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1. Introduction

This paper intends to present a result contained in [LF2], namely, the extension of the 

spectral results of [Henry 1] for the flow of the Linear Autonomous NFDEs to the context 

of regulated right-continuous functions.

If [a, b] is an interval of the real line and X is a Banach space, we write G([ay 6], X) 

for the space of the functions V* • (<*» &] —<► X for which there exist the limits 0(t+) for 
every t € [a, b\ and for every f € ]a,4>]. Such functions are called regulated

functions.

In [LF2] we extend some results obtained by J. Hale ([Hale]) and D. Henry ([Henry 1]) 

for the so-called Neutral Functional Differential Equations (NFDEs), which have the form 

jj(*(t) — /(t,x»)) = ^(t.Xt), from the context of continuous functions to the context of 
regulated functions. The motivation for this extension is the fact that the fundamental ma­

trix, which appears in the variation-of-constants formula of the linear non-homogeneous 

NFDE ([Hale], [Henry 1]), is regulated and not continuous in t. So, the space of regulated 

functions appears as a natural context to include the fundamental matrix or the resolvent, 

in the case we consider a generic Banach space X. In this general context, Hanig ([HI], 
[H2]) studied the Volterra-Stieltjes linear Integral Equations. We applied this results, since 

the initial value problem of a linear NFDE leads to such an integral equation ([LFl]).

2. The main result

Let En denote the Euclidean space of real or complex n-vectors and let r be a fixed 

positive number. f?+ = <?+([—r,0),E") is the space of the regulated right-continuous 

functions ^ : [—r, 0] —* En, which i5 complete with the norm = sup_r<#<o ||^(6)||-

-165-



-166-

We call C = C([—r,0],E") the closed subspace of of continuous functions. If x is 
a regulated right-continuous map of \a — r,t] into E", then x, € (?+ is given, for each 
o < t < 6, by xt(B) = x{t + 0), -r < 9 < 0.

Let D, L be fixed continuous linear functionals from into E", with integrals 
representations given by Dtp — ^(0)—/fr dp{9)ip{B) and Lv? = J^r drj(B)<p(B) for v> € {?+; 
where p, 17 are matrix-valued functions (from [—r,0] into £(E")) of bounded variation 
which vanish at 6 = 0 and are left-continuous. For these representations, we utilize the 
Interior Integral which extends the Riemann-Stieltjes Integral (see [Hi]). We assume here 
that p has no singular part, i.e., r <fp(0)<p(0) - £kL) Xfc«p(-rfc) + £r A(B)<p{B)dB 
V^€0+, where 0 < rk < r and At € £(En) for k € N and A € Lj([—r,0],£(E*)). 

in this situation, the initial value problem is well posed for the NFDE:

—Dx, = Lxtt t > 0 ,(N) dt

that is, for ip € G+ we have the unique regulated right-continuous solution x = x(0, <p) 
of (N) for t > 0 with *o = <p. We have, then, well defined the flow of (N), {X’(t))«>o» 
semigroup of bounded linear operators on given by T(t)^ = X|(0, <p) for <p € {?+ 
and t > 0.

Let D° be the jump part of D, that is, D°<p = ^(0) — A*^(—r*) for *p €
We denote by G^o the kernel of D°. The initial value problem is also well posed for the 
difference equation (D)0 : D°xt *= 0, t > 0. This defines the flow of (D)o, 
semigroup of bounded linear operators on .

We known that C is invariant under T{t) (t > 0) and Cp* G^» HC is invariant 
under T°(f) (t > 0), that is, the solution of (N) or (D)0 is continuous whenever the 
initial data is a continuous function.

Daniel Henry ([Henry 1], [Henry 2]) gives a complete description of the spectrum of 
the operators T°(f)|cp, and T(<)|C for < > 0, using the infinitesimal generator A* 
of {T°(0 lcp,}»>o and A of {T(f)|f}i>p. The restriction of each flow, as above, is 
a strongly continuous semigroup of linear operators which admits a closed infinitesimal
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generator with dense domain in C& and C, respectively. For the spectrum of these 

generators, we have:

<r(A°) = P<t(A°) = {A € C | detff(A) = 0}

<r(A) « Po(A) « {A € C | detA(A) * 0}

where det/f(A) — 0 and detA(A) s0 are the respective characteristic equations of (D)0 

and (N), i.e.:

H(X) =
km 1

and A(A) = Aff (A) - A £r A{6)cx'd6 - jtrdrj{e)ex$ = XD{ex I) - L{ex I). 

Henry shows that:

"(!•(«) \cD.)\W - e«'<A')\{0) a.e. in t > 0

and r(t),c - T°(t) o ♦ :C -*C is a compact operator for each t > 0, (where the map 

♦ above is a continuous projection from G+ onto Gpo such that Vf(C) CCpo, defined 

in the next section), and with these facts he concludes that:

o{T(t)|C)\{0) = e"<A>\{0} a.e. in t > 0.

The flows of (D)o and (N) are neither strongly continuous nor something like 

“strongly regulated”. In fact, they have infinite oscillation around each t > 0 when we fix 

a non-continuous initial function, and then, we cannot extend the infinitesimal generators 

to dense domains in G^e and respectively. Nevertheless, we still can show that the 

results obtained by Henry are extensible* for Gpc and G+ respectively. This is done in 

the next sections.

3. The difference equation

Let €4 C G* the subspace of step-functions, that is:

k

= G G* I for some k € N*, c, € E" and -r<ii< 0,
•-)

. = 1,2,...,*}.
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£+ is dense in C+ («*• [Hi]).

Let G“BVo = G“BVo(|—r,0],(E*)') the space of applications a : [—r,0] —» (En)' ** 

£(E",E) with bounded variation which vanish at 0=0 and are left-continuous.

We have the following immediate lemmas:

Lemma 1. For each <p € there is a sequence {v>m}m€N' € C, such that

V>~(0) = *(0), |vp«|| = M V m € N and

f_ da(0)*m(e)m-=? £da{*M*) V o € G~ BV0.

Lemma 2. For *p € £+, if £rda(0)ip(0) = 0 Vo € G~BV9> then y>(0) = 0 for 

-r < 0 < 0.

For a linear operator L, we denote by Af{L) and R(I) the kernel and the range 

respectively.

Remark 1. In [Hale], cap. 12.3, it is given a continuous projection ♦ : C —* Cpo such 

that ♦ = Ic — *D°, where ♦ = 4i € C, satisfies = /, / is the

identity matrix n x n and Ic is the identity of C.

So, C = CDo ©AW and dimA'(¥)

(^j,.,^w) as a basis. Putting y>° = have, for tp € C:

because M('if) — H($D°) has ♦ == n

¥> = ¥>' + *D°<e = / + £(X>V)i* = V>° + £>(<)). - f°
im 1 •'-r

where (D0^)* is the «-th component of the vector D°<p € E" and /sa-(0) is the t-tb 

line of the matrix /I(0) = - ^*X)-oo,-r.j(0)- Thus, /!< € G“BVo, i=l,2,...,n.

For tp € it is also true that D°(^ — QD°<p) = 0, then we have ♦ extended to 

and the same decomposition as above holds for tp € C?+.

From this remark and lemma 1, it follows easily the:

Lemma 3. For tp € £+, let € C, m € N, as in lemma 1. Then

Vo €f?"BV0,
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where y>° = ♦y as in remark 1. We also have ^(0) ^ v>*(0).

Note that C^c 4»(£4) is dense in

Lemma 4. If T € £((?£., 04) with (7»(f) = d,*(# - 0M0)* where we have 
—r < —r < 0 and : (—r,f] -♦ £(E") has bounded variation and is right-continuous; 

then, for each o € G~BVq, there is a o € G~BVk, such that:

f do,(6)(T*m = f dS(ffMff) V y, € {£..

Proof: We use the theorem 2.4 of (H2J, which says that:

f da(t)J°_d,K(9 - 0M0) = ffd,{f «fa(«)A'(#-/))]„(/})

to construct a suitable a € G BV0.

Remark 2. In [LF2] we show that the variation-of-constants formula for the linear

NFDEs ([Hale), [Henry 1]) remains the same in the context of regulated functions. For

the solution y of (2?)o, for t > 0, with yo * ^ is given by

(Pd°) dfiX{t-0-rk)Ak<p(0), t> 0,v(0

where X is the fundamental matrix given by the conditions D°Xt = J for t > 0, 

X(0) = / and X(t) s 0 for t < 0.

We have, by [Henry 1], lemma 3.5, the following result: if a € R is such that 
detH(\) ft 0 in some strip [Re A — o| < 6, 6 > 0, then we may decompose Jf(t) = 

JTF(f) + JT«(f) (if o = 0 we will have *(*) = Xp(t) + X*(t) + cte.), Xp can be 

extended for i < 0 and we have the estimates:

VKll_r,I]|A'«) <«*<-•)' lor 1 > 0 

V«r,,_r,j[A,>) < M*<“+*>' for <<0

for some constant Af
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Theorem 1. Suppose o € R is such that detff(A) 0 in some strip |ReA - o| < 6, 

6 > 0. Then G^y *= P © Q the direct sum of closed subspaces P, Q, invariant 

under T°(f), t > 0- The semigroup {T°(<)|p}|£* may be extended uniquely 

group (-00 < t < oo) of operators on P. There exists a constant M’ such that: 

lir°(0|oll < M'-t'—"' for t > 0 and ||T°(0|fI < for t < 0.

as a

Proof. As in remark 2, we have the split of matrix X and, for if € Gp», 

solution of (i?)o, y(0. given by formula (p&>). We may write: y(f) = yp(1) + yQ(f), 

where yp,Q(t) = - jlr^dfiXp,Q{t - fi - rk)Ak<f{0), t > 0, and we can take 

-oo < 1 < oo for yF. FYom remark 2, we obtain also the estimates:

we have the

kmi

hpm<(f:\Ak\).M,
(•)

(«+•)* liv’d for < < o

Define 7^(t)pif = yp for t € R and T°(t)^v = y, for t > r.

By the majorations above we see that Let xp d*=* T®(0)p €

£((/£.,<?+)-
In [Henry 1] theorem 3.1, it is shown that xp |ccC€ £(C*>®) and it is idempotent. 

We will show that xp 6 C(Gpo) and is also idempotent.

We begin with the step-functions. Let if € €* and <pm € C, m € N

V = +

as in£>«>). - f
•>i J~r

By the formula of xfor each 9 €

lemma 1. By remark 1, we have: Using

the formula of xp^° sc y^ and lemmas 3 and 4 we obtain

f rfoW’wV)
I—r,0]. and the fact that ||s?m|| = liv’d (and then dv’^ll S V m € N),

we obtain *PV°(0) and, in particular, »pvS,(0) "in?1 xpv?°(0). So,

0 = D°(*rvl) = f dfUfiXwrvlm *,V(0) - jf <W)(»/-V’°)W =

/)°(xpv°). Then xpv?° € Gjo, that is, »/»(££o) C G%o and taking the closure of fjj,,

V o € G"BV'o.
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we have jrp € C(Gp>)- Now it makes sense to take *p. To show that */» is a pro­

jection. we note first that 

consequence of the formula of Xp</>°(0) and lemma 4. We know' that *pyPm = xptp^,

— wp]v>C(0) = 0 Vo 6 G~BVq and from 

lemma 2 we have *p^®(0) = */,V’°(0) f°r — r < 0 < 0. For 0 = 0, observe 
that D°(>rV) = '^‘(O) - J° = *V(0) - »/>V>°(0) + D°(apv.°), but

D°{n7ptj>0) = D°(7rpvr0) = 0 for Gpo is invariant under J(p. This completes the proof 

that wp is idempotent in C^y, and so in Gpo-

Then we have the closed subspaces of Gpo • P ~ .V(wp), Q = U(jrp); Gpc = P & Q 
and xp is a projection on P along Q.

By [Henry 1] theorem 3.1, we have (#) = irpT*(<Vi(#) = JWrfLW

V t > 0, V 0 € [—r,0] and each of these expressions converges when m —• oo to the 

respective expression with y>° instead of tp^ (this can be shown by using the formulas of 

*py T°(f), T*>(t)F and lemma 4). Therefore, T°(f)xp = »pT°(<) = T°(t)F in £po and 

in (?£., for <>0. For t 6 R, we also obtain 0 * WWV.) W<)V) 
and this allows us to define T°(t) = T°(t)p in P for t < 0 and to obtain the group of 

isomorphisms for, when we have the backward continuation of the solution

of equations like (D)0 in the whole line, this continuation is unique (see [Henry 3J).

The inequalities stated in the theorem follow immediately from inequalities in (*).■

VaeG-BV9, a

J MlJ)[4since 6 Cpo. Therefore,

Remark 3. The subspaces P n Cpo and Q 0 Cpo are characterized in [Henry 1] 

theorem 3.1, in terms of the generalized eigenspaces corresponding to the eigenvalues of 

the infinitesimal generator A° which have the real parts bigger than o and smaller than 

o, respectively.

We can extend, now, the theorem 3.2 of [Henry 1],

Theorem 2. Let Z d= (ReA j det/J(A) = 0} be nonempty; then, for t > 0, we have:

| detff(A) = 0} C o(T°(t)) C {p | |/i| = e«', ( € Z) U (0).
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If o $ Z and Cpc =* P © Q i* the decomposition given by theorem 1, then 

*(r°(0|#0 C {n | |/i| = e<*, ( € 1 and ( > o)

*(**(<)») C 0* I M * «*'. (€? and ( < a)

If Z is empty, then *(T°(f)) = {0} for f > 0; in fact, T*(<) = 0 for t > r.n.

Proof. It is the same of theorem 3.2 of [Henry 1], using now theorem 1. We recall that for 

SP 6 €+ and <pm € C, me N, as in lemma 1, we will have T°(/V°(0)

and then r°(f)tf0O=O ^ T°(f) = 0. ■

Remark 4. From theorem 2 and from (Henry 2] theorem 5.1, we have that:

,#<A*)\{0} a.e. in t > 0.= e

4. The Neutral FDE

Passing now to equation (N) of section 2, we first generalize the lemma 4.1 of

[Henry 1].

Lemma 1. To the equations (N) and (D)o wad their flows, given in section 2, we have: 

T(t) — 7*(<) o * : is a compact operator for each t > 0, where 4* is the

projection given in remark 1 of section 3.

Proof: Analogous to the lemma 4.1 of [Henry l]. Recall that 72.(704 - 4*) has finite

■dimension.

We denote by Ptr(L)y Ho(L) and Cc(L) the point, the residual and the continuous 

parts of the spectrum of a linear operator L.

We generalize now the theorem 4.1 of [Henry 1).

Theorem 1. With the notation of section 2, for the flow of equation (N), we have:

i) JMT(<))\{0} = Po(T(i\c)\{0} = <£*' I detA(A) = 0}

ii) RolT(t)) U Ca(T(t)) C {/i I M = e<\ (£Z)U {0}
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where Z is given in theorem 2 of section 3.

iii) <r(r(O)\{0} = e‘'<A)\{0} a.e. in t > 0.

Proof: i) Suppose t0 > 0, A<> € C and ip 6 £+ such that T(t0)<p = ^ 0.

We show that there is a c € E" such that y(f) = c.eXt ^ 0 is the solution of (N) 

with initial data vH^) = c.eA#, where A = Ao + for some n € N, that is; we find a 

continuous (in fact, exponential) eigenvector for the eigenvalue eAo<0 of T(<o)-

Let x, = X(0v?i < > 0- The function t —* e~x'°1x(1) is periodic of period <0 and 
then there is a n € N such that the n-th Fourier coefficient is nonzero, that is,

— ~ f e 'x(s)e_Ac*ds = j- f x(s)e y“ds 0 
*0 Jo *o Jo

and we have

a 7* / ° x(*)c*(,+#—= 
*0 Jo

+ e)c-x‘du = i f\n*)x. )(«)*-*■

= nvxijf *.()e-*-du)](tf) = [T(0(c.«f)](»).

_ £ /*• 
“ <0 Jo x(f + u <fu =

By the same arguments of theorem 4.1 of [Henry l] we prove ii), using the result of 

Gohberg and Krein in the version of lemma 2 of [Henry 1] and using theorem 2 of section

3 and lemma 1.

For iii) we use also theorem 5.1 of [Henry 2). ■
In the same way of theorem 4.2 of [Henry l] we can show that:

Theorem 2. Suppose a £ Re <r(A), i.e., detA(A) ^ 0 in some strip |ReA - o| <

6 > 0. Then G+ = P © Q, where P, Q are closed subspaces invariant under T(t).

The restriction of the semigroup to P may be extended to a group {T(0|p}<€* 

of isomorphisms of P. Finally, there exists a constant M such that ||T(0|qII < 

M«<•-*>' for < > 0 and ||T(f)|p|| < Afe<”+‘" for I < 0 (tee also [LF2J, cap.II, $4, 
theorems 3 and 4.)
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We now study the corresponding decomposition for the nonhomogeneous equation

±(Dx,-B(t))-Lx,(N)h = at

for a given regulated right-continuous feu-ring function H.

Fbr each f, t0 € R, t > t«, we have a bounded Unear operator X(t, <0) € 

such that the solution of (N)j/ for t > <0 with € f?+ i*

given by zt(to,<p,H) = T(t - <0)v> + £(Mo)ff, where {T(<)}i*o »• the flow of (N) as 

in section 2.

from [LF2] we have that £(<,!«)# = X.U(t)-T(t-t0)x.H(t0)-£ d0T(1-c)X.H(a)

where, for p € En, we have x„p(*) = 0 for -r < $ < 0 and xo/>(0) = P and
*)x.H{c)m= f d0X{t + B 

Jto
fundamental matrix A'(f) € £(En) given by X(f)p « T(t)\,p(0).

In |LF2] (see cap.II, §4, remark 7), we generalize the theorem 4.3 of (Henry 1] as

</ - o)H(c)t the integral being in E", and thed.T(t-

a consequence of theorem 2 and the variation-of-constants formula for equation (N)/j.

Then we have:

Theorem 3. Suppose o $ Re<r(A) and = P © Q is the decomposition provided 

by theorem 2. We write <p = <pp + tpQ 6 P ® Q. Then, there exist matrix-functions of 

bounded variation XF and X^t such that:

x?{to'V,H) = T(t - «„)v>Q + (X.mf ~ T(t - *„)(X.*(<.))« - fd.T(f - <r)[x./f(a)]«
Jto

*f(<o, ¥>,-&) = T(t - <0)fF + (x.B(t))P - T(t - *o)(x.B(t0))F - fd.T(i - o)[x.H(o)f
Ju

for t > to, where

and

' </ o)[x,mo))F-0)(<))= f i.XpQ(t + »-o)H{o) for »€[-r,»]. 
Jto

d,T(t -

Remark 2. The matrix functions XQ and Xr are the same given in theorem 4.3 of 

[Henry 1] (he calls there Xp'Q(t + 0) = T(t)xf,Q(0)) *nd we have the estimates given in 

that theorem.
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