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Abstract. In this talk we summarize the results we obtained for the partial de-
cay widths of φ(2170) into two-body final states formed by a K̄ and a Kaonic
resonance, like K(1460), K1(1270), as well as to final states constituted by a
φ and an η/η′ mesons. The results obtained are compared with the values ex-
tracted from experimental data on the corresponding branching ratios, which
were determined by the BESIII collaboration. A reasonable agreement is found,
which together with the previous reproduction of the mass, width and cross sec-
tion for the process e+e− → φ f0 strongly indicates the molecular nature of
φ(2170) as a φKK̄ system.

1 Introduction

Since its discovery in 2006 by the BaBar collaboration, several experimental collaborations
have been trying to understand the properties of the φ(2170) meson [1–7]. Recently, the
BESIII collaboration [6, 8, 9] have determined the product between the decay width of
φ(2170) → e+e− and the branching fraction of φ(2170) → K̄KR, φη, φη

′, with KR being
a Kaonic resonance, from fits to the corresponding data. The results found seem to challenge
the theoretical predictions for the partial decay widths of φ(2170) to the same K̄KR, φη, φη

′

channels obtained within a ss̄, hybrid or tetraquark picture for its inner structure [6, 8–11].
In Ref. [12], the φKK̄ system was studied considering interactions in s-wave and the solution
of the Faddeev equations was obtained for such system within the approach of Refs. [13–
15]. As a result, the three-body T -matrix for the system shows the generation of a state with
mass and width compatible with that of φ(2170) when the KK̄ system is forming f0(980).
The e+e− → φ f0(980) cross section determined by the BaBar collaboration was also well
reproduced with the model of Ref. [12] by implementing the final state interaction in the
e+e− → φ f0(980) cross section calculated with the approach of Ref. [16], which explained
the background of the process, but not the signal observed for φ(2170).

In view of the recent data obtained by the BESIII collaboration about some partial decay
widths of φ(2170), it would be interesting to know the corresponding values determined with
the model of Ref. [12] and check if they are in agreement, or not, with the experimental data.
Such a compatibility with the data is by no means trivial, since models considering φ(2170) as
a ss̄, hybrid, tetraquark, etc., do not seem to give compatible results for all the known exper-
imental data for φ(2170), which include the previous mentioned partial decay widths, cross

∗e-mail: amartine@if.usp.br
∗∗e-mail: brenda@if.usp.br
∗∗∗e-mail: kanchan.khemchandani@unifesp.br

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 

Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 301, 03002 (2024)
XLV Symposium on Nuclear Physics 2024

https://doi.org/10.1051/epjconf/202430103002



Figure 1. Decay mechanism for φ(2170) to K̄KR, KR ≡ K(1460), K̄K1, K1 ≡ K1(1270), K1(1400), and
to φη, φη′.

sections obtained from e+e− collisions, mass and width. For instance, the BESIII collabora-
tion has found that the decay mode of φ(2170) to K∗(892)K̄∗(892) is suppressed as compared
to other K̄KR final states. This fact alone does not seem to be understood considering φ(2170)
to be a ss̄ or hybrid state.

2 Formalism

The partial decay widths of φ(2170) to the above mentioned channels not only depend on
the nature of φ(2170), but also on that of the Kaonic resonances present in the final state,
like K ≡ K(1460), K1(1270), K1(1400). Having a good description of the properties of these
latter states is relevant to have reliable partial decay widths for φ(2170). In case of K(1460),
we consider the model of Ref. [17] in which the state is described from the KKK̄ interaction,
with a large coupling to the K f0(980) configuration. In case of K1(1270) and K1(1400) we
consider three different approaches: (1) In Ref. [18], the Kρ and pseudoscalar-vector coupled
channel dynamics was studied and generation of K1(1270) was found as a consequence of
the superposition of two poles, one at z1 = M − iΓ/2 = 1195 − i123 MeV and other at
z2 = 1284 − i73 MeV. In this case, no signal for K1(1400) was obtained. We call this model
as A; (2) In Ref. [19], a tensor formalism for the vector mesons was used and K1(1270)
and K1(1400) were described as states obtained from the mixing of the K1A and K1B states
belonging to the nonet of axial resonances. Mixing angles of 29 − 62◦ were shown to be
compatible with the experimental data available for these states. We call this model as B; (3)
Instead of relying on the results found within the previous two models for, for example, the
coupling constants of the K1 states to pseudoscalar-vector meson channels, we could directly
use the data on the radiative decay of K1(1270) and K1(1400) available on the particle data
book to estimate such couplings. We call this model C.

Having in ming the coupling of K1(1270) and K1(1400) to pseudoscalar-vector channels,
the molecular nature of φ(2170) as a φ f0(980) state and that of f0(980) as a state obtained
from the KK̄ and pseudoscalar-pseudoscalar coupled channel dynamics [20, 21], the decay
of φ(2170)→ K̄KR, φη and φη′ proceeds as depicted in Fig. 1.

Following Refs. [12, 17, 18, 20], the states φ(2170), K(1460), K1(1270), and f0(980) are
generated from the s-wave interactions of three or two hadron systems. Thus, the contribution
of the vertices φ(2170) → φ f0(980), f0K+ → K+(1460), φ → K+

1 K− present in the decay
mechanisms of Fig. 1 can be written as,

tφR = gφR→φ f0εφR · εφ, tKR = gK+
R→K+ f0 ,

t f0→PP′ = g f0→PP′ , tK+
1→φK+ = gK+

1→φKεK+
1
· εφ, (1)

where gi→ j is the coupling for the process i → j, P and P′ represent pseudocalar particles
and εk is the corresponding polarization vector for particle k. To determine the amplitude for
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the φ→ P1P2 vertex, we consider the Lagrangian [22]

LVVP = −ig〈Vµ[P, ∂µP]〉, (2)

with Vµ and P being matrices having as elements the vector and pseudoscalar meson octet
fields, respectively, g = MV/(2 fπ), MV ' Mρ, fπ ' 93 MeV, and 〈 〉 indicating the SU(3)
trace. The coupling constant g f0→PP′ is obtained from the residue of the two-body t-matrix
describing the interaction between two pseudoscalars. This t-matrix is obtained by solving
the Bethe-Salpeter equation with a kernel V which is determined from from the lowest-order
chiral Lagrangian LPP, implementing the η − η′ mixing [23–25],

LPP =
1

12 f 2 〈(∂µPP − P∂µP)
2 + MP4〉. (3)

with

P =


A(β)η + B(β)η′ + π0

√
2

π+ K+

π− A(β)η + B(β)η′ − π0
√

2
K0

K− K̄0 C(β)η + D(β)η′

 , (4)

where

A(β) = −
sinβ
√

3
+

cosβ
√

6
, B(β) =

sinβ
√

6
+

cosβ
√

3
,

C(β) = −
sinβ
√

3
−

√
2
3

cosβ, D(β) = −

√
2
3

sinβ +
cosβ
√

3
, (5)

with the mixing angle β being between −15◦ to −22◦, instead of simply considering ideal
mixing (i.e., sinβ = −1/3, thus β ' −19.47◦) [26], and M is a matrix having as elements

M =

 m2
π 0 0

0 m2
π 0

0 0 2m2
K − m2

π

 , (6)

where mπ, mK represent the masses of the pion and of the kaon, respectively. When calcu-
lating the coupling of f0(980) to PP̄′, two models were considered: (I) We use in Eq. (3)
different weak decay constants for the pseudoscalars; (II) We consider a common value
f = fπ = 93 MeV.

We refer the reader to Refs. [10, 11] for the values of the coupling constants involved
in the vertices depicted in Fig. 1. Using the amplitudes of Eq. (1), we can determine the
contribution of the processes depicted in Fig. 1, which depend on different tensor integrals.
As a consequence of the four-momenta dependence of the vertices, these tensor integrals can
be written as integrals in the loop variable d4q of a numerator which depend on qµ, qνqµ, etc.,
and a denominator which is a function of q, P and k, with the latter dependence being related
to the propagators of the particles in the triangular loops of Fig. 1. Using Lorentz covariance,
we can write these tensor integrals in terms of linear combination of kµ, Pµ or products of kµ
and Pµ, depending of the order of the tensor. Such a linear combination introduces several
unknown coefficients, which need to be determine.

For example, the amplitude for the process φ(2170) → φP depicted in Fig. 1, where P
represents, in this case, an η or η′ meson, can be writen as [11]

itφR→φP =
∑
P′

2gφR→φ f0g f0→PP̄′gφ→φP′ε
µναβεφRν(P)kαεφβ(k)Iµ, (7)
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where Iµ is the following tensor integral:

Iµ =

∞∫
−∞

d4q
(2π)4

qµ
[(P − k − q)2 − m2

f0
+ iε]

1
[(k + q)2 − m2

φ + iε][q2 − m2
P′

+ iε]
. (8)

As a consequence of the Lorentz covariance, we can write Iµ in terms of kµ and Pµ as

Iµ = aP′kµ + bP′Pµ, (9)

where aP′ and bP′ are the mentioned unknown coefficients. To calculate them, we proceed as
follows: Multiplying Eq. (9) by kµ and Pµ, respectively, we get two coupled equations which
permits to write aP′ and bP′ as

aP′ =
P2(k · I) − (k · P)(P · I)

k2P2 − (k · P)2 , bP′ = −
(k · P)(k · I) − k2(P · I)

k2P2 − (k · P)2 , (10)

where we have introduced

k · I =

∞∫
−∞

d4q
(2π)4

k · q
[(P − k − q)2 − m2

f0
+ iε]

1
[(k + q)2 − m2

φ + iε][q2 − m2
P′

+ iε]
,

P · I =

∞∫
−∞

d4q
(2π)4

P · q
[(P − k − q)2 − m2

f0
+ iε]

1
[(k + q)2 − m2

φ + iε][q2 − m2
P′

+ iε]
. (11)

By working in the rest frame of the decaying particle, i.e., Pµ = (P0, ~0), with P0 = mφR , we
can express the previous integrals as

k · I =

∞∫
−∞

d3q
(2π)3

∞∫
−∞

dq0

(2π)
k0q0 − ~k · ~q

[(P − k − q)2 − m2
f0

+ iε]
1

[(k + q)2 − m2
φ + iε][q2 − m2

P′
+ iε]

≡

∞∫
−∞

d3q
(2π)3 [k0I1(m f0 ,mφ,mP′ ) − ~k · ~qI0(m f0 ,mφ,mP′ )],

P · I = P0

∞∫
−∞

d3q
(2π)3

∞∫
−∞

dq0

(2π)
q0

[(P − k − q)2 − m2
f0

+ iε]
1

[(k + q)2 − m2
φ + iε][q2 − m2

P′
+ iε]

≡ P0

∞∫
−∞

d3q
(2π)3I1(m f0 ,mφ,mP′ ), (12)

where we have introduced

In(m1,m2,m3) ≡

∞∫
−∞

dq0

(2π)
(q0)n

[(P − k − q)2 − m2
1 + iε]

1
[(k + q)2 − m2

2 + iε][q2 − m2
3,+iε]

(13)

with n = 0, 1. The integral in Eq. (13) can be calculated analytically by using Cauchy’s
theorem, finding for such the result

In(m1,m2,m3) = −i
Nn(m1,m2,m3)
D(m1,m2,m3)

, (14)
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The Nn and D in Eq. (14) depend on the energy of the particles involved in the loop and we
refer the reader to Refs. [10, 11] for more details. The integral in d3q in Eq. (12) can be
obtained as

∞∫
−∞

d3q
(2π)3 (· · · )→

∞∫
0

d|~q ||~q |2

(2π)2

1∫
−1

dcosθF(Λ, |~k + ~q|)F(Λ̄, |~q CM|)(· · · ), (15)

where we consider~k = |~k|ẑ, and ~q = |~q |sinθ(cosφî+sinφ ĵ)+|~q |cosθk̂, such that~k·~q = |~k||~q |cosθ
and, thus. the integral in dφ is trivial. In Eq. (15), F represents a product of form-factors
introduced for the different vertices to take into account of the finite size of φ(2170), f0(980),
etc., and Λ, Λ̄ are cutoffs about 1000 MeV for the center-of-mass momentum of the particles
forming these states. Typical expressions for the form factors in Eq. (15) are Lorentz [27],

F(Λ, | ~Q|) =
Λ2

Λ2 + | ~Q|2
, (16)

or Gaussian functions,

F(Λ, | ~Q|) = e−
| ~Q|2

2Λ2 . (17)

Once the coefficients appearing in the Lorentz expansion of the corresponding tensor
integrals are determined, the partial decay width φ(2170)→ AB can be obtained by means of

ΓφR→AB =
|~pCM|

24πm2
φR

∑
pol

|tφR→AB|
2, (18)

with |~pCM| being the modulus of the center-of-mass momentum of the particles in the final
state and

∑
pol

indicating the sum over the polarizations of the initial and final states.

3 Results

In Tables 1, 2 and 3 we show the results obtained within our description for the branching
fractions

B1 ≡
ΓφR→K+(1460)K−

ΓφR→K+
1 (1400)K−

=
Br[φR → K+(1460)K−]
Br[φR → K+

1 (1400)K−]
, (19)

B2 ≡
ΓφR→K+(1460)K−

ΓφR→K+
1 (1270)K−

=
Br[φR → K+(1460)K−]
Br[φR → K+

1 (1270)K−]
, (20)

B3 ≡
ΓφR→K+

1 (1270)K−

ΓφR→K+
1 (1400)K−

=
Br[φR → K+

1 (1270)K−]
Br[φR → K+

1 (1400)K−]
. (21)

The values listed in the above mentioned tables can be compared with those obtained from
the experimental values: in Ref. [8], the values (in eV) for the products BrΓe+e−

R are

Br[φR → K+(1460)K−]Γe+e−
R = 3.0 ± 3.8,

Br[φR → K+
1 (1400)K−]Γe+e−

R =

{
4.7 ± 3.3, Solution 1

98.8 ± 7.8, Solution 2 ,

Br[φR → K+
1 (1270)K−]Γe+e−

R =

{
7.6 ± 3.7, Solution 1

152.6 ± 14.2, Solution 2 . (22)
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where two possible solutions for BrΓe+e−
R from the fits to the data were found in Ref. [8] in

case of the decays φ(2170)→ K+
1 (1400)K−, K+

1 (1270)K−. Using Eq. (22), we can obtain the
experimental values for the B1, B2 and B3 ratios of Eqs. (19)-(21), which are listed under the
label “Experiment" in Tables 1-3. The theoretical values found for B1, B2 and B3, as shown
in Ref. [10] do not depend much on the form factor consider in the vertices involved in the
mechanisms depicted in Fig. 1 and we provide here an average value of the results obtained
with a Heaviside, a Lorentz and a Gaussian form factors.

As can be seen in Tables 1-3, we find compatible results with the values extracted from
the experiment, however, there is a strong dependence of these ratios on the particular model
used to describe K1(1270) and K1(1400). More precise data would be required to distinguish
whether K1(1270) is a state generated from the pseudoscalar-vector dynamics considered in
Ref. [18]. Note, however, that only if a superposition of the two poles obtained in Ref. [18]
is considered in the calculation, a solution compatible with the value extracted from the ex-
periment is obtained. Also, model B does not seem to give a good description of the ratio B2.

Table 1. Results for the branching ratio B1.

B1

Our results Model B 0.62 ± 0.20
Model C 0.11 ± 0.04

Experiment Solution 1 0.64 ± 0.92
Solution 2 0.03 ± 0.04

Table 2. Results for the ratio B2.

B2

Our results

Model A
1.3 ± 0.4 (Poles z1, z2)
3.6 ± 1.2 (Pole z1)
8.8 ± 2.8 (Pole z2)

Model B 16 ± 6

Model C
1.2 ± 0.4 (Solution S1)

0.12 ± 0.04 (Solution S2)
0.05 ± 0.02 (Solution S3)

Experiment Solution 1 0.40 ± 0.54
Solution 2 0.02 ± 0.03

Table 3. Results for the ratio B3.

B3

Our results

Model B 0.04 ± 0.01

Model C
0.09 ± 0.02 (Solution S1)
0.96 ± 0.16 (Solution S2)
2.40 ± 0.40 (Solution S3)

Experiment Solution 1 1.62 ± 1.38
Solution 2 1.55 ± 0.19

The results for the ratio Rη/η′ between the widths of φ(2170) → φη and to φη′ are
summarized in Table 4. The results listed in this table should be compared with the ratio
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Rexp
η/η′
≡ B

φ(2170)
φη Γ

φ(2170)
e+e− /B

φ(2170)
φη′ Γ

φ(2170)
e+e− obtained by using the values Bφ(2170)

φP
Γ
φ(2170)
e+e− found in

Refs. [6, 9]:

Rexp
η/η′

=

{
0.034+0.018

−0.011 solution I,
1.42+0.58

−0.48 solution II, (23)

and with the results obtained for Rexp
η/η′

by using for Bφ(2170)
φη Γ

φ(2170)
e+e− the value found in Ref. [7],

which gives

Rexp
η/η′

=


0.013 ± 0.007 solution I,
0.009 ± 0.003 solution II,
2.4 ± 0.4 solutions III, IV.

(24)

As in case of the previous decay widths, several solutions where found for this ratio by using
the experimental data. Considering the values listed in Table 4, we find that mixing angles of
' 22◦ give rise to values for Rη/eta′ which are closer to the upper limit of the solution II of
Eq. (23) and solutions III, IV of Eq. (24).

Table 4. Values for the ratio Rη/η′ considering different η − η′ mixing angles, β, and form factors. The
labels L and G indicate the consideration of a Lorentz (L) or Gaussian (G) form factors, while the

numbers I and II refer to the model used to calculate the PP̄′ t-matrix.

β (Degree) −15 −19.47 −22

Rη/η′

LI 5.12 ± 1.57 3.93 ± 1.21 3.39 ± 1.04
GI 5.47 ± 1.68 4.21 ± 1.29 3.63 ± 1.11
LII 4.21 ± 1.29 3.25 ± 1.00 2.80 ± 0.86
GII 4.41 ± 1.35 3.40 ± 1.04 2.93 ± 0.90

It is worth stressing that, in spite of the considerable experimental uncertainty obtained
for the previous obtained ratios, models considering φ(2170) as a ss̄ states, a hybrid, etc.,
have real challenges in finding a good reproduction of these ratios, together with the mass
and width of φ(2170).

4 Conclusions

In this work, we have summarized our findings for the branching ratios of φ(2170) to final
states involving a K̄ and a Kaonic resonance or a φ and an η/η′ mesons. The description of
φ(2170) as a φ f0(980) molecular state produce values compatible with the experimental find-
ings, reinforcing the interpretation of φ(2170) as a state generated by the three-body dynamics
involved in the φKK̄ system in isospin 0, with s-wave interactions and in which the KK̄ sub-
system resonates as f0(980). The values obtained for these ratios depend on the nature of the
Kaonic resonances involved in the final state as well and more precise data are needed to dis-
entangle whether K1(1270) is a molecular state obtained from pseudoscalar-vector dynamics
and the hadron-hadron component in K1(1400).
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