
Optical Materials: X 20 (2023) 100274

Available online 13 October 2023
2590-1478/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Femtosecond laser induced damage threshold and incubation in L-threonine 
aminoacid crystal 

L.K. Nolasco a,b,1, G.A. Flores b,1, S.N.C. Santos b, M.B. Andrade b,c, J.J. Rodrigues Jr. d, C. 
R. Mendonça b,* 

a Department of Materials Engineering, School of Engineering of São Carlos, University of São Paulo, PO Box 359, 13563-120, São Carlos, SP, Brazil 
b São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13561-970, São Carlos, SP, Brazil 
c Physics Department, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil 
d Federal University of Sergipe, Physics Department, 49107-230, São Cristóvão, SE, Brazil   
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A B S T R A C T   

L-threonine aminoacid crystals exhibit high second-order optical nonlinearities that can be exploited for second 
harmonic generation, optical parametric amplification, and optical parametric oscillation. In addition, it pos
sesses a large transparency window and low refractive index, making them an attractive material for photonics 
devices. Among several processing methods used to develop photonic integrated micro-devices, fs-laser micro
machining has stood out for its high resolution, either on the surface or in the bulk, as well as to its flexibility to 
be used with various types of materials. Although organic crystals present relevant linear and nonlinear optical 
features, studies on fs-laser processing in such materials are yet scarce. Thus, this work presents a study of the fs- 
laser incubation and damage threshold fluence determination in L-threonine crystals at 515 nm and 1030 nm. 
The damage threshold fluence was determined for one up to 105 pulses. For the single pulse regime, we obtained 
Fth = (0.94 ± 0.04) J/cm2 at 1030 nm and Fth = (0.31 ± 0.01) J/cm2 at 515 nm. Such difference is explained by 
the number of photons involved in each case; 5-photons at 1030 nm and 3-photons at 515 nm. Also, a slower 
incubation dynamic was observed at 515 nm. Still, micro-Raman spectroscopy revealed that no structural 
modifications were induced by the fs-laser pulses on the sample upon micromachining. Such results provide 
relevant data for the processing of L-threonine crystals via fs-laser micromachining to achieve organic photonic 
integrated devices.   

1. Introduction 

Organic materials play a fundamental role in the development of 
novel technologies in photonics for offering exciting features, such as 
ease of functionalization, high optical nonlinearities, and fast response 
times [1–6]. Amino acid organic crystals, specifically, exhibit high 
second-order nonlinear optical properties [7–9], which can be exploited 
for second harmonic generation (SHG), optical parametric amplification 
(OPA), and optical parametric oscillation (OPO) [10]. The third-order 
optical nonlinearities in amino acids have been determined by the 
Z-scan technique with femtosecond laser pulses [11], revealing a 
nonlinear refractive index ranging from 10− 17 up to 10− 16 cm2/W. Be
sides, organic crystals exhibit a smaller refractive index than their 
inorganic counterparts, resulting in reduced insertion losses, an 

interesting feature for integrated devices. For such reasons, amino acid 
crystals have been drawing considerable attention as potential materials 
in photonics. 

Numerous techniques have been developed to accomplish minia
turized photonic integrated devices, ranging from conventional lithog
raphy to direct laser writing [12,13]. Among these approaches, fs-laser 
processing has been prompted as a relevant tool to fabricate optical 
devices because of its high precision in producing sub-micron/micron 
structures on the surface or in the bulk of a material [14]. Conse
quently, fs-laser direct writing has been used to fabricate waveguides, 
resonators, lasers, filters, sensors, in a myriad of materials, from poly
mers to semiconductors [1,14–18]. Although amino acid organic crys
tals are interesting linear and nonlinear optical materials, studies on 
fs-laser processing in such materials remains scarce. To the best of our 
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knowledge, the sole existing work in this direction is the inscription of 
cladding waveguides in L-threonine crystals using femtosecond pulses at 
800 nm [19]. 

In this work, we present a study of the fs-laser incubation and 
damage threshold fluence (Fth) of L-threonine crystals at 515 nm and 
1030 nm, whose difference is associated with the number of photons 
involved in the multi-photon ionization. Micro-Raman spectroscopy 
revealed that no structural changes were induced by the fs-laser pulses 
on the sample upon micromachining. Therefore, this paper provides the 
necessary data for the processing of L-threonine crystals with fs-laser 
pulses, that can be used for the fabrication of photonic devices, since 
laser operation near the damage threshold fluence increases micro
machining resolution. 

2. Experimental 

The L-threonine crystal was grown through the supersaturated 
aqueous solution technique [8]. The sample is transparent from 255 up 
to 1100 nm, as seen in the absorbance spectrum in Fig. 1(a), and pre
sents a bandgap of 4.9 eV, which is in good agreement with values found 
in the literature [8,20,21], determined by extrapolating the region 
where the sample starts to absorb light seen by the red-dashed line in 
Fig. 1(a) or through the Tauc/Davis-Mott plot seen in Fig. 1(b), where 
the bandgap is determined by the intersection of the linear portion of the 
absorption region with the horizontal axis. Such plot relates the ab
sorption coefficient (α) to the bandgap (Eg) as (αhν)1/b

= C(hν − Eg), 
where h is Planck’s constant, ν is the excitation light frequency C is a 

constant and b indicates the nature of the electron transition which, in 
this case, since L-threonine’s bandgap is indirect, b = 2 [22–24]. 

The femtosecond laser micromachining was performed by a diode- 
pumped Yb:KGW laser system, which emits a Gaussian beam centered 
at 1030 nm (fundamental) or 515 nm (second harmonic), with 216 fs of 
pulse duration, and repetition rate from 100 Hz up to 1 MHz (controlled 
by a Pockels cell-based pulse selector), at a linear polarization. The 
experimental setup consists of an objective lens (NA = 0.25) which fo
calizes the beam onto the sample, that in turn is located on a computer- 
controlled motorized platform. The fs-micromachining is observed in 
real-time through a CCD camera, and the microstructured lines were 
measured by optical microscopy. 

Damage threshold fluence (Fth) was determined through the zero 
damage method [25]. According to such methodology, the squared 
half-width (r2) of a line produced by a Gaussian beam is given by 

r2 =
ω2

0

2
ln
(

Ep

Eth

)

, (1)  

where w0 is the Gaussian beam waist, Ep is the pulse energy, and Eth is 
the damage threshold energy. The damage threshold fluence is, then, 
determined by 

Fth =
2Eth

πω2
0
. (2)  

Thus, one can determine Fth by plotting r2 as a function of Ep , whose 
data can be found by analyzing the width of the micromachined lines on 
the surface of the sample with distinct pulse energies. 

The number of pulses per spot can be determined by 

N =ϑ3

⎛

⎝0, e
− 2

(

V
fw0

)2⎞

⎠, (3)  

where ϑ3 is the Jacobi theta function [26], V is the scanning speed and f 
is the laser’s repetition rate [27–30]. 

Raman spectroscopy was carried out on the sample by a micro- 
Raman system (LabRAM HR Evolution), with a 532 nm excitation by a 
solid-state laser, 1800 gr/mm grating and a 100 × microscope objective 
lens (NA = 0.90) used to focalize the beam on the sample, which is 
placed on a motorized xyz computer-controlled translation stage. 

3. Results and discussion 

Fig. 2 displays the zero damage method results for L-threonine at 
1030 nm (a) and 515 nm (b) for approximately 104 pulses. Fig. 2(right) 
shows the micromachined lines increasing in width (and roughness) 
with the increase of the applied pulse energy (from 200 up to 450 nJ at 
1030 nm and from 145 up to 210 nJ at 515 nm), as seen in Refs. [27–29], 
and in accordance with Eq. (1). Such micromachined structures, pro
duced at a scanning speed of 0.1 mm/s and a pulse repetition rate of 
197.5 KHz, were measured through optical microscopy and the graph of 
the squared half-width of the lines as a function of the fs-laser pulse 
energy can be seen in Fig. 2(left), which resulted in the damage 
threshold fluence value of (0.33 ± 0.08) J/cm2 and w0 of (4.4 ± 0.3) μm 
for the 1030 nm case, and (0.10 ± 0.02) J/cm2 and w0 of (5.7 ± 0.2) μm 
for the 515 nm case, by fitting the experimental data with Eq. (1). 

Thus, by repeating the previous methodology for different number of 
pulses per spot used to fabricate the microstructures (N) (from 1 up to 
105) and for both wavelengths, one is able to analyze the incubation 
effect. The incubation effect of L-threonine at 515 nm and 1030 nm can 
be seen in Fig. 3(a) and (b), respectively. As expected from such cu
mulative effect, the damage threshold fluence decreases with the in
crease in the number of fs-laser pulses per area exciting the sample: at 
515 nm, the damage threshold fluence decreases from (0.31 ± 0.01) J/ 
cm2 down to (0.05 ± 0.01) J/cm2 with ∼ 2 × 104 pulses, while at 1030 Fig. 1. Absorbance (a) and Tauc plot (b) of the L-threonine sample.  
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nm, it decreases from (0.94 ± 0.04) J/cm2 down to (0.37 ± 0.04) J/cm2 

with ∼ 70 pulses. The incubation effect in dieletric materials can be 
described by a model that considers a saturation of defects accumulation 
[31], given by 

Fth,N =
(
Fth,1 − Fth,∞

)
e− k(N − 1) + Fth,∞, (4)  

where the damage threshold fluence for N pulses (Fth,N) is in function of 
the damage threshold fluence for a single pulse (Fth,1), infinite pulses 
(Fth,∞) and k, which is the incubation parameter. Such parameter in
dicates the efficiency to which Fth,1 reaches the Fth,∞ value: a higher k 
value means that fewer fs-laser pulses are necessary to achieve the 
bottom plateau fluence value. Thus, the exponential defect model given 
by Eq. (4) was used for the fitting the incubation data seen in Fig. 3 
(gray-dashed line). As such, the incubation parameter k was determined 
to be (2.2 ± 0.6) × 10− 4 at 515 nm and (6 ± 2) × 10− 2 at 1030 nm, 
indicating a slower incubation dynamic for excitation at 515 nm, as 
observed from the experimental data. 

The greater damage threshold fluence value at 1030 nm for a single 
pulse compared to the 515 nm case is attributed to the nature of the 
nonlinear ionization process that leads to the fs-laser micromachining. 
Such process can be determined through the Keldysh parameter (γK), 
given by 

γK =
ν
e

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
meε0cn0Eg

I0

√

, (5)  

where ν and I0 are the laser’s frequency and peak intensity, e and me are 
the electron’s charge and mass, c is the light speed, and finally n0 is the 
material’s refractive index [32]. From such parameter, if γK > 1.5, 
multiphoton ionization is the predominant process; otherwise, tunneling 
ionization prevails [33]. Thus, in this work, we determined the multi
photon ionization to be the dominant nonlinear absorption process for 
the single pulse case. As such, given the bandgap of 4.9 eV for the 

L-threonine sample, for an excitation at 515 nm, three-photon ionization 
is necessary for the processing of the sample, while at 1030 nm, 
five-photon ionization is required. As seen from Ref. [28], a multiphoton 
ionization process that requires a five-photon interaction is much less 
probable to occur than a three-photon one, thus a bigger fluence that 
leads to the micromachining of the sample is necessary. 

A micro-Raman analysis was also performed on the sample, seen in 
Fig. 4, to evaluate molecular structural modifications resulting from fs- 
laser micromachining. Measurements were taken on the micromachined 
lines produced at 515 nm (green line) and 1030 nm (red line) as well as 
the non-irradiated region (black line). The peak found in the 530-600 
cm− 1 region is related to CO2 

– rocking; an intense peak can be found at 
870 cm− 1, attributed to C–C–N vibration; the peaks found in the 1010- 
1150 cm− 1 interval are related to CH3 and NH3 rocking vibration; the 
peaks in the 1300-1500 cm− 1 region are related to stretching of C–O and 
bending of O–H, symmetric stretching of CO2, bending vibration of CH3, 
and symmetric bending of NH3; finally, in the 2800-3100 cm− 1 interval, 
the peaks are attributed to symmetric stretching of CH3, C–H stretching, 
asymmetric stretching of CH3, N–H stretching, and NH3 streching vi
brations and asymmetric stretching [34–36]. 

In the comparison of Raman spectra, no significant band shifts were 
observed, indicating that fs-laser micromachining did not significantly 
change the material’s molecular structure. However, variations in the 
relative intensity ratios of certain bands can be noted. To elucidate this 
behavior, it’s worth noting how L-threonine molecules are arranged 
within the crystalline structure. Similar to other amino acid crystals 
[37–41], hydrogen bonds between the amino groups and carboxyl ox
ygen atoms play a significant role in intermolecular cohesion. Therefore, 
the influences of hydrogen bonds on molecular cohesion can be tracked 
through Raman spectroscopy by examining bands associated with these 
interactions [42]. According to Ref. [38], hydrogen bonds may break as 
temperature increases, leading to differences in intensity within related 
bands in a L-alanine crystal. Thus, such phenomenon can explain what 
was observed in Fig. 4, since temperature rises abruptly during the 

Fig. 2. Zero damage method graph of the squared half-width of the micromachined structures as a function of the applied pulse energy at 1030 nm (a) and 515 nm 
(b), and the measured lines for each respective graph seen in the left. 
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fs-laser processing of the material. 

4. Conclusions 

To summarize, the effect of incubation analysis was explored by 
femtosecond laser micromachining in L-threonine crystals at 515 nm and 
1030 nm, and the damage threshold fluence was determined for one up 
to 105 pulse superposition. In the 1030 nm excitation case, Fth decreases 
from (0.94 ± 0.04) J/cm2 down to (0.37 ± 0.04) J/cm2 with ∼ 70 
pulses, while at 515 nm, it decreases from (0.31 ± 0.01) J/cm2 down to 
(0.05 ± 0.01) J/cm2 with ∼ 2 × 104 pulses, displaying a slower incu
bation dynamic. Such discrepancy in the damage threshold fluence 
values at the low pulse superposition region can be explained by the 
different nonlinear ionization processes: at 515 nm, 3-photon ionization 
is predominant, while at 1030 nm, 5-photon ionization occurs. In 
addition, micro-Raman measurements were carried out on the surface of 
the microstructures produced at the two different wavelengths as well as 
on the sample’s non-irradiated surface, where no noticeable changes 
were observed on the spectra, indicating that fs-laser micromachining 
did not induce any substantial structural modifications on the sample. 
Therefore, the results obtained in this work are an important step to
wards miniaturized photonic integrated devices in L-threonine crystals 
via fs-laser micromachining. 
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Fig. 3. Incubation effect of L-threonine at 515 nm (a) and 1030 nm (b).  

Fig. 4. Micro-Raman spectra at 532 nm of the micromachined structures 
fabricated at 515 nm (green line), 1030 nm (red line) and in the non-irradiated 
surface (black line). For clarity, the spectra are shifted along the intensity axis 
for visualization purposes. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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