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1 Introduction 

In the theory of stationa.r, processes, time-invariant linear systems a.re of 

COI113iderable interest. If X 1 and Ye, t E 2 = {O, ±1, - ••},are two stationary 

processes with zero mean, then for observations {Xt, Yi, l $ t $ N} we want 

to estimate the filter weights w,. in the model 

00 

Yi = r: w,.X,_,. + ti, (1) 
u=-oo 

where t 1 is a stationary process with zero mean, orthogonal to X 1• The esti­

mation of w,. involves the spectrum J.,(w) of X1 , the cross-spectrum between 

X 1 and Yi, /ri,(w) and is implemented estimating first the transfer function 

W(w) = I: .. w,. exp(-iwu). Estimation of the error spectrum f.(w) is also of 

interest. See Brillinger (1975, chapter 8) for details. In practice, the infiwte 

sum in (1) is replaced by a finite one. See Robinson (1979). 

In this paper we consider time-varying linear systems of the form (1), 

where the filter coefficients are functions of time. For this situation, the 

processes that appear in (1) will be taken as locally stationary, in the sense 

of Dahlhaus (1997), to be defined in section 2. In our approach, we will use 

two types of estimators: kernel estimators and estimators based on wavelets. 
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Wavelets are a contemporary tool, which have found uses in many ar­
eas, including signal processing, image coding and compression, turbulence, 
statistics, numerical analysis, etc. Good mathematical references a.re Chui 
(1992) and Daubechies (1992). References for uses of wavelets in statistics 
are Donoho and Johnstone (1990), Donoho (1993), Nason (1994). For uses 
in time series analysis see Brillinger (1994a, b), Neumann (1996), von Sachs 
and Schneider (1996), von Sachs. Nason a.nd Kroisa.ndt (1996), Gao (1997), 
Neumann and von Sachs (1997) and Chiann and Morettin (1998). 

In section 2 we give the basic ideas on locally stationary processes and 
the concept of evolutionary spectra. Section 3 presents two-dimensional or­
thonormal wavelet bases. Wavelet estimators and kernel estimators of the 
evolutionary spectrum will be presented in section 4 and 5, respectively. In 
section 6, we present time varying linear systems, in section 7 we present 
some simulations and we conclude with final comments in section 8. 

2 Locally stationary processes and evolution­
ary spectra 

Stationary models have always been the main focus of interest in the 
theoretical treatment of time series analysis. The classical Cramer spectral 
representation of a stationary stochastic process {Xt, t E Z} is given by 

Xt = j~ exp(iwt)dZ(w) = /~ A(w)exp(iwt)de(w), (2) 

where dZ(w) and de(w) are orthogonal and orthonormal increment processes, 
respectively. 

On the other hand, many phenomena. in the applied science show a non­
stationary behaviour (e.g. in economics, sound analysis, geophysics), the 
second order structure of these processes is no longer time-shift invariant but 
changes over time. Priestley (1981) introduced a time dependence in the 
amplitude function A(w), i.e., he considered processes having a. time varying 
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spectral representation 

Xt = j~ exp(iwt)At(w)d{(w), t E Z, (3) 

with an orthogonal increment process {(w) and a time varying transfer func­

tion A,(w). But within the approach of Priestley, asymptotic considerations 

are not possible. 

Dahlhaus ( 1997) defined a. general class of nonstationary processes having 

a time varying spectral representation. In this approach Da.hlha.us defines a 

sequence of doubly indexed processes as follows. 

Definition 1: A sequence of stochastic processes {Xt,T, t = 1, · · ·, T}, is 

called locally stationary if there exists a representation 

(4) 

where 

(i) {(w) is a. stochastic process on [-1r,1r] with {(w) = {(-w), E({(w)) = 0, 

with orthonormal increments, i.e., 

Cov[d{(w),d{(w')l = cl'(w - w
1

)dw, 

and such that 
I: 

Cum{d{(w1), .. ·, d{(wA:)} = '7(L w;)g1:(w1, · .. ,W1c-1)dw1 · .. dwk, 
,=t 

where Cum{··•} denotes the cumulant ofk-th order, 91(w) = 0, 92(w) = 
1, I 9A:(wi,--•,w"_i) l:'.S const" for a.ll k and 77(w) = Ef=_00 o(w+2irj) 

is the Dirac comb; 

(ii) A(u,w) is a function on [0, 1] x !-1r ,71"] which is 271' periodic in w, with 

A{u, -w) = A(u,w). 
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The functions A(u,w) and µ(u) are assumed to be continuous in u, be­cause the smoothness of A in u guarantees that the process has locally a stationary behaviour. 

For simplicity, we assume that µ(u) = 0. 
Remark: In Dahlhaus (1997), the representation (4) is based on a se­quence of functions Ah(w) instead of the function A(u,w), the difference being that it has to fulfill 

t 
sup I Af,T(w) -A(T,w) l:5 Kr- 1

, 

'·"' 
for some positive constant K. For reasons of notational convenience, we use the representation (4), noting that all results will continue to hold for the broader class. 

Now we define for u E (0,1) and fixed T, the Wigner-Ville spectrum 

1 00 

h(u,w) = 271' .f
00 

Cov{X[uT-•nJ,T,X[uT+•/2],T}exp(-iws), (5) 
where the X,,Tis given by (4), with A(u,w) = A(O,w) fort< land A(u,w):::: A(l,w) fort> T and u = f is the re-scaled time to the interval [O, l] . 
Definition 2: The evolutionary spectrum of {Xt,T} given in ( 4) is defined, for u E (0, 1), by 

f(u,w) =I A(u,w) 12 • (6) 
Dahlhaus (1997, theorem 1.2) shows that under smoothness conditions on A, fT(u,w) tends in squared mean to f(u,w). 

3 Two-dimensional orthonormal wavelet bases 
This section describes the construction of two-dimensional wavelet bases using different one-dimensional wavelets bases. 
There are two possibility to build a two-dimensional wavelet basis: 
a) extending two one-dimensional MRA to build a two-dimensional wavelet basis, with only one scale j; 
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b) taking the simple tensor products of one-dimensional wavelets with 

different scales j 1,j2 for each dimension. 

Let V; be subspaces of L2([0, 1]) satisfying 

(a) (7) 

(b) (8) 

( c) for all f E L2([0, 1]), we have 

f EV; {==} J(ri .) E Vo; (9) 

(d) 

for all n E Z . 

There exists </> E Vo such that 

(11) 

is an orthonormal basis in ¼, where, for all j, k E Z, 

(12) 

(10) and (11) imply that {</>;,k;k E Z} constitute an orthonormal basis 

for V; for all j E Z. We often call </> the scaling function. 

The basic idea of multiresolution analysis is that there exists an orthonor­

mal wavelet basis {1/J;,1,,j, k E Z} of L2([0, ll), 

r/J;,1,(x) = 2;/2¢(2;x - k), 

such that for all J E L2([0, 11), 

P,+d = P;J + L < f, 'IPj,k > 1Pi,k, 
kEZ 
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where P; is the orthogonal projection onto V; and 

< f. t/J;,k >= I f(t)t/J;,1,(t)dt. ( 15) 

For every j E Z, define the subspaces W; generated by {?f';,.1:h to be the orthogonal complement of V; in V;+1. Then we have 

\';+1 == V; €B W; (16) and 

It follows that for j > l, 

V; = Vi $ W1 6l .. · 6l W;-1, 
where all these subspaces are orthogonal. 

(17) 

(18) 

Assume that we have an orthonormal basis of compactly supported wavelets of V(O, 11). For any j, let the subspaces V; == V; ® V;, defining a twer dimensional MRA. Then it can be shown that this set of subspaces inherits the properties (a) to (d). So we have 

,--'.<)() 00 £2((0, l] x [0, l]) = LJ =
1V; = LJ V, ® V;, 

J j=I 
which shows the possibility to build a basis of L1([0, l] x [O, l]) from tensor products of functions from different one-dimensional bases, { ¢1,,., 1/J;,k, j ~ l,k}. 

Also, defining 4>;,1:,,"2(x,y) = </J;,1c,(x)</J;,"2(Y), we have that the set 
{4>;,.1:1 ,"2,k1,k1 E Z} 

constitutes an orthonormal basis for V;. 
As in the one-dimensional case, define W; to be the orthogonal comple­ment of V; in V;+1, so we have 

V;+i = ½+i ® V;+1 
= (V; €B W;) ® (V, €B W;) 
= V; ® V; $ ((V; ® W;) ED (W; ® V;) $ (W; ® W;)) 
== V; EB W;, 
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with 

and 
'1ij,K(x,y) = ¢;.k1 (x)t/J;,.1:,(y), 

w;,K(x, y) = 'Pj,k1 (x )<Pi,k,(Y ), 

1111,K(x,y) = 'Pj,k 1(X)tpj,k,(y). 

Note that W; is made up of three different wavelets: horizontal, vertical 

and diagonal. 

Now for any j•, we can write V;• into two different ways: 

Vi. = v,.. 6?> v,.. = V;•-1 EB W;•-1 
j•-1 

= • · · = V1 EB EB Wj 
i=I 

i'-1 

= Vi® Vi EB EB[(½® W;) EB (W; ®½)EB (W; © W,)], (19) 

j=I 

or a.lterna.tively, 

Vr = (Vi $W1 $· · ·ffi W;•-1) ©(Vi$ Wr $ · ··$ W;•-d 

j'-1 j'-l j'-l 

= Vi© Vi$ [EB (W; ©Vi)]$ [ffi (Vi© W;)] $ ( EB (W;. © W;.)]. (20) 

j=l 

From (19), we obtain a basis B1 of L2([0, I] x [O, 11) as 

!31 = { 4>1,k1 ( X )4>1,k, (y) h1 ,k, LJ 

LJ { 4>;,k1 (x )1P;,1c, (y ), 1P;,1c1 ( x )1/>j,k, (y ), t/J;,1c1 ( x )'Pj,k,(Y) h, ,1c, • (21) 

i?:I 

So 8 1 can be represented by 

81 = {4>r,K(z, y), K = (k1, k2)}K U {~J,K(z, y), K = (k1, k2), m = h, v, d};2;1.K• (22) 

According to (20), another construction is given by 

B1 = {4>1,dx)c/>1,1o,(Y)h1,1c, U ( LJ {1Pi1 ,.1c 1 (x)cf,1,1c,(y)}k .. .1:,) (23) 

U( LJ {t/>1,1c1 (x)ti>.i,,ic,(Y)h1,A:,) U ( LJ {TP;,,k,(x)1/1,.,.1:,(y)h,,1c,). 

•~ h~~ 
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For notational convenience, we write t/J1-i,1r for 4>1,k and we define U1 the 
basis functions, where I denote the multiindex I= (j1,j2, k1, k2), so 82 can 
be written as 

(24) 
with 

U1(x, y) = 'Pi1,lt1 (x)t/Ji2,"2(Y)-
Note that some of the t/;j,lt are father wavelets <Pi+i,Jr• 

The decomposition of an L2([0, 1} x [O, 11) function fusing 81 is given by 

f(x,y)=Ec1,K~1.K(x,y)+LL L ~KiitJ:K(x,y), (25) 
K j=I K m=h.,v,d 

where the coefficients a.re computed as 

c,,K = f f(x,11)~1.K(x,y)dxdy, J[o,1)x[O,l] 

d'J'K = { f(x,y)W'J'K(x,y)dxdy. ' lco,1Jx[O,l) ' 

Alternatively, a decomposition of a.n L2([0, 1) x [O, 1]) function f using 8 2 is 
given by 

f(x,y) = 'I:,d1U1(x,y), 
I 

with d1 = fro,i]x[o,iJf(x,y)U1(x,y)dxdy. 

(26) 

Note that we can use two distinct bases, one for each direction. In the evolutionary spectrum case, we use a.1-d basis for time direction and another 
1-d basis for frequency direction. 

4 Wavelet estimators of the evolutionary spec­
trum 

Now suppose that we have an observed sequence of values {X1,T, · · · ,XT,T} a.nd based on these values we want to estimate the evolutionary spectrum. In this section we consider wavelet estimators constructed using the basis 8 1 
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defined in (22). Introduce a local version of the classical periodogra.m over a. 

segment of length N of the tapered data Xt,T, 1 $ t $ T a.s: 

for O < u < 1, -71' ~ w $ 7T, where h : [O, lj ➔ [O, l] is a data window, 

HN = Ef=01 h2(-/:t):::: N Jt h2(x)dx is the normalizing factor. 

Assume N == 2J , the finest level chosen to be J = log2 N and the coarset 

level l == 0. Consider the projection of the spectrum f(u,w) onto the 22J­

dimensiona.l subspace VJ C L 2 
( U x II) ( on the finest scale J), denoted by 

h(u,w). So its wavelet decomposition in terms of basis functions of 8 1 is 

given by 
J-l 21 -1 

/J(u,w) = Co,o + L L L d'J:Kilf'J:K(u,w), (28) 

j=O K=O m=h,.,,d 

sampled on an equally spaced grid ( u,, wn), 0 :S i, n $ N - l, with the 

coefficients 

and 

CQ,o = f
1 j" J(u,w)dudw 

Jo _., 
(29) 

(30) 

Now we use the period~am IN(u,w) defined in (27) to obtain the em­

pirica.l coefficients ~.o and cJ'tK, where lN(u,w) is ca.lcula.ted on overlapping 

segments of Xt,T of length N = 2J. Let S be the shift from segment to 

segment, 1 $ S $ N. Then, the JN(u,w) is ca.lculated at the M timepoints 

t; S . N O . < M 1 
u · = - t· == · • + - < i -

' T' ' 2' - - ' 

with T == S(M - 1) + N and the frequencies Wn = 2
;;' - ,r, 0 $ n $ N - 1. 

So the empirical coefficients are: • 

(31) 
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a.nd 

(32)" 

Note that in practice we have to choose M to be equal N to be able to use a traditional quadratic 2-d wavelet scheme. 
We need some regularity assumptions on both the spectrum f(u,w) (or A( u, w)) a.nd on the wavelet basis functions used to obtain asymptotic results of the empirical coefficients tff:K· 

Assumptions: 

(S1} Let A(u,w) and W7.'K(u,w) be differentiable in u a.nd w with uniformly bounded first partial derivatives; 

(S2) The parameters N, S a.nd T fulfill the relations 

s T 1l 4 < < N < < T 1l 2 
/ 1n T a.nd S = N or N ➔ 0, as T ➔ oo. 

(S3) The data-taper h(x) is continuous on [O, 1] a.nd twice differentiable at x ¢ p, where pis a finite set and sup.,11' I h"(x) I< oo. 

Lemma 1 (von Sachs and Schneider, 1996). Let Assumptions (S1)-(S3) be fulfilled. Then, as T ➔ oo, uniformly over j, K, with 2; = o(N), 
(a) 

(33) 
(b) 

where 

- J.' h• (r)dz 
with C,. = <j; ,.2(.,>=>2 for S = N and C,. = l if S/N ➔ 0. 
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(c) 
(35) 

(d) v'T(dJ:K - d'J:K) has asymptotically a normal distribution, with mean 0 

and covariance Ai,K• m = h, v, d. 

Note that the properties of this estimate depend on the choice of the 

segment length N, its optimal choice depends on the relation between the 

unknown smoothness of f( u, w ). To avoid a preliminaly choice of a fixed 

N, one possibility is using the basis 8 2• Neumann and von Sachs (1997) 

introduced a periodogram-like statistic 11,T, 1 $ t $ T, 

lt.T(w) = 2~ L X11-,/2J,TX[t+1/2J,Texp(-iws), (36) 
J,J::;min{t-1,T-t} 

which can be considered as a preliminary estimate of f(u,w) . 

The wavelet coefficients dl of expansion of f(u,w) in terms of basis func­

tions of 82 are defined as: 

d1 = !uxn J(u,w)U1(v.,w)dudw = Lxn f(u,w)t/J;,,1r, (u)J;,,1c,(w)dudw (37) 

where U x IT= [O, 1] x [-,r,,r] . 

Hence, we have 

f(u,w) = "i:,drif,1;,,1c,(u)tli;,,1c2 (w). 
I 

Now we define the empirical wavelet coefficients as follows: 

and an estimate of f(u,w) can be set as 

i(u,w) = L, dr1/J;,,1,,(u),J,,i,,"2(w), 
lEh 

where Ir= {I: 2i•+i2 $ T 1- 6}, for some 8 > 0. 

(38) 

(39) 

(40) 

Asymptotic results of the empirical coefficients d1 can be found in Neu­

mann and von Sachs (1997). 
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5 Kernel estimators of the evolutionary spec­
trum 

Dahlha.us(1996) proposes the following kernel estimator for the evolution­
ary spectrum. Let 

(41) 

where lN(u,w) is defined in (27), Ki : 'R. ➔ [O, oo] is a. kernel with K1(x) = 
0 for x r/. [-1/2, 1/2), K1(x) = K1(-x) and J K1(x)dx = 1 and bi is a 
frequency domain bandwidth. 

Now define 

which has the role of a kernel in the time direction and b1 = N /T the band­
width in time direction. Then we have: 
Lemma 2 (Dahlhaus, 1996). Suppose Xt,T is a. locally stationary process a.s 
defined in (4) withµ= 0 and transfer function A whose derivatives /;;,-A, 82 A 82 A . Th F.JI , a,;a;;; a.re contmuous. en 
( a) 

(42) 

(b) 

Va.r(i(u,w)) 
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6 Time varying linear systems 

Now we consider a linear system 

t 
Yi,T = L a,.(T)Xi-u,T + ft, 

u 

where: 

(i) Yi,r, X1,T are locally stationary processes with zero mean; 

(ii) 
sup LI a,.(v) I< oo; 

" u 

(iii) £1 is a stationary series, mean zero, orthogonal to Xi,T­

On a wavelet basis '1/J, we can replace a,.(·) by 

t _ '°''°' (u) t 
a,.(T)- 77/3j,kw;,k(T), 

where 

/3;,1 = fa' a,.(z)tJ.,,,1,(z)dz. 

(44) 

(45) 

(46) 

(47) 

In the following we intend to find an estimate JJ:;! of the .B;:;! 'sand to de­

rive some asymptotic properties of fi;f. Consequently, asymptotic properties 

of estimates of a,.( i) will follow. 

First of all, for the process X 1,T, we define 

C.,.:r:(u,k) = -
2
1 j.- J.,.,(u,w)eiwkdw, 
11' ---

(48) 

the local covariance of lag k at time u, where J.,.,(u,w) is the evolutionary 

spectrum of Xt,T• Then we have (Dahlhaus, 1996): 

C£!'>( ½, k) = Cov{X[t-k/2],T, X[1+A:/2J,T} 

1.- A(t - k/2 A(t + k/2 ) iwkdw 
= _,... T , w) T , w e 

t I t k 
= C.,.,(,f'k) + C (T,k)O(T) (49) 
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for smooth A, with both supt/TLk I C.,,.,,(},k) I< oo and supt/TLk I 
c'(f,k) I< oo. 

Analogously for the processes X,.T and Yt,T, we define 

1 j"' . k C.,,11 (u,k) = 
2
- J,,11(u,w)e'"' dw, 71" _,, 

the local cross-covariance of lag k at time u, where f""(u,w) is the cross­evolutionary spectrum of Xt,T and Yt,T, defined by 

l,i:11 (u,w) = lim 
2
1 E Cov{X[uT-•/'.l]T,Y[uT+•/2]T}exp(-iws). (50) T➔oo 11" •=-oo ' ' 

Now, we have, for every m E Z, 

Cov{Yt,T, Xt-m,T} = E{Yt.TXt-m,T} 
t = E{[L au( T )Xt-u,T + t1]X1-m,T} 

u 

t = E{L a,.(T)X1-u,TX1-m,T} + E{c1X1-m,T} .. 
t = }:a,.(T)E{Xt-u,TX1-m,T} 

" t = La,.( T )Cov{Xt-u,T, X1-m,r} 
u 

= }:a,.(f){C.,.,(f, (m- u)) + O(T-1
)} .. 

= ~a,.(f)
2~ 1-: J,,,,(f,w)i"'(m-u)dw + O(T-1

) 

= 1 {" '°' ( t) _;..,..f ( t ) iwmJ.. O(T-1) 271' J_,, ~a,. T e :z::i: T'w e u.w + 
1 /" t t iwm -1 = 271" J_,, Ba(T,w)f.,,.,,(T,w)e dw + O(T ) 

where 

Ba(f,w) = I:0 .. (~)e-i""'. 
" 

(51) 
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Then, 

Hence Ba(},w) can be estimated by 

, t _ • t • t -1 

Ba(T,w) - f,, 11 (T,w){J,,,,(T,w)} , (52) 

where J,,,,(},w) is assumed to be nonsingular and frx(y,w), }:r,Ar,w) ca.n 

be replaced by estimators described in section 4 or 5. 

As we have (51 ), then 

(53) 

for u = 0, ±1, · · ·. Thus, a,.(r) can be estimated by 

where Pr is a sequence of integers tending to oo as T -4 oo and a .. (y) is 

considered as a preliminary estimate of a .. (;~,). 

Now, from (47), ~Jj can be written as 

Finally, a non-linear threshold estimator of a .. ( 'f) is given as 

(56) 
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for JT the largest j such that .BJf ::J 0, where, for hard thresholding, 

(57) 

and for soft thresholding 

with threshold parameters >..i,1<· Since tp has compact support, the number 
of k for which 1/>;,1,(·) =f O is bounded, so only a finite number of terms are 
involved in (56). 

There are a variety of forms of shrinkage estimates. In this paper, we 
consider hard thresholding. 

Now we derive properties for t1}f and a,.(,}), using wavelet or kernel estimators, described in section 4 and 5, respectively. 

6.1 Asymptotic properties of wavelet estimators 

In this section, consider the basis 8 1 defined in (22). From (52), 

• t 
f .,.,( T, w) nonsingular, 

where 

1 M-l " t t r,,(.,.,} = - 'C""' l 1'"'")(.i )\If'!' <.i )dw ,,K M L-. N T'w ,,K T'w i=O -,r 

and 
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and 

1 M-1 " t 
•(r11) = _ ""' j J<r11)(~ )dw 
Coo M L.. N T'w ' 

i:0 -,r 

J:>,,(xy) = _!._ ~11 .. 1(xy)(~ )wm (~ )dw 
;,K M L.. N T'w i,K T'w 

i=O -11' 

1~1 t 1 t t 
IN (T,w) = 2rrHN d"(T,w)rJll(f,w) 

with d11 (f,w) = L~c/ h(s/N)Yi-'f+•+l,Teiw,_ 

Using Lemma 1, we obtain the following result. 

Theorem 1: Assuming assumptions (Sl) through (S3), we have 

(a) 

(b) 

'(u) ·(u
1

) 

Cov{.BJ,• , ,8j' ,1,'} = 
l T-1 l Pr/2 't""'. [cm,(1:11) + ~ ,(u) B.( I, l2)B.('', 2!L))lf'!' 

__ ""' _ _ ,..,.. ""' L...1,K,m J,K J,K 7' Pr T _fr__ J,K 

- 7'2 L., (Fr+ 1)2 L., f ( I l!.£)/ (t' ~) 
t,c'=o p,p'=-P-r/2 ::u: 7'1 P-r z~ 'ff, Pr 

. 27rp '21rp' t t' 2 3 

exp[,(uJi; + u -:;:,;-))\11,;,1,(T)\lii' ,1,'(f) + o((TlnT)- ) + O(NT- ), (60) 

where Am,(rv) 
cm,(~)-~ 

j,K - T ' 

A,~Jrr) = 2c,. r {fu(u,w)}2[1vm,.K(u,w) + 'l1,mK(u,-w)]dudw, 
· luxn ' ' 

A,"'iJ,"'11> = 2c,. [ {J.,v(u,w)}2[w,mK(u,w) + w,mK(u, -w)]dudw 
' luxn ' ' 
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with C,. = F":(z)dz
3 

for S = N and C,. = 1 if S/N ➔ 0, ( 
0 

h (z)dz) 

d ~ cm,(zz),T,m ((1 T)-2) " cm,(z11),T,m - ((In T)-2)· an L.,j,K,m j,K ,.. j,K = o n , t..,j,K,m j,K ,r j,K - O , 

(c) fi;i has asymptotically a normal distribution, with mean .8}1 and covari­ance structure given by (60). 

(d) 

E{ii .. (-f)} =a .. (;,)+ O(r-12JTl2
) + o(r-1(ln Tt22JT/2

) + O(NT-32JTl2
), 

(61) 
uniformly overs. 

(e) 

(62) 

Remark: We can also use an appropriate wavelet basis 8 2 defined in (24) 
to estimate .Bt} and ii,.(}). The asymptotic properties of these estimators 
can be found in Chiann (1997). In practice, for our simulation example 
considered in section 7, these estimators did not lead to good results because 
the periodogram used in this case can take negative values and is very erratic. 

The proof of Theorem 1 is given in the Appendix. 

6.2 Asymptotic properties of kernel estimators 

In this section, consider kernel estimators off.,.,(·,•) and/.,.,(•,•) described in section 5. We have here 

• t 
J.,.,(7r,w) nonsingular, 
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where 

and 
(,:11) t 1 t t 

IN (T,w) = 21rHN cF(T,w)d1'(T,w), 

with u = i and d"(·, ·) and d11 (·, ·) as before. 

Here we assume that O(b1) = O(b~) and O(bt) = O(b~)­

Using Lemma 2, we obtain the following result. 

Theorem 2: Assuming the conditions of Lemma 2 satisfied, we have: 

(a) 

E{.B}:2} = /3)::} + O(}) + 0( btb~T2), uniformly over j, k; (63) 

(b) 

( c) /J;1 has asymptotically a normal distribution with mean /3;1 and variance 

structure given by (64). 

(d) 
(65) 

uniformly overs. 
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(e) 

The proof of Theorem 2 is given in the Appendix. 

7 A simulation example 

We now present a simulation example for the estimate ii,.(·). Here we 
consider a series Xt,T generated a.s a time varying AR(2), an example that 
can be found in Dahlhaus (1997): 

t t t Xt,T + (Ji(T)Xt-1,T + 02(T)Xt-2,T = o-(;;;)ft, 

with 01(u) = -1.8cos(l.5- cos41ru), 02(u) = 0.81, a(u) = 1 and the ft a.re 
independent random normal variables with mean zero and variance 1. Figure 
l(a) shows this series. In figure l(b) we present a series Yi,T a.s: 

t t t Yi,T = a1(T)Xt-1,T + ao(T)Xt,T + a_1(T)X1+1,T + t:i, 
with 

and 

The filters a1 ( u ), a0 ( u) and a_1 ( u) a.re presented in figure 2. 
For the simulation we generated T = 2048 data values for Xt,T and con­

sequently for Yi,T• In order to use a quadratic two-dimensional MRA, we 
computed the short-time periodogra.m defined at {27) over M = 128 seg­
ments of length N = 128, with shift S = 15, using Tukey Hanning data taper 
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Figure 1: (a) Series X1,T (b) Series Y;,T, t = 1, · · ·, 2048 

" 

" 

:lL _____ .....:::::==::::=_ ____ _ 

" 
Figure 2: (a) filter a1(~) {b) filter Oo(f) (c) filter a-1(t) 
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h(x) = ½(1 - cos(211'x )]. For the wavelet basis used, at first, we choose the Daublet orthogonal periodized wavelet (d8) to obtain jzz(f,w) and jz11 (},w), and then obtained o,.(}), for u = -1,0,1 ands= 1,17,•· · ,2048. l'he re­sults are showns in figure 3(a),(b) and (c). Next, in order to improve the estimates obtained above, we use biorthogonal B-spline wavelets to obtain a,.(f ). The results are shown in figure 4(a),(b),(c). Note that the noises in the figure 3 are suppressed by non-linear thresholding without losing local structure of a-1(·) a.nd a1(·). 

.. 

... 
Figure 3: (a) estimates ih(f) (b) ao(i) (c) iL1(f) using wavelet estimator 

Next we turn to the Parzen window to obtain the kernel estimates of iu(½,w) and JZl/(hw) using the same T, N ,Mand S. Figure 5(a),(b) and (c} show the estimates of a,.(·), for u = 1, 0,-1, respectively. Comparing with Figure 3, we note that using a kernel estimator we obtain better preliminary estimates for the filter coefficients. Finally, Figure 6 present the improved 
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1~!......___ __ --=-
. • 

... 

Figure 4: (a) estimates ii1(T) (b) iio(f) (c) <'L1(f) 
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estimates au(·) using biorthogonal B-spline wavelets. As a.hove, we see that the non-linear threshold estimators au(f) are better than au(~), except for ao(·). 

.. 

.. 

.. 
Figure 5; (a) estimates a1(i<) (b) ao(4,) (c) ii_1(f) using kernel estimator 

8 Further comments 

In this article we considered the important problem of estimating the fil­ter coefficients of a time-varying linear system, whose input and output are locally stationary processes in the sense of Dahlhaus. Two types of estima­tors were entertained: those based on kernel estimates of the evolutionary spectra and cross-spectra involved and those based on wavelet estimates of the latter. Non-linear thresholding procedures were used to obtain the final 
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• 
Figure 6: (a) estimates ii1(f) (b) iio(4,) (c) ii-1(f) 

25 



estimators. In both procedures, a wavelet expansion of the filter coefficients 
is proposed initially. Asymptotic properties of the proposed estimators were 
derived under various assumptions. Some simulations were performed to as­
sess the validity of the methodology. It Wa.5 found that the performance of 
an estimator depends on the wavelet bases used, on the kernels used and 
on the combination made of these choices. Also, it seems that kernel-based 
estimates performed better than wavelet-based estimates, but further work 
in this area remains to be done. For the simulated example, both estimators 
did not present good results uniformly for all filter coefficients. Thus, one of the coefficients was not estimated well. A few small values obtained for the 
spectrum estimate can lead to bad estimates for the filters, since the prelim­
inary estimate is a ratio. The use of basis Bl for the wavelet estimators gave rise to very wigly estimates, since the pre-periodogram (36), besides being 
itself a non-consistent estimate, can assume negative values. Perhaps the use of a tapered periodogram in this case could improve the estimation, but the asymptotic theory should he established in this situation. 
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Appendix 

Proof of Theorem 1: 

(a) We have 

E(f.,,.,,(½,w) = E(c!:,"')) + L E(J;','~"""l)w;:K("f ,w). 
1,K,m 

By Dahlhaus(1997, Lemma AS), 

E(4~i"'J) = c~'"l + o(r-112). 

Now, using (33), 

L E(d;','~'"'">)wfK("f,w) = 
j,K1m 

where 

I R1 I :::_; L O(ri N- 1
) I ll17:K('f,w) I 

j,K,m 

s; L O(r' N-1 )2; A. 
j,K,m 

Hence, 
(67) 

Remark: At several places it was used the fact that, since ip( x) has compact 

support, for a given x, the number of k for which 'P;.~(x) # 0 is bounded, 

uniformly in j by 2i/1 \ supportip \. 

Analogously, we have 

(68) 
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By Fuller (1976, theorem 5.4.3), 

A t A t • t -I E{B.,(T,w)} = E{f.,11 (T,w)[f,,,:(T,w)] } 

where 

:a: E{~~(t,w)} + O(a!) 
E{/.,.,(r,w)} 

= f.,11( ,J.- ,w) + o(T-1/4) + o((lnT)-2) + O(T-1) 
f,,,,( i'", w) + o(T-1/4) 

:: Ba( f ,w)J,,.,( :f: ,w) + O(T-
1

) + o(T-
1
l

4
) + o((lnT)-2) + O(T-1) J.,,,(t,w) + o(T-t/4) 

a!=E I ~~(t,w)-E[~~(t,w)] 12 
f.,.,(r,w) - E[fzz(r,w)] 

and O(a!) = o((lnT)- 3
) + O(T- 1

). 

So from (55), we have 

;,(u) 1 1 T-l P-r/l • t 2,rp , 2,rp t E{Pj,1r} = T Pr+ 1 :£ :£ E{B.(T' Pr)} exp(1u Pr )1/>;,1,(T) 
1c=0 p:-P,,./2 

l 1 T-l l'r/l B.(4',¾,£)Ju(f,*)+O(T-1)+o(T- 1l4) 
= T Pr+ 1 L L { f ( i ,W.) + o(T-1/◄) + 1:0 ,=-l'r/2 u T'• 

o((lnT)-2) + O(T-1)} · exp(iu ~)\!>;,,(f) 

1 1 T-l l>r/2 B.(,j., l?:)J.,.(,j., ~) + 0(1'"" 1) + o(T- 111) • 21rp t = TPr+l L L J. ( 1 ~)+o(T-1/4) exp(tup;)!J>;.1r(T) h:0 p:-J>r /2 SIi 'I'• P.,. 

l 1 T-l P.,./l 2 t +TPr+lL L (o((lnT)- 2)+0(T-1))exp(iu;:),j,;,1r(T) 
1:0 ,=-P-r/2 

= S1+S2, 

Now, 

1 1 T-l P-r/2 
27rp t = 1-T-P 

1 L L (o((lnT)-2
) + O(T-1))exp(iu -P. )'Pi,,.(-T) I 

T + i=O p=-J>.r/2 T 
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Thus, S2 = o(T-1(lnT)-2 ) + O(T-2 ). 

As T ➔ oo, 

1 T-l I ~ 12 t 21rp . 21rp t 
S1 = TL p, + 1 L Ba(T'P.)exp(iup.)TP,,k(y) 

t=O T p=-PT/2 T T 

1 T-l t l PT/2 t 2 2 

= TL 1Pi,k(rj;) p. + 
1 

L {Eau,(f)exp(-iu' p.rrp)}exp(iu P.1rp) 

t=O T p==-Pr/1 u' T T 

1 T-l t 1 PT/2 t , 21rp . 21rp 

= TL V'i,k(T) p. + 1 
L au(y)exp(-iup,)exp(mp,) 

t=O T p=:-Pr/2 T T 

1 T-l t I ~ 12 t .21rp I 

+7r L 1Pi,k(y) P, + l L L au,(f)exp(-ip.(u - u)) 
t=:0 T p=-PT/lv'-1,u T 

1 T-l t t 
T ~ TP;,"(T)au(T) + Sa 

t=:O 

By a Lemma of Polya and Szego(1925), we obtain 

1 T-l t t J t t V 
IT~ t/J;,1,(T)a.,(T) - a.,(T)t/J;,k(f)dt I$ T' 

t=:0 

and 
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Thus, S3 = O(T-1
) and S1 = IJ;1 + O(T-1 

). 

Hence, we obtain finally 

E{.8;1} = P;1 + O(T-1
) + o(T-1(ln T)-2

). 

{ 
'( .. J •(,.') (b) Now, we want to obtain Cov /3,· 1e, /3 ., le'}. 

• 1' 

First, using (34}, 

• t • t' I 
Cov{fn:(T,w),f.,.,(T,w)} 

= Cov{~'") + I: J;:t'">wfK(;,w),~") + I: "7':i7'"lw;:'.K1(},w')} 
;,K,m ;',K',m' 

't""' 't""' '°' C { ~.(n:J ~•.(rr)} m ( t ) m.' (t' ') = ,t_ L.., ,t_ ov a;,K ,a;',K' '11;,K T'w w;',K' T'w + Rl + R3 + f4 jJ' K,K' m.m' 

= E E E Var{J;:~""l}WJ,'x(f,w)1Il7,'x(~,w') 
j:;' K=K' m=m' 

with 
R - C { ,(uJ .(r:)} - O(T-1) ] - ov Coo ,Coo - ' 

R3 = Cov{~"l, E J;:J=l11'J.'x(f,w)} = O(NT-1
), 

j,K,m 

and 

~ = eov{~">, E 
;',K',m' 

I 
~•,(:1::1:) m' t I -} a.,K, 111.,K,(-T,w)}=O(NT ), , . , . 

where 
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Hence, 

Analogously 

(70) 

where 

Using a Taylor expansion, we obtain 
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Finally, 

a(v) "(u') 1 '°" 1 '°" . 2,rp • 2,rp' • t 2,rp • t' 2,rp' t t' Cov{Pj,1,, fl;•.•·}= p L, (Pr+ 1)' L, exp[t(u J>r +u p;-)JC011[B.(T, Pr), B.(T, p;-)J;i,,h(T)'P;•,1,•(r ) ,.e ,,,,,' 
and we obtain (60). 

(c) By Dahlhaus(1997, lemma 2(d)), Brillinger (1975, theorem A2, theorem 
3.1.1 and proof of theorem 8.10.1), we obtain the result of (c). 
(d) We have 

JT 
a,.(f) = 'I:'I:.BJ1¢;.•(f) and a,.(f) = I:.BJj¢;.•(;yd, 

1=<> k r,k 
so, 

~(J;1t1>;,1,( f) - /J}~tl>;,1,(;f)) 
J,k 

= 'I:{.8;1¢;.k(f) -.aJ1¢;..(f)}- }:I(\ 11}1 I< >.;,k)P}1¢;,k(fl 
1,k J,k 

= S1 -S2 

E I S1 I s L I E{P;1 - .aJ1} II t/1;,i.( i;} I 
j,k 

S }:{O(T-1 ) + o(T- 1(ln T)-2)}2il2 j A I 
J,k 

= O(r-12JT/2) + o(T-l(Jn T)-22JT/2). 

with \ t/1 IS A. By Schwarz's inequality, 

EI s2 1 s {P(I /3111< >-, .• n1'2{El(.BJ1)2n1
'

2v12 A 
S {o((TlnTt 2 )+O(NT-3 )}2JTl2A, 

so we obtain S2 = o((Tln T)-22JT) + O(NT-32JT). 

(e) As we have 

a,.(f)-a,.(f) = L{/3;f"1;.•(f)-.B}Jtb;.k('f)}-}:I(I .BJ1 I< >., .• ).B}1tP,.k(f), ,.. , .. 
34 



so, 

{E{P)1TP;,k(f)-11;1w;,i.(f)}}2 
;,k 

-2{E{P}1TP;,i.(f) - li;fiJ,;,k(f HHE 1(1 /3;1 I< >.;,k)J3;f1/J;,k(f)} 
;,k ;,k 

+{EJ(I JJf I< >.;,k)l3;fiJ,;,k(f)}2 
j,k 

= S1 + S2 + S3 

E{S1} 

= EI L 1(1 it1 I< A;,1r)J(I .Bt,~, I< -';•,1r•)P}:;.'.a;::,.,1P;,k(f)1P;'.1r'(fl I 
;,t ,lc,h' 

L t/,;,.(f h";•,1r•(f){P(I .aJ1 I< A;,1r)}114 {P(I .Bt~, I<-';' ,Ir' )}114{E(.Bj:;,l .at~, )2}1l2 

jj',lt,k' 

" ( 8 8 { ·(u))2 (Q(u) )2 { (Q(u) Q(u) )}2} 

~ IP;,,. rl1P;•.1r•!rl E(P;.1r E ";' .• ' + 2 E ";·"";'."' . 

jJ',k,k
1 

hence, 

Analogously, we have 

Proof of Theorem 2: 

(a) Using (42), 
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with 

i f 112 a2 i 1112 a2 = -
2

b: x 2Kt(x)dx?,ifi:r(u,w)+-
2

b} x2 K1(x)dx -
8 2 f.,,,(u,w) -1/2 uu -1/2 W 

+ o{b2 log(btT) b2 ) I+ b,T + I. 

Analogously, we have 

E(i:r11(u,w)) = l:r11(u,w) + v.j."11
> 

with 

By Fuller (1976, theorem 5.4.3), 

• t • t • t -1 E{B.,(T,w)} = E{f.,11 (T,w)[f.,.,(T,w)] } 

where 

= E{~z11 (t,w)} + O(a!) 
E{/,,.,(7',w)} 

J"'li( r ,w) + v.}.""1 O 1 
= J.,.,(f,w) + v.j"11> + (bib1T) 

= 8 0 (¼,w)f.,,,( t ,w) + O(T- 1
) + V.}."'lll + 0(- 1- ) 

f.,.,(4',w) + vj=> bib1T 

a!= El /,,v(t,w)- E[/"'li(t,w)] 12 
f,,.,(T,w) - E[f.,.,(T,w)) 

and O(a!) = 0( 6,{,t)-
So from (55), we have 

•(u) _ 1 I ~ ~
2 

• t 2,rp . 21rp t E{,8;,d - TP. +lL L E{B .. (T'P.)}exp(tup)tb;,1,(T) T t=O p=-f>T/l T T 
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Now, 

Thus, S2 = O(b,b~T2 ). 

As T 4 oo, 

Hence, we obtain 

E{a!"l} = p!uJ + O(T-1) + 0( -
1

- ). 
~~ ~ bi~~ 

(b) Using (43), we have 

• t t j'~ j'~ 
Var(f.,.,(-T,w)) = (btb1T)- 1J,,.,(-T,w)2 Ke(x)2dx K1(:t}1dx · 

-1/2 -1/2 

•(211' + 211'{w = 0 (mod 71')}). 
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and 

Now, 
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and the sum of the last two terms is of order ( b,b~Ts ). Hence we obtain (64). 

(c) The proof of (c) is omitted. It is similar to the proof of Lemma A.10 in 

Dahlhaus (1997) and the proof of Theorem I(c). 

(d) The proof (d) is similar to the proof (d) of Theorem 1. 

( e) The proof ( e) is similar to the proof ( e) of Theorem 1. 
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