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Abstract

Genomic regions related to tropical adaptability are of paramount importance for animal
breeding nowadays, especially in the context of global climate change. Moreover, under-
standing the genomic architecture of these regions may be very relevant for aiding breeding
programs in choosing the best selection scheme for tropical adaptation and/or implementing
a crossbreeding scheme. The composite MONTANA TROPICAL® population was devel-
oped by crossing cattle of four different biological types to improve production in harsh envi-
ronments. Pedigree and genotype data (51962 SNPs) from 3215 MONTANA TROPICAL®
cattle were used to i) characterize the population structure; ii) identify signatures of selection
with complementary approaches, i.e. Integrated Haplotype Score (iHS) and Runs of Homo-
zygosity (ROH); and iii) understand genes and traits related to each selected region. The
population structure based on principal components had a weak relationship with the
genetic contribution of the different biological types. Clustering analyses (ADMIXTURE)
showed different clusters according to the number of generations within the composite pop-
ulation. Considering results of both selection signatures approaches, we identified only one
consensus region on chromosome 20 (35399405—40329703 bp). Genes in this region are
related to immune function, regulation of epithelial cell differentiation, and cell response to
ionizing radiation. This region harbors the slick locus which is related to slick hair and epider-
mis anatomy, both of which are related to heat stress adaptation. Also, QTLs in this region
were related to feed intake, milk yield, mastitis, reproduction, and slick hair coat. The signa-
tures of selection detected here arose in a few generations after crossbreeding between
contrasting breeds. Therefore, it shows how important this genomic region may be for these
animals to thrive in tropical conditions. Further investigations on sequencing this region can
identify candidate genes for animal breeding and/or gene editing to tackle the challenges of
climate change.
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Background

Coping with environmental stress is a paramount physiological requirement for animals in
subtropical and tropical regions [1]. The capacity to maintain a homeostatic body temperature
in challenging environments allows animals to increase their production potential [2, 3].
Therefore, in a changing climate scenario, it is very important to understand the genetic back-
ground related to tropical adaptation.

Cattle are composed of two main subspecies: indicine or zebu (i.e., Bos primigenius indicus)
and taurine (i.e., Bos primigenius taurus). Most of taurine animals were bred in temperate
regions of the world [4]. As a result of the origins and breeding practices, both natural and arti-
ficial, cattle are broadly divided into temperate (taurine) and tropical (zebu) based on the com-
mon adaptation characteristics [5]. Notwithstanding, some taurine breeds adapted to tropical
climate arose in some regions of Africa and America due to both natural and artificial breed-
ing, e.g. Senepol [6] and Bonsmara [7].

These differences between biological groups can be used for crossbreeding to get animals
better adapted to the environment and with higher production efficiency [8]. Kim et al. [9]
showed that African cattle pastoralism succeeded due the arrival of indicine cattle and their
crossbreeding with local taurine and that selection shaped the admixture proportion of taurine
x indicine crossbreeds to increase diversity and facilitate evolutionary adaptation.

The composite MONTANA TROPICAL"™ cattle population (https://montana.org.br/) was
developed in Brazil (starting in 1994) following the idea of using crossbreeding for formation of a
tropical-efficient cattle population. This composite population (Fig 1) is based on crossbreeding
of four different biological types or breed groups: 1) zebu breeds (N), 2) adapted taurine breeds
(A), 3) British taurine breeds (B), and 4) Continental European taurine breeds (C) [10] (S1 Fig).
The combination of these multiple breeds can change according to the farmer decisions based on

®

Fig 1. Montana Tropical™ animals.

https://doi.org/10.1371/journal.pone.0301937.g001
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the farm environment, nevertheless animals must have at least three groups of NABC in their
pedigree to be considered Montana Tropical®™ (https://montana.org.br/). The maximum propor-
tion of each group allowed is 37.5% for group N; 87.5% for group A; and 75% for group B and C
together [11, 12]. The breeding program of Montana Tropical™ emphasize adaptation and
robustness characteristics and growth traits account for 70% of their selection index [13].

Knowledge of population structure is important to animal breeding program. This knowl-
edge allows breeders to make more assertive and accurate decisions in breeding, diversity pres-
ervation, and selection [14]. Genetic composition based on pedigree estimation methods do
not account for Mendelian sampling. By using genomic data, estimation of genetic parameters
is less subject to input pedigree errors and better accounts of Mendelian sampling [15].

Genomic data can be used to identify runs of homozygosity (ROH) which are continuous
homozygous segments inherited from common ancestors [16,17]. The formation of ROH can
be influenced by inbreeding, genetic drift, population bottlenecks, as well as natural and artifi-
cial selection. Moreover, the evaluation of ROH can characterize the history of the population
structure [18].

By analyzing the size of the ROH, it is possible to calculate a genomic inbreeding coefficient
and classify inbreeding, with long segments related to recent inbreeding and short ones to
older inbreeding [19]. The population frequency of ROH can be used as a tool to identify
genomic regions under selection (i.e. signature of selection) [20].

Another method to detect signals of selection is the Integrated haplotype score (iHS), which
is a statistical approach based on extended haplotype homozygosity (EHH). This method
detects positive selection by the increased mutation frequency and long-range linkage disequi-
librium [21]. Ben-Jemaa et al. [22] used iHS and complementary methods to identify selection
sweeps related to adaptation and immune response in Maremmana cattle.

To better identify signatures of selection it is a good strategy to combine complementary
approaches. ROH and Fst methods, for example, were able to identify selected regions related
to heat stress and immunity in tropically adapted breeds along with genes related to hypoxia
factors in temperate breeds raised in low-oxygen environments [23]. Liu et al. [24], for exam-
ple, used these tools to identify signatures of selection in Shanghai Holstein cattle.

Using the MONTANA TROPICAL® composite population, we sought in this work to (1)
characterize the population structure of composite MONTANA TROPICAL®™ beef cattle pop-
ulation through generations inside the population; (2) identify signatures of selection with
complementary approaches (ROH and iHS); and (3) characterize genes in significant genomic
regions under selection.

Results
Population structure

The equivalent complete generation (ECG) is a value that indicates how many generations
each animal has within the population pedigree. ECG in our data varies from 1 to 6, which
agrees with the population history as it was formed 29 years ago. Principal component analysis
(PCA) showed a weak relationship between ECG estimated by pedigree and the first two PCs
(Fig 2). Animals with higher number of generation (>4 ECG) were located in positive side of
PC1 and close to zero in PC2, while animals of the initial generations (<2 ECG) had three
diversity spots, one in the negative side of PC1 and other two in opposite sides of PC2.

We conducted correlation and regression analyses to better comprehend the relationship
between ECG and contribution ratio of the founder biological groups according to pedigree
data (Zebu—N, Tropical Adapted Taurine-A, British Taurine-B and Continental Taurine—
C). Tropical Adapted Taurine (A) and Continental Taurine (C) proportion had positive
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Fig 2. First two components of principal component analysis using genomic data of 3215 MONTANA
TROPICAL"™ animals. Generations: corresponds to the number of ECG calculated based on pedigree data.

https://doi.org/10.1371/journal.pone.0301937.9002

correlations (r = 0.33 and r = 0.16, respectively; p<0.001) with ECG. On the contrary, Zebu
(N) and British Taurine (B) proportion had negative correlations (r = -0.19; and r = -0.29;
p<0.001) with ECG. The regression analysis confirmed the trend of a 4% increase per genera-
tion in the proportion of Tropical Adapted Taurine (A) and a 3% decrease per generation in
the proportion of British Taurine (B) based on pedigree within the composite population.

ADMIXTURE analyses demonstrated a uniform composition of recent MONTANA
TROPICAL® animals (ECG<2.5) at K = 2. Animals in intermediate generations
(2.5<ECG<4.5) had a more diverse composition. In advanced generations (ECG>4.5), ani-
mals with higher proportions of other clusters could be observed, differentiating this group of
animals with the earlier generations of the population (Fig 3).

AtK = 3, one new cluster (red in Fig 3) showed a higher frequency in animals from
advanced generations. Therefore, the ADMIXTURE results clearly showed a different genomic
composition of the animals through advancing ECGs within the MONTANA TROPICAL®™
population.

To explore the statistical relationship between ADMIXTURE clusters (K = 4) and ECG, we
also performed correlation and regression analyses. ECG had positive correlations with Cluster
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Fig 3. Population structure of composite MONTANA TROPICAL®™ population inferred by ADMIXTURE
software. Each animal is represented by a single vertical bar divided into K colors, where K is the number of assumed
ancestral groupings, which is plotted from K equal 2 to 4. Cluster definitions based on K = 4: Cluster 1 = Blue, Cluster
2 = Red, Cluster 3 = Orange and Cluster 4 = Green.

https://doi.org/10.1371/journal.pone.0301937.g003

1 (r=0.58, p<0.001) and Cluster 2 (r = 0.23, p<0.001). Clusters 3 and 4 had negative correla-
tions with ECG (r = -0.45 and r = -0.42, respectively). The regression analyses showed trends
of a: 12% increase of C1 per generation; 4% increase of C2 per generation; 9% decrease of C3
per generation; and 0.7% decrease of C4 per generation. Therefore, the statistical analyses con-
firmed the change in clustering of animals according to ECG, therefore it can be related to
selection pressures working on shaping genomic structure of the composite population
through generations.

We combined the data from the four first principal components (PC1 to PC4), the four
clusters of ADMIXTURE (C1 to C4) and the NABC founder proportions from the pedigree to
form a new dataset with 12 variables for each animal. This data was used to perform another
PCA (Fig 4) to better understand the relationship between genomic structure of the population
and founders’ contribution ratios. We observed that PC1, ECG, C1, C2 and Tropical Adapted
Taurine (A) proportion (based on pedigree) were all in a similar direction (Fig 4), suggesting
that C1 and C2 represent the increase in genomic composition of Tropical Adapted Taurine
(A) and the emergence of a genetic structure within MONTANA TROPICAL™. Cluster 3,
PC3, and Zebu (N) proportion were also in the same direction (Fig 4). Cluster 4 and British
Taurine (B) were also in the same position. Therefore, the ADMIXTURE clusters indicated
the following associations: C1 with Tropical Adapted Taurine (A) and ECG; C2 with ECG; C3
with Zebu proportion (N); and C4 with British Taurine proportion (B).

Signatures of selection

Of the 3215 evaluated animals, 3140 had at least one ROH segment in the genome, totaling
2349 ROH. The mean ROH length was 7.48 + 0.08 Mb, varying until to 39 Mb (S1 Table). The
average sum of all ROH segments per animal was 61.21 + 1.10 Mb.

The genomic inbreeding coefficient (Frop) showed a significant positive regression with
the inbreeding coefficient calculated using the pedigree (S2 Fig). The overall Froy of the com-
posite MONTANA TROPICAL™ population was 2% while the pedigree-based inbreeding
coefficient was 0.8%. There was an increase in Froy as the number of ECGs increased (S3 Fig).
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Fig 4. Results of the first two components of principal components analysis using the dataset formed by pedigree-
based breed composition (N—Zebu, A-Adapted taurine, B-British taurine, C-European Continental taurine), four

clusters of the ADMIXTURE analysis (C1, C2, C3, C4), equivalent complete generation (ECG), and the first four
components of PCA analysis using genomic information (PC1, PC2, PC3, PC4).

https://doi.org/10.1371/journal.pone.0301937.g004

There was no high-generation animal (ECG > 5) with Froy equal to zero, demonstrating the
accumulated inbreeding through generations inside the composite.

We classified ROH based on the length according to number of previous generations to the
common ancestor (1IMb<ROH<6.5Mb = more than 6 generations ago, 6.5Mb<ROH<8.7
Mb = between 6 and 4.5, 8.7Mb<ROH<15.6Mb = between 4.5 and 2.5 generations ago, and
ROH>15.6 Mb = less than 2.5 generations ago). In the population, 95.89% had some ROH of
size IMb<ROH<6.5Mb. The ROH length representing a common ancestor within the previ-
ous 2.5 generations (> 15.6 Mb) were identified in 39.45% of the animals, indicating the emer-
gence of very recent inbreeding. The advanced generations (ECG > 4.5) showed significantly
higher values of ROH than all generations (p< 0.0001), especially for the largest ROH seg-
ments (54 Fig).

Runs of homozygosity analyses identified six genomic regions as putative selected regions
(BTAU 3, 5, 6, 14, 20, 21), using the 1% threshold. However, when using the top 0.1%, only
one genomic region (BTAU 20) arises (Fig 5).
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(B) Manhattan plot of incidence of each SNP in the ROH across individuals. The orange and blue line represents the
threshold levels of top 1 % and 0.1%, respectively.

https://doi.org/10.1371/journal.pone.0301937.9005

Identification of selection signatures was performed within three groups of animals based
on ECG (<2.5 -recent; 2.5<ECG<4.5—intermediate; >4.5—advanced). The threshold of 1%
(blue line) demonstrated different regions in each class of generation—recent (BTAU 3,5, 6, 9,
10, 13, 14, 21), intermediate (BTAU 3, 5, 14, 20, 21), advanced (BTAU 4, 6, 20, 26) (S5 Fig).
The threshold of top 0.1% (orange line) showed ROH analysis found the same one significant
region (BTAU 20) for the intermediate and advanced generation (S5 Fig), which was not seen
on recent generation group. Moreover, the threshold of top 0.1% increased according to ECG,
demonstrating the increasing frequency of homozygous segments according to selection
through generations (S5 Fig).

The results of iHS analyses yielded estimated |iHS| scores for 46240 SNPs out of 51692
SNPs in total (S1 File). The 1% threshold (|iHS| > 2) showed several SNPs as possible signa-
tures of selection. Most of chromosomes had some SNP above this threshold, of which only
the BTAU 22, 24, 25 and 27 did not have a SNP with significant |iHS| score. When looking on
the top 0.1% threshold, five regions were identified as putative selective signatures (BTAU 2, 4,
9,19, 20 and 21; Fig 4).

PLOS ONE | https://doi.org/10.1371/journal.pone.0301937  April 25, 2024 7/18


https://doi.org/10.1371/journal.pone.0301937.g005
https://doi.org/10.1371/journal.pone.0301937

PLOS ONE Selective signatures in composite Montana Tropical® beef cattle

The selection signatures based on iHS (0.1% threshold) within ECG groups showed possible
signatures of selection on: BTAU 1, 2,9, 13, 15, 19, 20 e 23 for recent generations; BTAU 2, 9,
19, 20 and 23 for intermediate; and BTAU 1,3 4, 6, 7, 9, 10, 12, 19, 20 and 21 for advanced gen-
erations. Therefore, the iHS results showed some variations between groups of animals.

Consensus regions between ROH and iHS

Considering both analyses (ROH and iHS), there was a consensus region in chromosome 20
(BTAU 20). This region had a size equal to 4.9 Mb (20:35399405-40329703). In the ROH anal-
ysis, we found one signature of selection region within BTAU 20. Considering iHS, three
regions of signatures of selection were observed within BTAU 20 (S2 Table).

When looking at the different ECGs some differences in the frequency of signatures of
selection within BTAU20 were found. In the animals from ECG<2.5, there were no ROH
within this region. In the intermediated generations (2.5<ECG<4.5), the frequency of SNPs
within the ROH island on BTAU20 was around 10%. Meanwhile, in the advanced generations
(ECG>4.5) the SNP frequency within the ROH island on BTAU20 was 30% (S5 Fig). The iHS
analyses into the three ECG groups yield 3, 4, and 4 putative selection signatures within this
region for recent (<2.5), intermediate (2.5<ECG<4.5) and advanced generations (>4.5),
respectively (54 Fig).

Genes and QTLs in selected regions

The gene annotation under the consensus region of chromosome 20 found 32 genes. The
QTLs were correlated with important features such as slick hair coat, feed intake, milk, repro-
duction, and immunity, which are summarized in Table 1.

To better understand the functions of the candidate genes, we uploaded the 32 genes to
Cytoscape ClueGo and obtained the GO biological network (Fig 6A and 6B). More details of
the network can be seen in S6 Fig. All these genes were found to be involved in several gene
clusters (S2 File) and 12 GO terms were significantly enriched (Fig 6C).

Discussion

Population structure

The population structure of the composite MONTANA TROPICAL® population demon-
strated through PCA showed a dispersion of the animals of more advanced generations
according to PC1. ADMIXTURE results demonstrated that animals of ECG < 4.5 presented a
different clustering when compared to earlier generations.

Principal components and ADMIXTURE clusters showed a weak relationship with the con-
tribution ratio of the founder biological group. We expected a clearer relationship as some pre-
vious studies have used the results of PCA to calculate the proportion of each founder’s breed

Table 1. Genomic region identified by iHS and ROH analyses observed in MONTANA TROPICAL" composite animals, underlying genes and QTL identified in
this region.

Chr | Start (Bp) | End (Bp) Size n Genes QTLs
Genes
20 | 35399405 | 40329703 | 4930298 32 RICTOR, OSMR, LIFR, EGFLAM, GDNF, WDR70, NIPBL, NUP155, Slick hair coat, Milk, feed intake,
MIR2360, CPLANE1, NIPBL, SLC1A3, RANBP3L, NADK2, SKP2, immunology, mastitis, meat,
LMBRD2, UGT3A2, CAPSL, IL7R, SPEF2, PRLR, DNAJC21, BRIX1, reproduction, weight

RADI, TTC23L, RAI14, CIQTNF3, AMACR, SLC45A2, RXFP3,
ADAMTSI12, TRNAT-UGU, TARS

https://doi.org/10.1371/journal.pone.0301937.t001
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in a two-breed composite [25]. It seems that multiple-breeds crossbreeding resulted in a more
complex genomic structure for the MONTANA TROPICAL™ population.

After the development of a two-breed composite, at least 5 generations are required to form
a new genomic profile [26,27]. The genomic structure of the MONTANA TROPICAL™ popu-
lation is much more complex due to the use of more than two breeds in its formation. Despite
this, we also observed a differential genomic clustering for animals close to the fifth generation
within the composite population.

The Tropical Adapted Taurine (A) biological group presented a higher proportion for late
generations (ECG > 4.5). In contrast, Zebu (N) and British (B) biological groups showed a
reduction in their proportions for late generations (ECG > 4.5). This is in line with the results
described by Grigoletto et al. [28] where they demonstrated a switch from the use of the Zebu
(N) biological group to Tropical Adapted Taurine (A) biological group in the formation of the
MONTANA TROPICAL®™ population, which may be explained by the search for improved
meat quality traits supposedly provided by taurine animals.

The results of the levels of homozygosity found in the MONTANA TROPICAL"™ population
showed a slightly higher ROH value than those reported in another ROH study in the MON-
TANA TROPICAL® cattle [20]. However, the levels found in the current study are still consid-
ered low [20]. As expected, pedigree inbreeding (0.8%) underestimated inbreeding for the
population when compared to Froy (2%), this is probably due to flaws in the information pro-
vided by the pedigree and the inability to capture information pertaining to Mendelian sam-
pling [15,25]. Thus, it reinforces the importance of using genomic data to better understand the
real population inbreeding scenario [29]. Frop is a genomic method that provides one of the
most reliable measures of the true value of inbreeding in animal populations as it considers the
past and recent relationship of individuals while being an accurate source of information. Sub-
sequently, it is often recommended for calculating inbreeding in composite populations [30,31].

Signatures of selection

The region in BTAU 20 (35399405-40329703) was the consensus selected region for both
methods (ROH and iHS). This signature of selection seems to be under a strong selection pres-
sure, as it appeared only a few generations after the composite population was formed from
the crossbreeding of contrasting breeds. Therefore, the genes in this region should be very
important for animals to succeed in the tropical environment where they are raised.

This region has genes encompassing functions for milk, weight, feed intake, immune, and
epithelial differentiation. The gene NIBPL was linked to the DNA repair process (i.e, recovery
from damage caused by the UV component of sun light in mammals) [32]. Also, the NIPBL
gene is a candidate gene for growth traits for cattle [33]. Other candidate genes, ILR7 and
LIFR, have been identified to contribute to immune response [34-36]. Furthermore, studies
have found association between the LIFR and OSMR genes and feed intake in beef cattle [37].
The GDNF gene is related to important functions in skin homeostasis and hair cycle control
[38]. PRLR is extensively described as important for milk traits in dairy cows [39,40], and poly-
morphisms in the PRLR are associated with calving rates in beef cattle [41].

This same region on chromosome 20 was described as the slick locus that has been previ-
ously described in other breeds such as Senepol and Creole cattle (42,43). The slick hair coat
represents very short hair in cattle [1]. This phenotype is important to facilitate the ability to
dissipate heat and to maintain a stable body temperature when an animal is exposed to heat
stress conditions [42]. It is unknown which gene is responsible for the slick hear phenotype,
however some studies suggested different candidate genes to define this phenotype such as
GDNF [43], PRLR [42], RAI14 [44], SKP2 [45], and SPEF2 [45].
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The slick hair coat was previously associated with the Senepol breed [42], which is one of
the breeds identified in biological type A in the MONTANA TROPICAL® population compo-
sition [10]. Even after crossbreeding four different biological types, the composite population
showed high homozygosity in this region related with important traits for environmental
adaptation. The increasing homozygosity through ECG may be related to the high proportion
of biological type A observed in late generations. Also, the MONTANA TROPICAL™ selec-
tion index has a 70% weighting towards growth traits [28]. In other words, animals with the
highest growth performance have a higher chance to be selected to contribute to the next gen-
eration. Individuals with a favorable interaction between genotype and environment have bet-
ter productive performance. Consequently, the selection for growth traits could contribute to
the selection in the candidate region identified in this work.

Conclusion

The genomic population structure of the Montana Tropical™ population is complex and
shows some relationships with the founders’ contribution ratio and the number of equivalent
complete generations within the breed. Animals with more than 4.5 generations within the
composite showed a different clustering pattern compared to previous generations. The selec-
tion pressure during crossbreeding and first generations of the composite breed left only one
selected region on BTAU 20. This region harbors the slick locus and other important immune
genes. Therefore, this seems to be a very important genomic region for tropical adaptation,
which should be better characterized in further sequencing studies. These findings can be an
opportunity for animal breeding and/or gene editing to incorporate existing genetic resources
to face global climate change.

Methods
Animals

Genotypes (HD GGP Bovine 50K Neogen) from 1342 animals were used as the reference pop-
ulation for imputing the target population of 1893 genotypes using FImpute 3.0. The target
population was genotyped with GGP LD BeadChip 35K Neogen (503 samples) and GGP LD
BeadChip 30K Neogen (1390 samples). At the end, 3215 genotypes (HD GGP 50K Neogen,
genome reference URS UCD 1.2) were used for the further analyses.

Using PLINK 1.9 [25] we applied MAF (>1%) and LD pruning (—indep-pairwise 50 5 0.5)
filters before performing the Principal Components Analysis (PCA) and ADMIXTURE analy-
sis. The dataset retained for these analyses had 40,634 SNP on 29 autosomal chromosomes.

For the signature of selection analyses, we kept the initial number of SNPs (51962) and did
not use the MAF and LD pruning filtering, because they can cause biased ROH in medium
density genotype data [42].

Pedigree-based measures

The pedigree file was evaluated using the optiSel package in the R v3.4.2 software [46]. The
mean pedigree completeness index (PCI) was 0.75, which is the harmonic mean of the pedi-
gree completeness of the parents estimated according to the method used by MacCluer et al.
[47]. The harmonic means place a higher weight on less complete paternal pedigrees, i.e. when
both parents are unknow the PCI is equal 0 [48].

Animals that presented breed proportion equals to 1 for any biological group on the NABC
scale were considered ancestors. The equivalent complete generation (ECG) was calculated
using the equation g = > (1/2)" where g is the number of equivalent generations and n the
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number of generations separating the individual from each known ancestor ECG is defined as
the sum of the proportion of known ancestors over all generations traced [49]. In cattle, nor-
mally animals mate across overlapping generations. As example, a 5th generation dam can be
mated with a 3th generation sire. The ECG formula accounts for this overlapping and provide
a result that demonstrate the relationship of the animal with the initial crossbreeding for com-
posite formation[49]. In our case, we considered the animal born from a crossbreeding
between founder’s breed that met Montana Tropical ™ requirements as a 1st generation.
Therefore, we used ECG as indicator of how many generations each animal has inside the

composite breed.

PCA

PLINK 1.9 (https://www.cog-genomics.org/plink/1.9/) [50] was used to perform Principal
Component Analysis (PCA) aiming to verify stratification and genetic distance between indi-
viduals in the population [50]. Analyses were performed with up to 10 principal components,
retaining only components with eigenvalues greater than 1, following Kaiser‘s rule [51]. The
individual eigenvectors were plotted along the different axes of a graph. The total variance
explained by the main principal components was also estimated.

ADMIXTURE

Cluster analysis based on genotyping data was performed using the unsupervised maximum
likelihood method implemented in the ADMIXTURE program version 1.3.0 [52]. K values
(parameter that describes the number of subpopulations that make up the total population in a
dataset provided as input) of 2, 3, and 4 were used to establish the clustering patterns in the
population [53]. To determine the best K value for the population, K from 2 to 20 was tested.
We were not able to identify the best K as the CV error showed a continuous decline in the
range evaluated S3 File.

The data was organized by classes of equivalent complete generations (ECG<2.5,
2.5<ECG<4.5 and ECG>4.5). The outputs from K = 2 to 4 were plotted using the packages
geplot2 [54], forcats [55], ggthemes [56] and patchwork [57] in the R software.

Correlation, regression and graph analyzes between PCA results, ECG, ADMIXTURE and
NABC composition of the pedigree were performed using the R software with Hmisc [58],
MASS [59], ggplot2 [54] and corrplot [60] packages, respectively.

Runs of homozygosity

ROH islands were identified using the PLINK 1.9 (https://www.cog-genomics.org/plink/1.9/)
[50] using the—homozyg function, using the following criteria [61]:

a sliding window of 50 SNPs across the genome (—homozyg-windows-snp);

a homozygous window overlap ratio of 0.05(—homozyg-windows-threshold);

a minimum length to consider a homozygous segment of 1000 kb (—homozyg-kb);

a maximum gap between consecutive homozygous SNPs of 1000 kb (—homozyg-gap);
the density of one SNP per 100 kb (—homozyg-density)

requirement to contain at least 20 SNPs (—homozyg-snp);

requirement not to allow missing genotypes and not to allow heterozygotes;
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Genomic inbreeding coefficient based on ROH (Froy) was calculated for each animal
according to McQuillan et al. [19]:

Z;:l LROHj
F ROH — Li

total
where Lrop; is the length of ROHj, and Loy is the total size of the autosomes (used the esti-
mated value in the ARS1.2 genome assembly of 2,715,853,792 bp).

The incidence of common ROH was calculated to each group of animals classified accord-
ing to generation classes. The Shapiro-wilk test of the ROH incidence results were performed
to check the normality of the data and the rationality of using gaussian distribution for defin-
ing the thresholds. The threshold that defining the top 1% and 0.1% of the frequency based on
gaussian distribution for each equivalent generation class was determined. The homozygous
regions above the frequency threshold of each generation class of equivalent generation (5%
for all generations, 4.3% for ECG<2.5, 4.9% for 2.5<ECG<4.5 and 12% for ECG>4.5) were
considered as putative selected regions.

According to the length of the ROH, it is possible to estimate the number of generations
traced back to the common ancestor, which generates homozygosity in that region. ROH were
classified into 4 categories (1 = more than 6 generations, 2 = between 6.5 and 4.5, 3 = between
4.5and 2.5 and 4 = less than 2.5 generations) using the equation proposed by Curik et al. [12]:
E (LIBD-H | gcA) = 100/(2 gcA), where E (LIBD-H | gcA) is the expected length of a haplo-
type identical per offspring (IBD) (in centiMorgans—cM), and gcA is the number of genera-
tions of the common ancestor. The conversion of the recombination rate metric to physical
distance was set to 1.28 cM per Mb, which is the average of the results from Arias et al. [62]
and Weng et al. [63]. Thus, for example, a IMb<ROH<6.5Mb probably originated from a
common ancestor more than 6 generations ago, the 6.5Mb<ROH<8.7 Mb originated from a
common ancestor between 6 and 4.5, the 8.7Mb<ROH<15.6Mb between 4.5 and 2.5 genera-
tions ago, and ROH more than 15.6 Mb originated from a common ancestor less than 2.5 gen-
erations ago.

Integrated haplotype score

The iHS was performed for each autosomal SNP using the package rehh [64] in the software R.
Before computing the analyzes the allele with the major frequency in the data was considered
the ancestral allele.

iHH, iHH,
iHS — In (iHH;) o Ep [ln (ZHH2>:|
iHH,
o (22
Were iHH 4 and iHHp, represent the Integrated EHH score for ancestral and derived core

alleles, respectively. E, {ln ('HH?))} and SD, {ln (’HHQ)} are the expectation and standard devia-

iHH, iHH,

tion in terms of frequency. Windows at the top 0.1% of the empirical distribution were consid-
ered candidate regions.

Genes, GO analysis and QTL identification

Genes in each selected region were searched in Genome Data Viewer (NCBI platform) using
ARS-UCD1.3 (GCF_002263795.2). To identify traits related to genes located in each signifi-
cant genomic region, a search was performed on the Animal Genome QTL Database (htt ps://
www.animalgenome.org/cgi-bin/QTLdb/EC/index).
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Gene Ontology (GO) biological process network was done using Cytoscape (National
Resource for Network Biology, USA, Version 3.2.1) and ClueGo (Version 2.3.5) [65]. This
approach is based on a unilateral hypergeometric method and Bonferroni correction. This
application provides simultaneously analyzes of 1 or more sets of genes and searches for a
functional Gene Ontology (GO) term or pathways that establish relationships among genes.

Supporting information

S1 Table. Statistical homozygosity runs (ROH) per animal. Standard error (SE), mean
(Mb), standard deviation (SD), min (Mb), max (Mb), SROH (mean length of genome covered
by ROH Mb), NROH (mean number of ROH), LROH (mean length of ROH in Mb) and
FROH (inbreeding coefficient).

(PDF)

S2 Table. All regions that was found by iHS and ROH, through different equivalent com-
plete generations (ECG) in the consensus region of BTAU 20.
(PDF)

S1 File. Estimated iHS SNP in the MONTANA TROPICAL®.
(CSV)

S2 File. Glue GO annotation clusters of region 35399405-40329703 in the BTAU.
(XLS)

S3 File. CV error of different value of K.
(PDF)

$4 File.
(INT)

S1 Fig. Contribution of breed of each biological type in MONTANA TROPICAL®) pedi-
gree.
(TIF)

S2 Fig. Result of regression analyses between genomic inbreeding (Fron) coefficient and
pedigree inbreeding.
(TIF)

S3 Fig. Result of regression analyses between the genomic inbreeding (Froy) coefficient
and equivalent complete generations (ECG).
(TIF)

$4 Fig. Genomic inbreeding based on runs of homozygosity (FROH) by equivalent genera-
tion classes and by ROH length classes. The t-test comparison results are shown at the top
(ns: not significant; *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001).

(TIF)

S5 Fig. Manhattan plot IHS and ROH through ECG. A, C, E Manhattan plot of incidence of
each SNP in the ROH across individuals through different ECGs. The blue line represents the
top 0.1% threshold Manhattan plot of incidence of each SNP in the ROH across individuals.
The orange line represents the threshold levels of top 0.1%. of Genome-wide distribution of
selection signatures detected by iHS B, D, F through different ECGs.

(TTF)
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S6 Fig. Network genes BTAU 20 (35399405-40329703).
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