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Abstract. We investigate the phase diagram of a spin-1 Ising spin-glass model
on a Cayley tree. According to early work of Thompson and collaborators, this
problem can be formulated in terms of a set of nonlinear discrete recursion
relations along the branches of the tree. Physically relevant solutions correspond
to the attractors of these mapping equations. In the limit of infinite coordination
of the tree, and for some choices of the model parameters, we make contact
with findings for the phase diagram of more recently investigated versions of the
Blume–Emery–Griffiths spin-glass model. In addition to the anticipated phases,
we numerically characterize the existence of modulated and chaotic structures.
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In the beginning of the 1980s, Inawashiro, Frankel, and Thompson [1], used a formalism
of distribution functions, which had been developed by a number of authors [2], to
analyze the effects of disorder on the phase diagram of a magnetic lattice gas model.
This pioneering work remained almost unknown, although the disordered magnetic lattice
gas (DMLG) is similar to some versions of the spin-1 Blume–Emery–Griffiths spin-glass
(BEGsg) model, which have been the subject of several investigations, both using the
replica method, at a mean-field level [3], and using real-space renormalization-group
techniques [4].

Thompson and collaborators [5] have also formulated the DMLG model on a Cayley
tree of ramification r. The physical solutions, in the ‘deep interior’ of the tree, come from
the analysis of the attractors of a set of coupled discrete nonlinear recursion relations. In
the infinite-coordination limit, r → ∞, this mapping is considerably simplified. Thompson
and collaborators established the connections between the solutions on the Cayley tree
and previous calculations on the basis of distribution functions. However, as far as we
know, there has been no attempt to carry out a more detailed analysis of the nonlinear
recursion relations, for some representative sets of model parameters, and to make contact
with more recent findings for the BEGsg model.

We then decided to revisit the BEGsg model on the Cayley tree, in the limit of infinite
coordination, using the recursion relations obtained by Thompson and collaborators [5].
In these spin-1 models, the competition between spin-glass and uniform quadrupolar
terms may lead to fixed points and limit cycles, as has been suggested by some
investigations for infinite-range spin-glass models [6,7]. Therefore, we consider a particular
version of the original model, which is chosen to include this type of competition.
In the infinite-coordination limit, the discrete non-linear mapping associated with this
particular version is two-dimensional and becomes amenable to a detailed analysis. In
the low-temperature regime, and for sufficiently repulsive biquadratic spin interactions,
we find a rich behavior, including chaotic structures, characterized by positive Lyapunov
exponents.

Consider a random spin-1 Hamiltonian with bilinear and biquadratic terms,

H = −
∑
(i,j)

JijSiSj −
∑
(i,j)

UijS
2
i S

2
j , (1)

where Si = +1, 0, −1, for all lattice sites, and the sums are over nearest-neighbor pairs of
spin variables on a Cayley tree of coordination r +1. We assume that {Jij} and {Uij} are
independent, identically distributed quenched random variables, of Gaussian form, with
mean values 〈Jij〉 = J0/r and 〈Uij〉 = K/r, and mean square deviations,

〈
(∆Jij)

2〉 = J2/r

and
〈
(∆Uij)

2〉 = U2/r. In the limit of infinite coordination, r → ∞, the recursion relations

doi:10.1088/1742-5468/2015/06/P06028 2

http://dx.doi.org/10.1088/1742-5468/2015/06/P06028


J. S
tat. M

ech. (2015) P
06028

Chaotic behavior of a spin-glass model on a Cayley tree

have already been obtained by Thompson and collaborators (see equations (3.30)–(3.35)
of [5]).

We now assume a particular case, with J0 = 0 (pure spin-glass) and U = 0 (randomness
is restricted to bilinear spin interactions), and sketch a derivation of the recursion relations
according to our own earlier work (see da Costa and Salinas [8]). Consider the sucessive
generations of a Cayley tree of ramification r. A spin-1 variable S0, on a site belonging to
a certain generation, is connected to the spins on the r sites of the previous generation of
the tree (Sj, with j = 1, 2, ..., r). Due to the cycle-free structure of this tree, it is possible
to write the partition function in terms of partial sums over the set of variables of each
generation. We then introduce some effective parameters L0, ∆0, {Lj}, and {∆j}, and
write∑
{Sj}

exp

{
r∑

j=1

[
βJ0jSjS0 +

βK

r
S2

j S
2
0 + ∆jS

2
j + LjSj

]}
= A exp

[
L0S0 + ∆0S

2
0

]
, (2)

so that

A exp
[
L0S0 + ∆0S

2
0

]
=

r∏
j=1

[
2 exp

(
βK

r
S2

0 + ∆j

)
cosh (βJ0jS0 + Lj) + 1

]
, (3)

with 1/β = kBT , where kB is the Boltzmann constant and T the absolute temperature.
If we use the more convenient variables

mj =
2 sinh Lj

2 cosh Lj + exp (−∆j)
; pj =

2 cosh Lj

2 cosh Lj + exp (−∆j)
, (4)

it is easy to obtain the relations

m0 =
2 sinh (L0 + x)

2 cosh (L0 + x) + exp (∆0 − y)
, (5)

p0 =
2 cosh (L0 + x)

2 cosh (L0 + x) + exp (∆0 − y)
, (6)

with the new random variables

x =
r∑

j=1

xj; y =
r∑

j=1

yj, (7)

where xj and yj can be written in terms of mj and pj,

xj =
1
2

ln
(cosh tj − δ) pj + mj sinh tj + δ

(cosh tj − δ) pj − mj sinh tj + δ
, (8)

yj =
1
2

ln
{
[(cosh tj − δ) pj + mj sinh tj + δ]2 − [mj sinh tj]

2} , (9)

with tj = βJ0j and δ = exp (−βK/r).
In order to calculate the expectation values of m0, p0, and their moments, and to

establish the recursion relations, it is convenient to write the joint probability distribution
of the random variables x an y,

P (x, y) =

+∞∫
−∞

dk1

2π

+∞∫
−∞

dk2

2π
exp (−ik1x − ik2y) F (k1, k2) , (10)
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so that

F (k1, k2) =
∫ ∫

exp (ik1x + ik2y) P (x, y) dxdy = 〈exp (ik1x + ik2y)〉 . (11)

Due to the cycle-free character of the Cayley tree, and taking into account that the random
variables are identically distributed, we can also write

F (k1, k2) =
r∏

j=1

〈exp (ik1xj + ik2yj)〉 = [〈exp (ik1xj + ik2yj)〉]r . (12)

In the limit of infinite coordination, r → ∞, r 〈Joj〉 = J0, r
〈
J2

oj

〉
= J2, and r

〈
Jn

oj

〉
= 0,

for n � 3, and if we restrict to the special case J0 = 0, it is easy to show that

F (k1, k2) = exp
[
−1

2
β2J2qk2

1 +
1
2
iβJ2 (p − q) k2

]
, (13)

which depends on just two remaining moment variables, q =
〈
m2

j

〉
and p = 〈pj〉. We then

have

P (x, y) =
(
2πβ2J2q

)−1/2
δ
[
y − β2J2 (q − p)

]
exp

[
− x2

2β2J2q

]
, (14)

from which it is straightforward to write the following recursion relations between two
successive generations of the Cayley tree, j and j + 1,

qj+1 =

+∞∫
−∞

M2
j (x) exp

(
−1

2
x2

)
dx√
2π

, (15)

pj+1 =

+∞∫
−∞

Pj (x) exp
(

−1
2
x2

)
dx√
2π

, (16)

where

Mj (x) =
2 sinh

(
βJq

1/2
j x

)
Zj (x)

, (17)

Pj (x) =
2 cosh

(
βJq

1/2
j x

)
Zj (x)

, (18)

with

Zj (x) = exp
[
−βKpj − 1

2
(βJ)2 (pj − qj)

]
+ 2 cosh

(
βJq

1/2
j x

)
. (19)

We then investigated the behavior of this two-dimensional mapping, given by
equations (15) and (16), both analytically and by numerical methods. It is interesting
to have in mind the T −K phase diagram obtained by da Costa and collaborators for the
corresponding fully connected two-sublattice BEGsg model [6], as we show in figure 1.

We find two kinds of fixed points of the recursion relations (15) and (16). The trivial
fixed point, given by q∗ = 0, p∗ �= 0, corresponds to the paramagnetic P phase. A second,
and non trivial, fixed point, given by q∗ �= 0, p∗ �= 0, corresponds to the spin-glass phase
SG. As long as K is positive, there are only these two kinds of fixed points. However, for
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Figure 1. Phase diagram for a spin-1 spin-glass model by da Costa–Nobre–
Yokoi [6]. The upper(lower) red dotted line corresponds to kBT/J = 0.07(0.05).

negative values of K, the repulsive character of this parameter plays a dominant role at
low temperatures. Besides the P and SG fixed points, we also find two 2-cycles, which
correspond to phases already found by da Costa and collaborators [6]: (i) At sufficiently
high temperatures, there appears an antiquadrupolar AQ solution, given by the two-cycle
p∗

1 �= p∗
2 and q∗

1 = q∗
2 = 0; (ii) As the temperature decreases, there is an antiquadrupolar

spin-glass solution AQG corresponding to the two-cycle (q∗
1, p

∗
1) �= (q∗

2, p
∗
2) �= (0, 0).

The standard linear analysis of stability of these single fixed points and two-cycles
leads essentially to the same T − K phase diagram as previously found by da Costa and
coauthors [6]. The regions associated with P and SG fixed points are separated by a
critical line,

K

J
= − J

2kBT
− ln

(
2J
kBT

− 2
)

. (20)

The regions corresponding to the fixed point P and the AQ 2-cycle are separated by the
critical border

K

J
= −akBT

J
− J

2kBT
, (21)

with a = 4.622..., in agreement with da Costa and coworkers [6].
We also find a critical boundary between the regions of stability of the AQ and AQG

2-cycles, as well as between the regions of stability of the SG fixed point and the AQG
2-cycle. These critical boundaries are identical to the respective critical lines for the AQ–
AQG and SG–AQG phase transitions, as obtained for the two-sublattice infinite-range
spin-glass model, at the replica-symmetric solution level, as it is shown in figure 1 [6].

At this point, our findings can be summarized as follows. We have found P SG and AQ
solutions, which reproduce the known results for the corresponding infinite-range model
at the replica-symmetric level (see figure 1). However, in the T − K phase diagram, the
region in which one anticipates a single AQG structure is much more complicated. Instead
of a stable 2-cycle solution representing the AQG phase, we find a number of periodic limit
cycles (of finite length) and even chaotic trajectories. The limit cycles can be understood
as modulated structures, which are analogous to results already obtained for an Ising
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Figure 2. Behavior of the spin-glass order parameter q as function of K/J , for
kBT/J = 0.07.
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Figure 3. Behavior of the order parameter p as function of K/J , for kBT/J =
0.07.

model on a Cayley tree with competing ferro and antiferromagnetic interactions between
first and second neighbors along the branches of successive generations [9]. It should be
remarked, however, that neither modulated nor chaotic phases have been obtained in the
replica treatments of the analogous infinite-range models, even with the introduction of
two and three distinct sublattices. Indeed, in some previous investigations, one finds at
most either 2-cycle [6] or 3-cycle [7] solutions.

In the present calculation, the occurrence of limit cycles and chaotic trajectories has
been fully characterized at low temperatures, in the AQG region of the phase diagram.
In figure 1, the red lines indicate two values of (low) temperatures. We have analyzed the
behavior of the system at these temperatures, for K/J values inside the AQG region. In
figures 2 and 3 we show, respectively, the order parameters q and p as a function of K/J for
kBT/J = 0.07. In figure 4, we draw the largest Lyapunov exponent at this temperature.
The chaotic behavior, which is associated with a positive Lyapunov exponent, takes place
at a small range of values of K/J (roughly for −7.5 < K/J < −6.0).
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Figure 4. Largest Lyapunov exponent as a function of K/J , for kBT/J = 0.07.
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Figure 5. Behavior of the spin-glass order parameter q as function of K/J , for
kBT/J = 0.05.

In figures 5–7 we illustrate our numerical findings for kBT/J = 0.05. At this
temperature, as it can be seen from the largest Lyapunov exponent, the chaotic behavior
persists for very large values of −K/J . Also, the limit cycles tend to be much less
numerous. According to some preliminary investigations, this peculiar behavior is not
restricted to kBT/J = 0.05, but it does hold at lower temperatures, down to absolute
zero. It is remarkable that such a complex behavior has been observed for a model on a
Cayley tree with first-neighbor interactions.

This surprising behavior of the BEGsg on the Cayley tree is an indication that the
more subtle features of the phase diagrams, as modulated phases and chaotic structures,
will be very difficult to be obtained by using the standard replica methods to solve the
corresponding infinite-range models [3,6,7]. These findings can also provide a useful guide
for the interpretation of numerical simulations, as in some recent Monte Carlo calculations
[10, 11], and for the modeling of real systems, as the ferroelastic alloy Ti50 (Pd50−xCrx)
in the presence of disorder [12].

doi:10.1088/1742-5468/2015/06/P06028 7

http://dx.doi.org/10.1088/1742-5468/2015/06/P06028


J. S
tat. M

ech. (2015) P
06028

Chaotic behavior of a spin-glass model on a Cayley tree

0

 0.2

 0.4

 0.6

 0.8

1

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5

p

K/J

Figure 6. Behavior of the order parameter p as function of K/J , for kBT/J =
0.05.

-0.5

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

 0.5

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5

λ

K/J

Figure 7. Largest Lyapunov exponent as a function of K, for kBT/J = 0.05.

In conclusion, the Cayley tree is useful to investigate the spin-glass properties of a
short-range spin-1 Ising model. In the ferromagnetic case, it is well know that the solutions
deep inside the tree correspond to the Bethe approximation. In this note we report a
numerical analysis, for an adequately chosen version of the BEGsg model, and using the
recursion relations obtained by Thompson and collaborators many years ago. The subtle
details of our findings, including long-period cycles and chaotic behavior, are related to the
high degree of frustration of the BEGsg model. All of these points, as well as some possible
connections with more realistic finite-range spin-glass models at finite temperature, are
planned to be further investigated.
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