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The properties of ¢(2170) and its three-body nature
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Abstract. In this talk we summarize the results we obtained for the partial de-
cay widths of ¢(2170) into two-body final states formed by a K and a Kaonic
resonance, like K(1460), K;(1270), as well as to final states constituted by a
¢ and an n/n" mesons. The results obtained are compared with the values ex-
tracted from experimental data on the corresponding branching ratios, which
were determined by the BESIII collaboration. A reasonable agreement is found,
which together with the previous reproduction of the mass, width and cross sec-
tion for the process e*e™ — ¢f; strongly indicates the molecular nature of
#(2170) as a KK system.

1 Introduction

Since its discovery in 2006 by the BaBar collaboration, several experimental collaborations
have been trying to understand the properties of the ¢(2170) meson [1-7]. Recently, the
BESIII collaboration [6, 8, 9] have determined the product between the decay width of
#(2170) — e*e” and the branching fraction of ¢(2170) — KKz, ¢n, ¢, with K being
a Kaonic resonance, from fits to the corresponding data. The results found seem to challenge
the theoretical predictions for the partial decay widths of $(2170) to the same KKz, ¢n, ¢
channels obtained within a s5, hybrid or tetraquark picture for its inner structure [6, 8—11].
In Ref. [12], the KK system was studied considering interactions in s-wave and the solution
of the Faddeev equations was obtained for such system within the approach of Refs. [13—
15]. As a result, the three-body 7-matrix for the system shows the generation of a state with
mass and width compatible with that of ¢(2170) when the KK system is forming f,(980).
The ee™ — ¢fo(980) cross section determined by the BaBar collaboration was also well
reproduced with the model of Ref. [12] by implementing the final state interaction in the
ete” — ¢fo(980) cross section calculated with the approach of Ref. [16], which explained
the background of the process, but not the signal observed for ¢(2170).

In view of the recent data obtained by the BESIII collaboration about some partial decay
widths of ¢(2170), it would be interesting to know the corresponding values determined with
the model of Ref. [12] and check if they are in agreement, or not, with the experimental data.
Such a compatibility with the data is by no means trivial, since models considering ¢(2170) as
a 55, hybrid, tetraquark, etc., do not seem to give compatible results for all the known exper-
imental data for ¢(2170), which include the previous mentioned partial decay widths, cross
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Figure 1. Decay mechanism for ¢(2170) to KKz, Kz = K(1460), KK, K; = K,(1270), K;(1400), and
to ¢, ¢17'.

sections obtained from e*e~ collisions, mass and width. For instance, the BESIII collabora-
tion has found that the decay mode of ¢(2170) to K*(892)K*(892) is suppressed as compared
to other KK} final states. This fact alone does not seem to be understood considering ¢(2170)
to be a s5 or hybrid state.

2 Formalism

The partial decay widths of ¢(2170) to the above mentioned channels not only depend on
the nature of ¢(2170), but also on that of the Kaonic resonances present in the final state,
like K = K(1460), K;(1270), K;(1400). Having a good description of the properties of these
latter states is relevant to have reliable partial decay widths for ¢(2170). In case of K(1460),
we consider the model of Ref. [17] in which the state is described from the KKK interaction,
with a large coupling to the K f,(980) configuration. In case of K;(1270) and K;(1400) we
consider three different approaches: (1) In Ref. [18], the Kp and pseudoscalar-vector coupled
channel dynamics was studied and generation of K;(1270) was found as a consequence of
the superposition of two poles, one at z; = M —i['/2 = 1195 — i123 MeV and other at
7o = 1284 — {73 MeV. In this case, no signal for K;(1400) was obtained. We call this model
as A; (2) In Ref. [19], a tensor formalism for the vector mesons was used and K;(1270)
and K;(1400) were described as states obtained from the mixing of the K4 and K| states
belonging to the nonet of axial resonances. Mixing angles of 29 — 62° were shown to be
compatible with the experimental data available for these states. We call this model as B; (3)
Instead of relying on the results found within the previous two models for, for example, the
coupling constants of the K| states to pseudoscalar-vector meson channels, we could directly
use the data on the radiative decay of K;(1270) and K;(1400) available on the particle data
book to estimate such couplings. We call this model C.

Having in ming the coupling of K;(1270) and K,(1400) to pseudoscalar-vector channels,
the molecular nature of ¢(2170) as a ¢ f,(980) state and that of f;(980) as a state obtained
from the KK and pseudoscalar-pseudoscalar coupled channel dynamics [20, 21], the decay
of $(2170) — KK, ¢n and ¢5’ proceeds as depicted in Fig. 1.

Following Refs. [12, 17, 18, 20], the states ¢(2170), K(1460), K;(1270), and f,(980) are
generated from the s-wave interactions of three or two hadron systems. Thus, the contribution
of the vertices ¢(2170) — ¢£,(980), foK* — K*(1460), ¢ — KK~ present in the decay
mechanisms of Fig. 1 can be written as,

log = Gpr—0fy€or * €p» 1K = K;—K* foo
Uo—PP = Gfy—PP> 1KoK+ = GK{—¢KEK] * €45 ey

where g;_,; is the coupling for the process i — j, P and ¥’ represent pseudocalar particles
and ¢ is the corresponding polarization vector for particle k. To determine the amplitude for
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the ¢ — PP, vertex, we consider the Lagrangian [22]
Lyyp = —ig(V¥[P, 8,P), (2

with V# and P being matrices having as elements the vector and pseudoscalar meson octet
fields, respectively, g = My /(2fz), My = M,, f =~ 93 MeV, and ( ) indicating the SU(3)
trace. The coupling constant gz _pp- is obtained from the residue of the two-body #-matrix
describing the interaction between two pseudoscalars. This 7-matrix is obtained by solving
the Bethe-Salpeter equation with a kernel V which is determined from from the lowest-order
chiral Lagrangian Lpp, implementing the n — 1" mixing [23-25],

Lpp = W((@,PP - P3,P)* + MP*). 3)
with
A@n + BB + 5 * K*
P= n A@Bn+ BB - % K° , 4)
K- K° C(Bm + DB’
where
sinB  cosB sinB  cosf
A = —— _—, B = — =
Y N
Cp) = _s%f - %cosﬂ, D) = — \/gsinﬁ+ % (5)

with the mixing angle 8 being between —15° to —22°, instead of simply considering ideal
mixing (i.e., sin8 = —1/3, thus 8 =~ —19.47°) [26], and M is a matrix having as elements

m2 0 0
M= [ 0 m2 0 ] (6)
0 O Zm%< -m2

where m,, mg represent the masses of the pion and of the kaon, respectively. When calcu-
lating the coupling of £,(980) to PP’, two models were considered: (I) We use in Eq. (3)
different weak decay constants for the pseudoscalars; (II) We consider a common value
f=fr=93MeV.

We refer the reader to Refs. [10, 11] for the values of the coupling constants involved
in the vertices depicted in Fig. 1. Using the amplitudes of Eq. (1), we can determine the
contribution of the processes depicted in Fig. 1, which depend on different tensor integrals.
As a consequence of the four-momenta dependence of the vertices, these tensor integrals can
be written as integrals in the loop variable d*q of a numerator which depend on qus Gvqus €IC.,
and a denominator which is a function of ¢, P and k, with the latter dependence being related
to the propagators of the particles in the triangular loops of Fig. 1. Using Lorentz covariance,
we can write these tensor integrals in terms of linear combination of k,, P, or products of k,
and P,, depending of the order of the tensor. Such a linear combination introduces several
unknown coeflicients, which need to be determine.

For example, the amplitude for the process ¢(2170) — ¢P depicted in Fig. 1, where P
represents, in this case, an 7 or 7 meson, can be writen as [11]

it¢Rﬁ¢7’ = Z 29¢R”¢f0 9 fo— PP Yp—9P’ eﬂvaﬁqﬁRV(P)ka €¢ﬁ(k)1 s (7)
P!
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where 1, is the following tensor integral:

_ d4q m 1 8)
o) et P -k-q)? - m, + i€ [(k + g — mj + iellq? — mg, + i€]’
As a consequence of the Lorentz covariance, we can write /, in terms of k, and P, as
1, = ap'k, + bp P, )

where ap and bp are the mentioned unknown coefficients. To calculate them, we proceed as
follows: Multiplying Eq. (9) by &# and P¥, respectively, we get two coupled equations which
permits to write ap and by as

_PXk-D—(k-P)P-]) _(k-P)(k-I)—kz(P-I)

, = , bp = , 10
@ K2P2 = (k- P)? » K2P2 = (k- P)? (10
where we have introduced
ko] r d*q k-q 1
S J et -k-q2- mjz,O + ie] [(k + ¢)* - mé + i€][q? - mi), +ie]’
r d*q P-q 1
I= - (11

J Qo (P-k-gP?-m

—00

3+ iel [(k + @) —mj + i€llg? — mg, + i€l

By working in the rest frame of the decaying particle, i.e., P* = (P°, 6), with PV = Mgy, WE
can express the previous integrals as

P N A Y 3T 1
_m (2n)3 J QM [(P-k—-qg)* - m}o +i€] [(k + ¢)? — mg + i€llg? — m}, + i€]
_ 0 7o
= [ ST ng ) = K- 3T g e
P-I1=Pp° [ da [ dd 9" !
B J (2n)3 J Q) [(P-k—-q)* - m?b +i€] [(k+ q)* — mé + i€l[q? — m3, + i€]
_ P f ST mes ) (12)

where we have introduced

[ dg" (¢")" 1
Q) [(P -k — q)* = m? + i€] [(k + g)* — m} + ie][g* - m%, +i€]

—00

13)

I,(my,my,m3) =

with n = 0,1. The integral in Eq. (13) can be calculated analytically by using Cauchy’s
theorem, finding for such the result

N b b
To(my, ma, mg) = —i 22, 713) (14)

D(my,my, m3)”°
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The N, and D in Eq. (14) depend on the energy of the particles involved in the loop and we
refer the reader to Refs. [10, 11] for more details. The integral in d3q in Eq. (12) can be
obtained as

(271)3

1

d 211212 R B

f 'é'fz' f deosfF (A, Ik + @DF (A1), (15)
|

—00

where we consider k = II_c'Ii, and ¢ = | |sinf(cosgi+sing J)+|q |cosok, such that l?-cf = Ilgllcf |cos@
and, thus. the integral in d¢ is trivial. In Eq. (15), F represents a product of form-factors
introduced for the different vertices to take into account of the finite size of $#(2170), f,(980),
etc., and A, A are cutofts about 1000 MeV for the center-of-mass momentum of the particles
forming these states. Typical expressions for the form factors in Eq. (15) are Lorentz [27],

AZ

FAIQ) = ————. (16)
A% + 0P
or Gaussian functions,
- _102
F(A,1Q]) = e 2. (17

Once the coeflicients appearing in the Lorentz expansion of the corresponding tensor
integrals are determined, the partial decay width ¢(2170) — AB can be obtained by means of

|PCM|
Tpponn = 5 O Mgponnls (18)
¢R pol

with |JFcum| being the modulus of the center-of-mass momentum of the particles in the final

state and ), indicating the sum over the polarizations of the initial and final states.
pol

3 Results

In Tables 1, 2 and 3 we show the results obtained within our description for the branching
fractions
Lyrokraasox-  Brlgr — K (1460)K™]

B, = = : (19)
: Cpporraaonx-  Brigr — K (1400)K~]

Lyrokraasnk-  Brlgr — K*(1460)K~]
Coemkraoiog-  Brigr — K{(1270)K-]

Bz = (20)

B = Uopokraziog-  Brigr — K{(1270)K] 1)
T Lppokraaong-  Brigr = K[ (1400)K-]

The values listed in the above mentioned tables can be compared with those obtained from
the experimental values: in Ref. [8], the values (in eV) for the products Br f;g_ are
Br(pr — KH(1460)K™ %< =3.0+3.8,

4.7 + 3.3, Solution 1
98.8 + 7.8, Solution 2 ’

7.6 = 3.7, Solution 1
152.6 + 14.2, Solution 2

Brlgr — KT (1400)K" % ¢ = {

Brlgr — K (1270)K7 % ¢ = { (22)

W



EPJ Web of Conferences 301, 03002 (2024) https://doi.org/10.1051/epjconf/202430103002
XLV Symposium on Nuclear Physics 2024

where two possible solutions for Brff;"’ from the fits to the data were found in Ref. [8] in
case of the decays ¢(2170) — KI*(I4OO)K’, Kfr(1270)K’. Using Eq. (22), we can obtain the
experimental values for the B}, B, and Bj ratios of Eqs. (19)-(21), which are listed under the
label “Experiment" in Tables 1-3. The theoretical values found for B;, B, and B3, as shown
in Ref. [10] do not depend much on the form factor consider in the vertices involved in the
mechanisms depicted in Fig. 1 and we provide here an average value of the results obtained
with a Heaviside, a Lorentz and a Gaussian form factors.

As can be seen in Tables 1-3, we find compatible results with the values extracted from
the experiment, however, there is a strong dependence of these ratios on the particular model
used to describe K;(1270) and K;(1400). More precise data would be required to distinguish
whether K;(1270) is a state generated from the pseudoscalar-vector dynamics considered in
Ref. [18]. Note, however, that only if a superposition of the two poles obtained in Ref. [18]
is considered in the calculation, a solution compatible with the value extracted from the ex-
periment is obtained. Also, model B does not seem to give a good description of the ratio B;.

Table 1. Results for the branching ratio B .

B,
Model B 0.62 +0.20
ModelC  0.11 +0.04
Solution 1 0.64 + 0.92
Solution 2 0.03 + 0.04

Our results

Experiment

Table 2. Results for the ratio B,.

B,
1.3+£04  (Poles z1, 22)
Model A 3612 (Polez)
8.8+2.38 (Pole z»)
Our results  Model B 166
1.2+04 (Solution S;)
ModelC  0.12+0.04 (Solution S,)
0.05+£0.02 (Solution S3)
Solution 1 0.40 + 0.54
Solution2  0.02 + 0.03

Experiment

Table 3. Results for the ratio Bs.

B;
Model B 0.04 +0.01
0.09 £0.02 (Solution S;)
Model C  0.96 + 0.16  (Solution S;)
2.40 +£0.40 (Solution S3)
Solution 1 1.62 + 1.38
Solution2 1.55+0.19

Our results

Experiment

The results for the ratio R, between the widths of ¢(2170) — ¢n and to ¢n’ are
summarized in Table 4. The results listed in this table should be compared with the ratio
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eXp _ @t2170)-4(2170) | $(2170)1-4(2170) . . $(2170) 1~¢(2170) .
RTW =8B /M Dy /8B sy Lere obtained by using the values 8 o '~ found in

Refs. [6, 9]:

0.018 :
RO { 0.034”_’0011 solution I, 23)

=\ 1.42+02% solution I,
and with the results obtained for R;’;z, by using for Bii}zno)l"fglw) the value found in Ref. [7],
which gives

RCXP —
nin’

0.009 + 0.003 solution II, 24)

0.013 + 0.007 solution I,
2.4 + 0.4 solutions III, IV.

As in case of the previous decay widths, several solutions where found for this ratio by using
the experimental data. Considering the values listed in Table 4, we find that mixing angles of
~ 22° give rise to values for R/, which are closer to the upper limit of the solution II of
Eq. (23) and solutions III, IV of Eq. (24).

Table 4. Values for the ratio R,,» considering different 7 — " mixing angles, 8, and form factors. The
labels L and G indicate the consideration of a Lorentz (L) or Gaussian (G) form factors, while the
numbers I and II refer to the model used to calculate the PP’ t-matrix.

B (Degree) —-15 -19.47 -22

LI 512+157 393+1.21 339+1.04
GI 547+168 421+129 3.63+1.11
LII 421+129 325+1.00 2.80+0.86
GII 441+135 3.40+1.04 293+0.90

er/n’

It is worth stressing that, in spite of the considerable experimental uncertainty obtained
for the previous obtained ratios, models considering ¢(2170) as a s3 states, a hybrid, etc.,
have real challenges in finding a good reproduction of these ratios, together with the mass
and width of ¢(2170).

4 Conclusions

In this work, we have summarized our findings for the branching ratios of ¢(2170) to final
states involving a K and a Kaonic resonance or a ¢ and an /5’ mesons. The description of
@(2170) as a ¢ fp(980) molecular state produce values compatible with the experimental find-
ings, reinforcing the interpretation of ¢(2170) as a state generated by the three-body dynamics
involved in the KK system in isospin 0, with s-wave interactions and in which the KK sub-
system resonates as f(980). The values obtained for these ratios depend on the nature of the
Kaonic resonances involved in the final state as well and more precise data are needed to dis-
entangle whether K;(1270) is a molecular state obtained from pseudoscalar-vector dynamics
and the hadron-hadron component in K;(1400).
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