()
oV, CcVacVch T (N
(b) _
U0 =), (V=40 ®)
J€
(c) forall f € L*(]0,1]), we have
feV, & f277)eW; (9)
(d) ,
feV; & f(-—27n) €V, (10)

foralln € Z.

There exists ¢ € Vo such that
{dox:k € 2} (11)
is an orthonormal basis in Vo, where, for all j,k € 2,

@*zrﬁa?z—m. (12)

(10) and (11) imply that {¢;s:k € 2} constitute an orthonormal basis
for Vj for aljez. We often call ¢ the scaling function.

The basic idea of multiresolution analysis is that there exists an orthonor-
mal wavelet basis {t;x, ),k € ZY} of L2({0,1)).

Yik(z) = 2j/21/)(QjI - k), (13)
such that for all f € L£2([0,1)),
Pnf=Pf+2 <[¥ix> Viks (14)
keZ
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where P; is the orthogonal projection onto V; and
<fia>= [ fEWatat (15)

For every j € 2, define the subspaces W; generated by {;5}k to be the
orthogonal complement of V; in Vj,y. Then we have

V=V, eW, (16)
and )
Wi LWy, if j#7. (17)
It follows that for j > 1,
Vi=hioWa ..o W,.,, (18)

where all these subspaces are orthogonal.

Assume that we have an orthonormal basis of compactly supported wavelets
of L*(0,1]). For any j, let the subspaces V; = V; ® V;, defining a two-
dimensional MRA. Then it can be shown that this set of subspaces inherits
the properties (a) to (d). So we have

o xfo, )= vi=Uvie,

i=t

which shows the possibility to build a basis of L*([0,1] x [0, 1]) from tensor
products of functions from different one-dimensional bases, {¢1r, V4,7 >
Lk}

Also, defining ®;, 4,(2,y) = ¢k, (2)bs 0, (y), we have that the set
{q)JchJcm kh k? € Z}

constitutes an orthonormal basis for V;.

As in the one-dimensional case, define W; to be the orthogonal comple-
ment of V; in V;y4, so we have

Vit = Vin ® Vi
= (eW))e (Ve W)

iV, e((V,eW;)e (W;eV,) e (W; @ W;))
V; & W,‘,

il

I



with
W; = span{¥]k(z,y): K = (k1,k),m = h,v,d},
and
Tk (2, y) = Gik (@) ¥ (4)s
U (2, 9) = Yik (T)Bika(¥)s

\I’?,K(z’y) = 1k, (Z) W5 (¥)-

Note that W; is made up of three different wavelets: horizontal, vertical

and diagonal.
Now for any j*, we can write V;« into two different ways:

vj‘ = ‘/j‘ ® ‘/j‘ = Vj+-1 @ WJ"_‘
3°=1
= ...=ViePW;
=l
3°-1
vievie DIV, ew;) e (W; e V;) @ (W; @ Wj),

j=i

or alternatively,

Vo = (VIQ)WIG)---EBWj--l)@(VI€BW1€D~--G§W_~;--1)
i1 7o =t

= V,@‘/,ga[@(W,-@V:)]@[GB(W@M)]GB[ P Wi, @ Wi,

3=l j=t Juda=t
From (19), we obtain a basis By of Ly([0,1] x [0,1]) as
By = {$1k(®)01e(®)}lnkV

U{ @ik (250 (), ¥iiks (2) ik (¥)r Vs (@) Vs (Y) }is ko

izl

So B, can be represented by

By = {®1x(z,), K = (k1, ka)}x U {¥7k(z,9). K = (k1 ka),m = h,v,d}j>1 k-

According to (20), another construction is given by

B; = {¢I.k1 (z)¢l,ka(y)}khkz U ( U {wjx.kx(x)‘b‘.h (y)}khkz)
a2t

(19)

(20)

(21)

(22)

(23)

U( U {¢’,k1(z)¢13-k2(y)}k1-kz) U ( U {"bihh (I)ll)ji-kl(y)}khk?)'

22! a2l



For notational convenience, we write Y114 for ¢rp and we define U; the
basis functions, where I denote the multiindex J = (J1+ Ja2, k1, k2). so By can
be written as

By = {Ur(z,y), I = (j1, 42, k1, k), (24)
with
Ur(z,y) = i1 b, (2)s 00 ()-
Note that some of the ; are father wavelets Dit1 ke
The decomposition of an L2([0,1] x [0, 1]) function f using B, is given by

f(z,y) = ; ax®ik(z,y)+3°3 3 A UT(=,y), (25)

j=l K m=huvd

where the coefficients are computed as

i [0,1]x[0,1) f(2, )8k (2, y)dzdy,
e = 5@, ) Ui (,y)dady.

[0.1)x[0,1]
Alternatively, a decomposition of an L%([0,1) x [0,1]) function f using B is

given by
fz,y) =3 ditdi(z,y), (26)
1

with dr = [, 1yxj0, (2, y)Ur(z, y)dzdy.

Note that we can use two distinct bases, one for each direction. In the
evolutionary spectrum case, we use a 1-d basis for time direction and another
1-d basis for frequency direction.

4 Wavelet estimators of the evolutionary spec-
trum

Now suppose that we have an observed sequence of values {X170--, X7}
and based on these values we want to estimate the evolutionary spectrum.
In this section we consider wavelet estimators constructed using the basis B,



defined in (22). Introduce a local version of the classical periodogram over &
segment of length N of the tapered data X,7, 1 St < T as:

1 N2 .
In(u,w) = Zrfn | g h(—ﬁ)X{un_¥+,+l‘T exp(—iws) 2, (27)

fo0<u<l, -T1Lwsm, where h : [0,1] = [0,1] is a data window,
Hy =T} W ({) = N ¥ R(z)de is the normalizing factor.

Assume N = 27, the finest level chosen to be J = log, N and the coarset
level | = 0. Consider the projection of the spectrum f(u,w) onto the 2%/-
dimensional subspace V; C LU X IT) (on the finest scale J ), denoted by
f1(u,w). So its wavelet decomposition in terms of basis functions of By is

given by
J-127-1

fr(u,w) =cop + E z Z d';":K‘I’;":‘K(uiw)a (28)
=0 K=0 m=hv.d
sampled on an equally spaced grid (tiywn), 0 € 4n < N — 1, with the
coeflicients

coo= [ [ flusw)dudes (29)

and

= [ [ Fww) Wil w)duds. (30)

Now we use the periodogram In(u,w) defined in (27) to obtain the em-
pirical coefficients o0 and d7, where In(u,w) is calculated on overlapping
segments of X r of length N = 27. Let S be the shift from segment to
segment, 1 < § < N. Then, the In(u,w) is calculated at the M timepoints

t; . N .
Ui = t.-=S-:+—2-, 0<i1<M-1,
with T = S(M —1) + N and the frequencies wp = Zr —m,0<n < N -1
So the empirical coeflicients are: N

1 M-l .
Cop = In(u; 31
oo = g7 3 |, THlune)de (31)



and

a

1 M=-1 . .
d;‘r.'x = M Z / IN(Ui,w)‘I'}',‘K(ug,w)dw. (32)
i=p VX

Note that in practice we have to choose M to be equal N to be able to
use a traditional quadratic 2-d wavelet scheme. :

We need some regularity assumptions on both the spectrum Sf(u,w) (or
A(u,w)) and on the wavelet basis functions used to obtain asymptotic results
of the empirical coefficients a7k

Assumptions:

(S1) Let A(u,w) and U7k (u,w) be differentiable in 4 and w with uniformly
bounded first partial derivatives;

(S2) The parameters N » § and T fulfill the relations

TV << N << T"’/lnTa.ndS:Nor—}SV; —0,asT = oo.

(53) The data-taper A(z) is continuous on [0,1] and twice differentiable at
z & p, where p is a finite set and SUpP,gy, | k' (z) |< oo.

Lemma 1 (von Sachs and Schneider, 1996). Let Assumptions (S1)-(S3) be
fulfilled. Then, as T — o, uniformly over j, K, with 2/ = o(N),

(a)

Bk ~ Gic) = O@IN™) = oT/%), ¥m=hyod. (33
L A7, 2
Var(dfi) = 25+ O(T) 4 0@, Vm=viha  (a4)
f T T2
where

ATk =200 || F(000) W) W) + W, )]s

withc,.=(~f[9%fors=1vandc,,=1if5/1v-+0.
o x
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()
TY?Cump{d7%} = o(1), VL2 3; (35)

(d) VT (JZ‘K — d7k) bas asymptotically a normal distribution, with mean 0
and covariance ATy, m = h,v,d.

Note that the properties of this estimate depend on the choice of the
segment length N, its optimal choice depends on the relation between the
unknown smoothness of f(u,w). To avoid a preliminaly choice of a fixed
N, one possibility is using the basis B;. Neumann and von Sachs (1997)
introduced a periodogram-like statistic Iy, 1 <t < T,

1

It,T(w) =
27 |y i<minfi1,T—t}

Xis-oy21. 7 X [t40/21T €XP(—10S8), (36)

which can be considered as a preliminary estimate of f(u,w).

The wavelet coefficients d; of expansion of f(u,w) in terms of basis func-
tions of B, are defined as:

dr = [ Sl osuw)duds = [ s ()i () dudes (37)

where U x I = [0,1] x [—m,7].

Hence, we have

f(uvw) = Z dld)jhh (u)"z;jmkz (w) . (38)
1
Now we define the empiricaj wavelet coefficients as follows:
. I . :
dr=Y [7 bim(wdu [ (@) la()de, (39)
t=1""T -
and an estimate of f(u,w) can be set as
fw,w) = 3 drds m (WPak W), (40)
Ielr

where It = {I: 22 < T1-%}, for some & > 0.

Asymptotic results of the empirical coeflicients dy can be found in Neu-
mann and von Sachs (1997).
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5 Kernel estimators of the evolutionary spec-
trum

Dahlhaus(1996) proposes the following kernel estimator for the evolution-
ary spectrum. Let
w —_—

) = = [ Ko It (41)

where In(u,w) is defined in (27), K; : R — [0, 00] is a kernel with Kiz) =
0 for ¢ ¢ [-1/2,1/2], Ky(z) = K;(—z) and S Ky(z)dz = 1 and by is a
frequency domain bandwidth.

Now define
K@) = { [ MV de} " h(z +1/2), 2 € [~1/2,1/2]

which has the role of a kernel in the time direction and b; = N/T the band-
width in time direction. Then we have:

Lemma 2 (Dahlhaus, 1996). Suppose X; 7 is a locally stationary process as

defined in (4) with 4 = 0 and transfer function A whose derivatives ai:;A,
82

A, %A are continuous. Then
(a)
E(f(u,w)) =
1, 12, 0?
f(u,w)+§b¢ /_1/21 Kt(z)dzgu—,f(“'w)ﬁ'

1y 2 , o 2, log(bT) .,
= a® KrE)e o f(ww) + o8] + E0 ) ()

(b)
Var(f(u,w)) = (bebsT)" Flu,w)? /_11’/221(,(3)241 /_11//22Kf(z)7d:c-

(2r+2m{w=0 (mod r)}). (43)

12



6 Time varying linear systems

Now we consider a linear system
t
Yir=Y, au(T)Xt—u.T + &, (44)
where:

(1) Yir, Xer are locally stationary processes with zero mean;

(i)
sup ), | au(v) |< 003 (45)

(iii) € is a stationary series, mean zero, orthogonal to X; .

On a wavelet basis ¥, we can replace a.(") by
a,,( =) = ZE Bi;, k( (46)
where
w_ [
850 = [ auz)sslz)dz. T
In the following we intend to find an estimate ﬁl(';‘) of the B(’;c)’s and to de-

rive some asymptotic properties of B k- Consequently, asymptotic properties
of estimates of a,‘(T) will follow.

First of all, for the process X1, we define

C_.,_.._,.('U,k) = —1- [ f’f(u’w)eiWkdw’ (48)

the local covariance of lag k at time u, where fzz(u,w) is the evolutionary
spectrum of X,T Then we have (Dahlhaus, 1996):

C(T) 7F)

Cov{ X(s—k/a1T» Xie+#/27}
k/2 t+k/2 |
/(—/,)A(T’de

Cerl o1k + O (1, FIOLT) (49)

13



for smooth A, with both supyr 2k | Cezl($,k) |< oo and supyr 2k |
C'(%,k) [< oo,

Analogously for the processes X, and Y; r, we define
1 m 1wk
Cor(:k) = - [ foyl, 0)eH e,

the local cross-covariance of lag k at time u, where f;,(u,w) is the cross-
evolutionary spectrum of X, 1 and Y; 1, defined by

=)

.1 .
Fry(u,w) = }glg.o 7 E Cov{Xtur-s/2.7> Yiurts/21,7} exp(—iws). (50)

=—00

Now, we have, for every m € Z s
Cov{Yir, Xi-mr} = E{YirXi-mr}
4
= E{[Z au(T)Xt—u,T + ct]Xt—m,T}

= BT au( 5 Xomu Xeemir} + EfeX e}

= ol @B{XicurXimz)

= Cau(F)Cov{Xiwr, Xeomr)

= ol HCerlgi (m = ) + (7))

= o)y [ feelm)e ™m0 1 0T
= 5 [ Sl () ma + 0T
= 5 [ Bl )™ + O(T-Y

-

where . ;
Ba(yw) =32 au(T)e""‘"‘. (51)

14



Then,
4

ol ) = Balp el + O ™).

Hence Ba(T,w) can be eStlma.ted by
Bﬂ T)u' ]zy Tvu‘ JII(T?“‘ bl ( )

where f,,,(%,w) is assumed to be nonsingular and fzz(:ir,w), fﬂ,(%,w) can
be replaced by estimators described in section 4 or 5.

As we have (51), then

v _ Y Mgt e
0u() = 57 /_TB‘,(T,w)e dw, (53)

for u=0,%1,-+-. Thus, a,(%) can be estimated by

t 1 P/ .t 2mp 27p
Au 7= Ba o u—=),
8 = g3 Bel el g) (54)

where Pr is a sequence of integers tending to oo as T — oo and du(%) is
considered as a preliminary estimate of au(%)-

Now, from (47), B}‘Q can be written as

- 1 i
B ==Y au(@)einlz)
I T; T'78 T
T-1 Pr/2
1 1 .t 27p . 2xp t
== Ba(z, 5 exp(iv 5 vik()
T,=°PT+1P=§”z T Pr PpVR\T
T-1 Pr(2
il ;o ampy e 2R TR
=7 2P +1P=§“f=y(T. e Wea (oo o N7 explin g )0 a()- (39)

Finally, a non-linear threshold estimator of ay(%) is given as
Jr

i) = 3 T A (56)

=0 &k

15



for Jr the largest j such that ﬁ(") # 0, where, for hard thresholding,
B = W, xia) = B0 B 12 ) (57)
and for soft thresholding
B3 = 8B, Niw) = sgn(BE( B | ~2ue)s (58)

with threshold parameters ;.. Since 4 has compact support, the number
of k for which ;4(-) # 0 is bounded, so only a finite number of terms are
involved in (56).

There are a variety of forms of shrinkage estimates. In this paper, we
consider hard thresholding.

Now we derive properties for ﬂ( and G,(%), using wavelet or kernel
estimators, described in section 4 a.ud 5, respectively.
6.1 Asymptotic properties of wavelet estimators

In this section, consider the basis B; defined in (22). From (52),

Ba(%v w)= fw(%,w){fn(%,w)}“, fn(%,w) nonsingular,

where
J-127_1

el =& 4T Y ¥ dneup, ()

7=0 K=0 m=h,v,d

i} i T IENE ),

and

16



with d*(%,w) = SN A(s/N)X,_ +a+1‘Te""“”. Similarly,

J-122-1

f,y( w) =& + ¥ dner (—,w)
J—OK=0m_hud

=

M-1

T (2 t;
L e

‘jm(rv) 1 /_1r I(Iy( w) o ( ,w)dw

and 1
(zy)
IN ( T) ) H

with d”(%,w) = Zﬁ-ol h(""/N)Yc—=§+a+1.Te

Using Lemma 1, we obtain the following result.

P () ()

Theorem 1: Assuming assumptions (S1) through (S3), we have
(a)
E{B}?} = ﬂ(-,';‘) +O(T™) + o(T™*(InT)™?), uniformly over j, k; (59)

(b)
Cov{s; (“) ﬂ;:‘,k),}z
1 Z . Pi’:’ zjxm[c;",é‘”’+c"‘K‘")B,(,=,—2)B.,( L, 29Ty
T o (Prtl) ﬁ_w Jes U B e )
expliu 222+ 22 )y ) + o T TY) 4 OV ™), (60)
where (z2) m(=y)
oo _ Aik omi _ Ak
5K T g 7K T )

A;-"'l'é”) =20, an{fzz(u,w)}Q[\I’;{‘K(u,w) + Wk (y, —w)]dudw,

AT =20, /U A Syt @) P10 (0,0) + Wi (18, —0) dudeo

17



142
withC;.:(—f[?-:z—((z%forSzNandCh=lifS/N—+0,
(+]

’

mot
ik = j,K(T’w)‘I’j,K(T'w )

and ke m O™ W0 = o((I0 7)), T m CTNTy = o(In T)");

(c) ﬁJ(';,) has asymptotically a normal distribution, with mean B4 and covari-
ance structure given by (60).

(d)
E{au(7)} = au(3) + O(T12/2) 4 o TX(In T)32%/3) 4 O(NT-397/3)
uniformly over s. o
(e)
Var{au(2)} = ,-Ey Cov (B2, B a4 )
+o((T1n T)~%2’7) + O(NT~327), (62)

Remark: We can also use an appropriate wavelet basis B; defined in (24)
to estimate Bf? and d.(£). The asymptotic properties of these estimators
can be found in Chiann (1997). In practice, for our simulation example
considered in section 7, these estimators did not lead to good results because
the periodogram used in this case can take negative values and is very erratic.

The proof of Theorem 1 is given in the Appendix.

6.2 Asymptotic properties of kernel estimators

In this section, consider kernel estimators of Jzo(+,+) and fry (-, -) described
in section 5. We have here

Ba(%yw) = fn(%,w){fu(%,w)}", fu(%,w) nonsingular,

18



where

Jeo(u,w) / Ko ()G (u, 1),

) = 7 |, / K (2 ")I(”" w, 1)

t
Jle=) e i3 2
(0) = g | EGE) I
and . .
(zv) L
1§9() = 5 € ) o),

with u = £ and d°(-,-) and d¥(:, ) as before.
Here we assume that O(b;) = O(b;) and O(b;) = O(b,).
Using Lemma 2, we obtain the following result.
Theorem 2: Assuming the conditions of Lemma 2 satisfied, we have:

(a)

E{3} = B + O( ) + O(~——), uniformly over j,k; (63)

bbT2

(b)
Var(f)} =
1 1 t 27p
TQ—(PT%-I)?ZT[J’,,( %rrz)]z[b b fzy(T PT):/ K, (’)2‘1’/ K;(I) dr
bb 2 g, (’ 2"”)’fu( 2"”)’/ Ki(z) ”dz/ Kj(z)*dz]

(2r+ znr(E =0 (mod 7)) exp(t2uT,T£)¢‘,,k(i;) + (W) (64)

(c) ﬁ(“) has asymptotically a normal distribution with mean ,6( %) and variance
structure given by (64).

(d)
E{au(%)} - a,.(%) +O((T™" + (bibyT?)H?)277/2), (65)

uniformly over s.

19



()
Var{a Sy C v} Al ¥; s ¥ 3 O((bb, T2 —12JT)
w{u(p)} = 3 Cov(BlR BN ia(z )y () + O((bib T2y 127r).
5.5 kb
(66)
The proof of Theorem 2 is given in the Appendix.

7 A simulation example

We now present a simulation example for the estimate du(-). Here we
consider a series X, generated as a time varying AR(2), an example that
can be found in Dahlhaus (1997):

t ¢ ¢
Xer + GI(T)XG—I,T + 02(T)Xt—2,T = U(T)Eh
with 6y (u) = —1.8cos(1.5 — cos d7u), b;(u) = 0.81, o(u) = 1 and the ¢, are

independent random normal variables with mean zero and variance 1. Figure
1(a) shows this series. In figure 1(b) we present a series Yir as:

t t t
Yir = al(_)Xt-—l,T +ao(=)Xer + a1 (7)Xeq1,r + €,
T T T

with ; -
. 27
01('1':) =-1- 281]1(T - ),
t, 2sin(%¥)
ao(—) = x L )
2
and

a_l(%) =-3- 2cos(% —m).

The filters a;(u), ap(x) and a_;(u) are presented in figure 2.

For the simulation we generated T = 2048 data values for X¢r and con-
sequently for ;7. In order to use a quadratic two-dimensional MRA, we
computed the short-time periodogram defined at (27) over M = 128 seg-
ments of length N = 128, with shift § = 15, using Tukey Hanning data taper
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Figure 4: (a) estimates a1(#) (b) ao(%) (<) a_1(%)
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estimates ,(-) using biorthogonal B-spline wavelets. As above, we see that
the non-linear threshold estimators a,(%) are better than du(%), except for

ao(').

Figure 5: (a) estimates a1(F) (b) éo(£) (c) é_y(#) using kernel estimator

8 Further comments

In this article we considered the important problem of estimating the fil-
ter coefficients of a time-varying linear system, whose input and output are
locally stationary processes in the sense of Dahlhaus. Two types of estima-
tors were entertained: those based on kernel estimates of the evolutionary
specira and cross-spectra involved and those based on wavelet estimates of
the latter. Non-linear thresholding procedures were used to obtain the final
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Figure 6: (a) estimates @1(f) (b) do(%) (c) a-1(%)
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estimators. In both procedures, a wavelet expansion of the filter coeflicients
is proposed initially. Asymptotic properties of the proposed estimators were
derived under various assumptions. Some simulations were performed to as-
sess the validity of the methodology. It was found that the performance of
an estimator depends on the wavelet bases used, on the kernels used and
on the combination made of these choices, Also, it seems that kernel-based
estimates performed better than wavelet-based estimates, but further work
in this area remains to be done. For the simulated example, both estimators
did not present good results uniformly for all filter coefficients. Thus, one of
the coefficients was not estimated well. A few small values obtained for the
spectrum estimate can lead to bad estimates for the filters, since the prelim-
inary estimate is a ratio. The use of basis B; for the wavelet estimators gave
rise to very wigly estimates, since the pre-periodogram (36), besides being
itself a non-consistent estimate, can assume negative values. Perhaps the use
of a tapered periodogram in this case could improve the estimation, but the
asymptotic theory should be established in this situation.
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Appendix

Proof of Theorem 1:
(a) We have

B(fuler) = B + 3 ) I5c(.0)

1Km
By Dahlhaus(1997, Lemma A8),
B(&) = o7 +oT ).

Now, using (33),

¥ E@EW(po)

LKm 1,K.m
t
= ¥ () + B
3.Km
where
—i np— m ¢
[R] < Y O@7N) | ¥7k(z.w) |
7 Km T
< Z 0(2‘jN'1)2jA.
7. Km
Thus, Ry = O(N~Y) = o(T"/‘) with | ¥™ |< A,

Hence,

E{fee( )} = fanlo) + oT™).

23 —1 AT~ m t
¥ + 0@V N k(7w)

(67)

Remark: At several places it was used the fact that, since ¥(z) has compact
support, for a given z, the number of k for which ;x(z) # 0 is bounded,

uniformly in j by 29/2 | supports) |.

Analogously, we have

B{fun( )} = Joy(G0) + o(T™%)

29

(68)



By Fuller (1976, theorem 5.4.3),

E{fzu %,w)[f;,(%,w)]_l}
E{f($,w)}

S ——I-— + (0]

E{fzz(va)} ( )

f:v(T"") + O(T—lﬂ)

fealF,w) + o(T=174)

Bn(‘%’w)fzz(%v“’) + O(T_l) + O(T—IM)

fra(F,w) + o(T-1/4)

E{Bu(g.0)

+o((InT) %) + O(T")

+o((InT)™*) + O(T™)

where
a =E f:rv(Ta“’) E[frv(;r""’)]
fu(Tv“’ E[fz:c(rv“")]
and O(a7) = o((InT)~?) + O(T"Y).
So from (55), we have

B4} = 11 & Pf:z E(Ba (%, 2P)} exp(in 22 )w,,,( )
Thtlig & . T Pr
_ 1 TE‘ “i’:’ Ba(§, 32)fes (4, 32) + O(T1 ) +or=)
Tﬂ'+1 t=0 p=-Pr /2 fz:( —‘2‘) +O(T'1/4)
o((lnT)~%) + O(T)} -exp(iuﬁ)wj ,,(~)
= 11 5 R0 B B (5 R O o) gy
- TPT+1 gﬂ_h” f”( 2—2)+0(T-1/4) xP(‘"_PT)'bj.k(f)
L TXf %ﬁ (o1 7)) + O(T1)) exp(in 2Ly, , (L)
TR 41 = xp(iu = in(F
= 5 +5,.
Now,
1 1 T2 Fef2 2 -1 . 2mp t
18] = ITI_’T_+I gF_ZPTh(O((lnT) )+ O(T ))CXP(W?-T—)'I’:‘.I:(T)I
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1 T-1 1 Pr/f2

P vl gy O explin nl) | (o((1a 7)) + O(T™)

p=—Pr/2

Thus, S; = oT~}(InT)™2) + O(T~?).

As T — oo,
1= Pr/? t 27rp
S = “mp
' gz-(:;PT-i-lp_;/z T Pr 5. e p(u )‘/’Jk( )
1 T-1 1 Prf2 ,27rp o
= Z 1/) k = Z {Ea )exp(—iu —)} exp(iu __2)
TS T Pr+l Topn 'y Pr Pr
lT 1 1 Pr/2 " . 27|’p . 27rp
= Z ¥j, k(T)P 1 —;T/z au(T)exp(—zu-}—);—)exp(zuE—)
1= t 1 Prf? t omp,
+7 > bial DD ay (=) exp(—i5—(u —u))
C—o 2 T P + 1 P-"'PT/zu‘#u T PT
1 T-1
= E 1/)1 k( )au( ) + Sg
T =

By a Lemma of Polya and Szego(1925), we obtain
1 = |4
T L sl (k) ~ [ aul a1 7
where V is the variation of a,(%)®;x(5)- Thus,
1 T-1

1Y vislplon(p) = [ s+ o)
= Y +0(T™)
and
|55 llelw()l 1’%22()(2( M1
5| = § a, ex u —u
T 5= k T Pr+1 o= Pr/2 o' 2w P Pr
55 LS S el P(u' —u))|
< a, 1-— u—u
s ‘god’hk( ) | Pr +1p—-PT/2u¢u exp(
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Thus, S3 = O(T~') and S, = 8% + O(T-).
Hence, we obtain finally

E{8{{} = 8% + O(T™) + o(T~*(la T)"?).

(b) Now, we want to obtain Cov{ﬁ}f',‘),ﬁ.;f"k),}.
First, using (34),

Cov{f"(%,u),fn(-t—,w')}
= Cov{‘(") Z ci'"(")‘l’ (— W),‘(u) Z J;nlgz)wml(( )}

HK.m j' K"m

l

—2 b 2 Cov{dT3=®) J"‘ eehon (_,w)xp ,K.(T,m)+1!23+Rs+114

J.J KK’ m,m’

=T ¥ T Varldi N )i ()

-,1 K=K' m=m'

Tz J{(xz)
+3 X Cov{dTs hi"‘ G ywme T,w)\F:K(T,w
i#i' K£K' m#m'

+ R;+ Rs + Ry
= 3 CR&NUm +o((In T) %) + O(NT™Y),

5 K.m
with
COV{ a(zz) .(z.r)} O(T 1)

Bs = Cov{""’ . dHOUR (00} = O(VT),

1.Km
and
Ry = Cov{es?, 3° J"“"’ K(—,w)} O(NT™?),
]lK,m
where
P, Am(z::) + t' )
O™ = = and Wi = V()W ().
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Hence,

Cov{fu( =, w), fu( W)= 3 CRENT +o((InT)™?) + O(NT ™).

K.m

(69)
Analogously

il

.t ;b
Cov{fr(zs) (o)} = 3 G B +o((ln 1)) + O(NT™.
7. K.m
(70)
where =)
AT
zy) _
Cpim = 2K

Using a Taylor expansion, we obtain

ov{B(t 27rp) Ba(tl 27rp')}

T

z ampy F (f 278
= COU’{ le’(%, Fr )7 fzy(%, ;TI)}

- 2 Y [}

Foel 22 Feel 2

t27rp t27rp
f.‘t‘y Ty
-G )fu(m,){ oolfulr ) feulip )

i 21rp
T By 7))
- B, B ol e 28D, o 2’”’ )

.t 27rp t 27rp
— Ba(,5-)Co

[fI!I(T P ) fzz(

t 21rp

+ B )8 B Conl o 2

o )f,,(‘ PE )+ (7)) + 01T

1 {Z Cm(:y)q,m + Z C’"(")‘II B(t 2"1’)3 (t_ 22 )}
fzz(Ta P-,-)fz’»'(’l" p,.) 1Km »Km

+o((lnT) ") + O(—f).
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Finally,

Covifis), %) }—pZ(pT+1)zZ°"p[’("_+ 2 ot 22, 5, 222 TNy

and we obtain (60).

(c) By Dahlhaus(1997, lemma 2(d)), Brillinger (1975, theorem A2, theorem
3.1.1 and proof of theorem 8.10.1), we obtain the result of ().

(d) We have

iz )—ZZ Ria() and au(2) =S 0ialp)

=0
80,

i) - a3) = SABRsa) = BRsa()

= 2BR(E) - B G = 210 B2 1< X Biia)
I I
= $ -8

Bisil < ZIEGR -8} 1 via(3) |
5k
< 2AO(T™) +oT (InT))}272 | A |
1k

O(T™'277%) + o( T~ (In T)~2277/2),
with | ¢ |< A. By Schwarz’s inequality,
EI1S| < {P(1A3 1< Mu) PPLEBD) I 229/ 4
< {o((T!aT)7?) + O(NT3)}277/2 4,
8o we obtain 53 = o(T'InT)~2277) + O(NT-32'r).

{e) As we have

()=o) = SO -8R bial 3}~ SHUBR 1< NBP0u( ),
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S0,

fau(g) —alp) = (20 Bsa() — B
,2{2:{ﬁ‘“’w,k( ) = BiR )}}{zm B 1< 2Bl a2}
+{ZI (185 1< 2B )Y

= 51+52+53

B{s} = B{ T vulg )w,k( WA - BEYAL, - BYLY)

Gk

T dielF) e (F)Cov( 81, B

Jkk

BISs| = Bl X I085 <M 8 1< A5w) BB, i)y () |

3.3 ok

IA

T Gial i P B 1< Am PP AT 1< A HTHEC (BB
Gui' ek’
Y by (HEGED B, ) + 2B

PR

IA

hence,

Sy = o (T T)72277) + O(NT™32'7).
Analogously, we have

S; = o((TlaT)227) + O(NT~32'7).

Proof of Theorem 2:
(a) Using (42),
E{fue (1)) = Fanlo) + V17
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with

Ve - bz /_ P Ede)da f,,uu)+ Ly / ’K,(z)dza fee(,0)
log(bT) ,

BT + &%)
Analogously, we have

E(fay(uy,w)) = foy(u,w) + V)

+ o(b? +

with

= / '] 62
Wy = / S Z o) + ”f / 2 K2 g oy ()

log 57
ofb? + gb(T )+b, )

By Fuller (1976, theorem 5.4.3),

BB )} = Blia(pellfee( ]}

= M 0 2
E{fee($,0)} (62)
_ Jaldwo)+ 1
- f:(;,w) Tyt O(bEJ_T)
Bﬂ(‘%vw)ft:(%,w) + O(T"l) + VT('.W) _l_
f:m(%aw) + Vq(-wh + O(btbfT)

where

a — E| fzv(T""’) E[ftv(rs’-")]
| fn'(Tyw) E[fz:z(r’w)]
and O(a,’,) = O(ﬁ)

So from (55), we have

1 1 T~1 Prf2

PO = TR, 3 MAG I eet )
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_ 1 R BB )+ O(T) + 5™
TPr+1{5,-Fp foe($: B2) + VA

1 2
Ot} - expliv FEWial)

) o(T 1)+ vl

| 1 T-1 Pr/2 B(t’Z"w_‘g)f (t,‘p_
(1"4‘)

TPT+1 1=0 p=—Pr /2 Sas( ;
1 1 T-1 Pr/2 1 9np t
G O(——=) exp(iu——)¥; k(=
= S1+Sg.
Now,
S S >
18 = |75 17 O ))exP(m )#’ k( =) |
T Pr +1f=°p=-Pr/2 bbT 7
1 T-1 1 Pr/2 21rp 1
< expliu—— (0]
S vl gy S et gD O
Thus, S; = O35 b!T
As T — oo,
12 ik t 2mp . 2np t
S5 = Z PT+1p_EPTnBa('f,P—T)eXP(WFT—)%,k(T)
— (")+O(T l)

Hence, we obtain

E{BY} = B0 + O(T ™) + O 7

(b) Using (43), we have

Var(fee( o)) = (bbsT)™ foslio) ’K(z)’dz " K y(z)ds -
T -1/2

(27 +2r{w =0 (mod 7r)}).
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and

Varl ) = BT Mol [ KiaVds [ Kj(ayae.
‘2r+2r{w=0 (modm)}).

Thenfore,

fsv(rn%'f)

Fee (4, 32)

1 t 2xp t 2rp
m)]—,{va"[fw(,r P‘r)] 2B¢( PT)CW[fcy(

Var(Ba(, 22) = Var( 2T B

t 21rp

B .fn( yo)

t 2xp

+Ba(7,, FE)Va (fn(t s F))+0(@)
1

1/2
[f“( ?Frz)]z bbfofv(t 2”)2/ K:(z)zdﬂ-'/ Ky(z)*dz
(27 + 21!'{—1’: =0 (med 7)} - O(——

1/2

)+ Ba*(z, 2"’) fesl 2o 2"”)’

bbT by T

1/2
2 2 -
. Ki(z) d::/;l/2 Ky(z) dz-(21r+21r{ﬁ =0 (mod 1r)}+0(m)

Now,

varlBl) = 73=(PT+1)=ZZC° (But 2225, 2 expliu 22 4 2 s

_ T_*(TT"IT)f{§ > Var(Ba(k, ?”‘"p( ""‘p,)‘":"(r)’
+ 3 3 ContBat 2298, 2 D exptin 22 4 2 g Ly
£t pp’

t 2xp

T=(PT+1)=[E[f,,(,.%;ﬂ)P:r[W”"( ”/ K(e) “‘f i

by / Ki(z)?dz / K (z)2dz)

(27 +2r{w=0 (mod x)}) exp(zzu—)w, W)+ ZO(b o) exp(i2u A ()’

t 2xp t 2xp

+_B (T Pr)fts(

2xp’

T (HT)exp(..,(._+ Pr”*"‘( Wi (= B}

t#t’ pp’
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and the sum of the last two terms is of order (ﬁ'ﬂ)‘ Hence we obtain (64).

(c) The proof of (c) is omitted. It is similar to the proof of Lemma A.10 in
Dahlhaus (1997) and the proof of Theorem 1(c).

(d) The proof (d) is similar to the proof (d) of Theorem 1.
(e) The proof (e) is similar to the proof (e) of Theorem 1.
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