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Abstract—Segmentation of medical images is critical for
making several processes of analysis and classification more re-
liable. With the growing number of people presenting back pain
and related problems, the semi-automatic segmentation and 3D
reconstruction of vertebral bodies became even more important
to support decision making. A 3D reconstruction allows a
fast and objective analysis of each vertebrae condition, which
may play a major role in surgical planning and evaluation
of suitable treatments. In this paper, we propose 3DBGrowth,
which develops a 3D reconstruction over the efficient Balanced
Growth method for 2D images. We also take advantage of the
slope coefficient from the annotation time to reduce the total
number of annotated slices, reducing the time spent on manual
annotation. We show experimental results on a representative
dataset with 17 MRI exams demonstrating that our approach
significantly outperforms the competitors and, on average, only
37% of the total slices with vertebral body content must be
annotated without losing performance/accuracy. Compared to
the state-of-the-art methods, we have achieved a Dice Score
gain of over 5% with comparable processing time. Moreover,
3DBGrowth works well with imprecise seed points, which
reduces the time spent on manual annotation by the specialist.

Keywords-3D vertebrae reconstruction; magnetic resonance
imaging; Balanced Growth

I. INTRODUCTION

Spinal diseases are increasing worldwide and can cause
significant loss of function and compromise quality of life.
Surgical spinal treatments have been growing with the
aging population, which requires accurate diagnosis to avoid
complications [1]. Many spine pathologies can be detected
and diagnosed using Magnetic Resonance Imaging (MRI)
exams [2], [3]. In a Computer-Aided Diagnosis (CAD) con-
text, the segmentation of each vertebra allows a faster and
more objective analysis of the vertebrae condition, aiding in
the characterization and quantification of abnormalities [4].
Moreover, an accurate segmentation plays a major role and
may assist the medical specialist in surgical planning and
evaluation of suitable treatments [5].

The manual segmentation of a vertebral body in a slice-
by-slice manner may be time-consuming and prone to er-
rors, due to inter and intra-subject variability. Besides, the
subjective judgment that is employed may aggregate even
more inaccuracy [6]. Elseways, the knowledge gained over
several years of expertise are incorporated. Thus, the semi-

2D slice-by-slice 2D segmentation & .
> MRI Exam > annotation > 3D Reconstruction Analysis
Classification

Visualization

Figure 1: Steps in a semi-automatic segmentation schema.
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automatic segmentation assists the specialist, leads to time
savings and reduces interpretation errors [7].

The semi-automatic segmentation can be used in several
analysis (Figure 1). Quantitative measures can be extracted,
such as semantic and agnostic features [8], consequently,
machine learning techniques can be applied for the classi-
fication of a given anomaly [9], [10], [11] or for Content-
Based Image Retrieval (CBIR) [12], [13]. Interactive seg-
mentation tools can be meaningful during the training
and education of new radiologists [14]. Students can learn
how to correctly segment each vertebra and to detect spine
pathologies [15]. This kind of training may avoid potential
medical failures, which reduces further complications. In
general, the visualization of 3D human structures can be
used for simulation of medical and surgical procedures [16].

The GrowCut [17] method and its faster version, named as
Fast GrowCut [18], which presents slightly lower segmenta-
tion accuracy, have been widely used in many medical MRI
exams (especially in oncology) [8]. The GrowCut method is
based on cellular automata (analogous to a bacteria growth
in biology) and works as a region-growing approach with
an interactive labeling procedure [17].

Several fully automatic vertebrae segmentation methods
have been proposed [19], [20]. However, they take too much
processing time, which may not suit clinical practice [21].
More recently, a novel approach called Balanced Growth
(BGrowth) [22] has been proposed for the segmentation of
crushed vertebral bodies in single slices. Briefly, BGrowth
balances the weights along the growing path of a region, so
that small intensities transitions are better delineated. The
results achieved by BGrowth surpasses all methods from
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Figure 2: Examples of slices annotation for a single vertebral body (Exam AKa2, L5) and 3DBGrowth's iterations. Ground-
truth, interior and exterior annotation in red, magenta and blue, respectively.

the literate, including GrowCut. Moreover, BGrowth is able
to achieve promising segmentation results even with very
simple/sloppy annotation (seed points).

In this paper, we extrapolate the specialists' annotation
up to a fixed limit without losing performance/accuracy, so
that the total time spent on manual annotation is reduced.
Moreover, we show how to extend BGrowth to deal with
the reconstruction of volumetric exams (3D), introducing a
novel method called 3DBGrowth. The experimental results
show that 3DBGrowth outperforms GrowCut, achieving an
average Dice Score of 87% while managing comparable
running time. Moreover, the method works well even with
rough seed points, which reduces the time spent on manual
annotation.

The remainder of the paper is structured as follows. In
Section II, we present 3DBGrowth for the segmentation and
reconstruction of vertebral bodies in volumetric MRI. In
Section III, we detail the experimental design, results and
discussion. Finally, Section IV draws the conclusions.

II. 3DBGROWTH: THE PROPOSED METHOD

The usual approach of annotating or stating seeds for
segmenting medical images can be cumbersome for large 3D
exams. Thus, this work main issue focuses on minimizing
the human effort to segment and reconstruct 3D exams
built on 2D slices. As illustrated in Figure 2, depending
on the MRI exam, not all slices have to be manually
annotated by the user to process the 3D reconstruction. If the
exams present a small spacing between slices (considering
annotations on the sagittal plane), several slices do not
need to be annotated, once they are similar. This can be
assessed by analyzing the negative slope coefficient [23],
which gives the best trade-off between annotation time and
performance measures, such as Dice Score Coefficient or
Jaccard Coefficient (better explored in the next Section).

The slope between two points, {x1,y1} and {x2,y2},
can be calculated by ﬁ—z = #2791 " which is the rate of

Xo—T1
change between the two points. When the slope between two
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- Algorithm 1: 3DBGrowth method overview.

values of annotation time gets close to a straight horizontal
line, there is no gain in annotation time, in other words,
the closer the slope gets to 0, the lower the annotation
time gain. Moreover, by using a segmentation approach
that does not require detailed interior/exterior annotation,
such as BGrowth, the total time spent on annotation is
greatly diminished. In addition, BGrowth generally requires
a simple rectangle-like annotation for the segmentation of
individual vertebral bodies. For example, only 3 out of 7
slices were annotated in Figure 2. In average, each slice
took 6.5 seconds for annotation and 3DBGrowth took 0.64
seconds to process all 7 slices with only 16 iterations.
Summing up, the whole process took 3 x 6.5+0.65 = 20.65
seconds and achieved a result close to the Ground-Truth.
In our proposed 3DBGrowth method (Algorithm 1), we
initially consider the segmentation of foreground and back-
ground in gray-scale images. That is, considering a digital
image [ and its annotations/labels as a matrix L, both with
dimension M x N x Z, representing the number of rows,
columns and slices, respectively. Each entry in L has value
—1 (background), 0 (unlabelled) or 1 (foreground).
Initially, each entry in a weight matrix W (with the
same dimensions as I and L) is set to 1.0 for seeds points
and 0 otherwise (line 1). Then, for every voxel (i,7,2)



and each one of its 26 neighbours (i, jn, 2n), @ strength
factor s is calculated (line 4). Here, the absolute intensity
difference is normalized by the maximum intensity in the
image and shifted by 1. Finally, s is multiplied by the
current weight W (i, j, z), which produces values within
[0, 1]. If the strength s is greater than the neighbour's strength
(W (iny jns 2n), line 5), then the neighbour's strength is
averaged with the new strength s (line 6) and its label
receives the label of the voxel (i, 4, z) (line 7).

This process repeats until the algorithm converges or for
a fixed number of iterations defined by the user.

III. EXPERIMENTS, RESULTS AND DISCUSSION

The methods and measures used for comparison, as well
as the computational set-up, image dataset and experimental
design are described as follows.

Segmentation methods: In order to evaluate the perfor-
mance of 3DBGrowth (BG) in a 3D scenario, we compared
it with GrowCut (GC), which has been widely used for
the task of vertebrae segmentation [7]. Since Fast GrowCut
is an approximation of the original GrowCut, presenting
a lower accuracy [18], we consider only GrowCut on the
experiments. Due to the limited number of samples (exams)
no deep-learning approach was applied.

Comparison measures: The Jaccard Coefficient (JAC),
Dice Score Coefficient (DSC) and Hausdorff's Distance
(HD) in voxels [24], [25] were considered. The Jaccard
(JAC) calculates the intersection of the manual and semi-
automatic segmentation, and divides it by the union of them.
This indicates the similarity between the segmentations, in
which 0 indicates no similarity and, the closer JAC is to
1, the more alike the segmentations [26]. The Dice (DSC')
measures the spatial overlap of several segmentations of the
same object, i.e, quantifies the overlap degree between two
segmented objects. A DSC close to 0 indicates very low
overlap, while a DSC closer to 1 indicates a higher overlap.
In contrast, the Hausdorff's Distance (H D) indicates how far
away (in voxels) the manual and semi-automatic segmenta-
tions are. A HD of 0 indicates comparable segmentations.
Table I shows a summary of the segmentation methods and
comparison measures used in this work.

Table I: Summary of measures/methods used in this work.

Symbol/Acronym | Description

DSC | Dice Score Coefficient
JAC | Jaccard Coefficient
HD | Hausdorff's distance
GC | GrowCut
BG | 3D Balanced Growth

Computational set-up: The experiments were performed
on a 2.40GHz Intel(R) Core(TM) i7 CPU and 8GB RAM
machine, using Matlab(R) version 2018a. The maximum
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Figure 3: Example of sloppy annotation for a few vertebral
bodies in one slice (Aka2, slice 8): ground-truth, interior and
exterior annotations in red, magenta and blue, respectively.

number of iterations was set to 50 for GrowCut and 3DB-
Growth. No pre or post-processing technique were applied
to assure the same conditions for all segmentation methods.
Image Dataset: Due to space limitations, only a mean-
ingful dataset is presented herein, which comprises 17
anonymized MRI exams, ranging from the sacrum (S1)
to the mid thoracic (T6-T12) with corresponding manual
segmentations. The exams present several health conditions,
such as scoliosis, spondylolisthesis and crushed vertebra.
The exams have 3.24 4+ 0.36 mm of slice thickness and
3.87+£0.36 mm of spacing between slices. More information
and full access to the dataset is available at [5].
Experimental design: four main parts are analyzed: (A)
the performance of each segmentation method is assessed
using the whole exam; (B) each segmentation method is
tested varying the number of slices annotated for each
exam; (C) the vertebral bodies are segmented one-by-one by
each method; (D) a statistical test is applied to detect any
significant difference between the results of the two methods.

A. Exam segmentation analysis

The initial interior and exterior annotation were performed
in a “sloppy” way, i.e., no detailed boundary for accentuated
curves were drawn. In general, the annotation looks like
a rectangle for the background and a simple line for the
foreground (Figure 3). For this experiment, this annotation
has been performed on each slice on every exam and, to
diminish computational processing, each exam is cropped
using the convex hull of the exterior annotation.

Table II shows the average Dice Score (DSC'), Jaccard
(JAC) and Running Time (RT) in seconds for each one
of the 17 exams in the dataset. 3DBGrowth (BG) presented
on average 81% DSC' and 68% JAC while GrowCut (GC)
presented 76% and 61%, respectively. Thus, BG presented
higher DSC' and JAC percentages than GC for all exams,
achieving up to 5% and 7% of DSC and JAC gain,
respectively. Moreover, considering DSC and JAC, BG's
standard deviation is slightly lower. Analyzing the Running



Time (RT), very often, BG presented a lower average
processing time than GC.

Table II: Dice Score (DSC), Jaccard (JAC) and Running
Time (RT) in seconds for 3DBGrowth (BG) and GrowCut
(GC), considering all slices on each exam (volumetric). The
best results are highlighted in bold.

Exam DSC (%) JAC (%) RT (s)

(#slices) | BG GC Gain | BG GC Gain BG GC
DzZ_T1 (12) 85 80 4.86 74 67 7.0 18 21
DzZ_T2 (12) 82 77 4.2 69 63 5.8 27 31
AKa2 (15) 82 77 5.17 69 62 7.1 27 27
AKa3 (15) 78 73 478 64 58 6.2 27 29
AKa4 (15) 80 73 7.10 67 58 94 26 27
AKs5 (15) 84 78 6.54 73 63 9.2 23 24
AKs6 (15) 84 79 5.44 73 65 7.8 21 24
AKs7 (15) 80 73 7.6 67 57 9.9 21 24
AKs8 (15) 8178 3.39 68 64 4.7 18 21
S01 (16) 85 82 291 74 70 4.3 44 50
S02 (16) 83 78 4.97 70 63 6.9 26 32
F02 (18) 78 74 3.63 64 59 4.7 48 55
St1 (20) 83 80 2.73 71 67 39 61 67
F04 (23) 78 75 342 64 60 4.5 13 14
AKs3 (25) 80 73 6.42 66 58 8.4 40 37
F03 (25) 80 77 3.57 67 62 4.8 08 09
C002 (31) 71 65 5.85 55 48 6.7 16 14
Mean 81 76 49 68 61 6.6 27 30
Std. dev. | 3.4 3.9 1.5 4.7 5.0 1.9 13.7 152

Considering that the manual annotation of every slice in
the exam is too time consuming (for this dataset, on average,
11 minutes/exam), we conducted an experiment to validate
the performance of 3DBGrowth and GrowCut when not all
slices are annotated, as explored in the next section.

B. Variation on the number of annotated slices

We used the previous experiment's annotations and left a
few slices without annotation: we defined a slice distance,
which manages the number of non-annotated slices between
two annotated slices. For example, a slice distance of 0
implicates no slice is left without annotation. The slice
distance started at O, increased by 1, up to 7.

As the slice distance increases (Figure 4), the average
annotation time decreases and the processing time keeps
almost steady for both methods. Also, DSC and JAC
drops slowly for both methods. However, BG presented best
results than GC for both measures. Considering the negative
slope coefficient (as discussed in Section II), highlighted
over the magenta line, by using a threshold of -1, the best
slice distance would be 3, which presents the best trade-off
between annotation time and DSC/JAC.

In the next Section, we conduct experiments using anno-
tations for individual vertebral bodies.

C. Individual vertebrae segmentation

To speed-up the annotation process, we have considered
a slice distance of three for this experiment. Each vertebral
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Figure 4: Quality comparison between 3DBGrowth and
GrowCut over variations on the number of slices manually
annotated: (a) annotation time and running time results; (b)
Dice (DSC) and Jaccard (JAC).

(a) Original (b) Ground-Truth (¢) Annotation

Figure 5: Example of seed points for a single vertebrae
(Stl, slice 10, L2): ground-truth (GT), interior and exterior
annotations in red, magenta and blue, respectively.

body was annotated separately, as exemplified in Figure 5.
In general, both the interior and the exterior annotation looks
like a rectangle and no detailed borders were drawn.

As reported in Table III, GC and BG presented equal mean
Running Time (RT) and BG presented better mean DSC,
JAC and HD than GrowCut. Figure 6 depicts the results for
a single vertebral body: BG achieved the highest D.SC' and
the lowest HD. GC presented spiculated borders, while BG
presented smooth borders (closer to the ground-truth).

Analyzing the average number of annotated slices per
vertebra (Table IV), for this dataset, in average, only 37% of
the total slices with vertebral content were annotated, which
speeded-up the annotation process and took, in average, 36
seconds to annotate each vertebral body.



Table III: Comparison between 3DBGrowth (BG) and Grow-
Cut (GC) for the Dice Score (DSC), Jaccard (JAC),
Hausdorff (HD) in voxels and Running Time (RT) in
seconds. The best values are highlighted in bold.

DSC (%) | JAC (%) | HD (vox.) | RT (s)
Vertebrae BG GC BG GC BG GC BG GC
T6 88 87 79 78 3.16 4.00 | 0.150.16
T7 85 83 73 69 78.879.1 | 7.95 6.77
g | T8 86 85 76 72 79.379.2 | 7.558.37
E| T 81 80 50 52 80.0 79.9 | 7.83 8.38
= | T10 87 85 80 76 262269 | 2.952.83
Ti1 86 84 77 73 6.09 6.99 | 0.91 0.88
T12 89 86 79 76 5.63 6.88 | 1.30 1.36
L1 89 87 78 76 6.56 7.31 1.57 1.56
E L2 88 86 79 76 6.07 7.75 1.52 1.57
E| L3 86 85 75 72 6.40 7.49 | 1.68 1.83
a | L4 88 86 76 74 7.16 7.65 | 1.77 1.88
L5 87 85 76 74 7.04 842 | 2.332.39
Sacral SI || 88 8 | 79 76 | 6.187.57 | 174 1.88 |
Mean 87 85 77 74 724772 | 1.521.52
Std. Dev. .07 .06 .08 .08 4.855.00 | 1.271.27

Table IV: Comparison of the number of annotated slices,
considering a slice distance of three.

Slices out of (verte- ANT
Vertebrae annotated bral content) (seconds)
T6 3.04+.00 7.0 £ .00 28.7 £ .00
T7 3.0+ .00 7.0 £ .00 32.5 £ .00
g T8 3.0 4+ .00 7.0 £ .00 34.6 £11.6
g T9 3.0+ .00 7.0 £ .00 30.0 £6.2
= T10 2.5+ .52 6.7+ 3.2 259+7.1
TI1 3.1+.53 85+ 2.6 30.2£5.8
T12 3.6 .50 9.6+ 1.9 34.5 £8.1
L1 3.94+.78 10.2 £ 2.2 36.8+£9.2
k= L2 || 424+.75 | 109423 | 38.6+10.1
g L3 4.3 + .86 116 +2.1 40.0 £9.5
= L4 4.5+ .62 12.5+ 2.8 39.3+6.3
L5 4.5+ .72 12.5+ 3.0 39.8£7.8
Sacral S1 H 4.14+.70 \ 109+ 3.3 \ 35.8£6.3 \
Mean H 4.1+ .84 \ 10.9+2.9 \ 35.9+8.8 \
Annotated || 37% | |

To further investigate the results presented in Table III,
we conducted a statistical test, as detailed next.

D. Statistical testing

Considering that the resulting values of each measure had
several similar values, the Kolmogorov-Smirnov [27] test
was applied to verify the normality of the data. As the null
hypothesis that the data follows a normal distribution was
rejected for all measures, the Wilcoxon [28] test was used
to analyze if there were significant statistical differences. In
this test, the null hypothesis is that data from two dependent
samples, e.g. the Dice Score (DSC) from 3DBGrowth (BG)
and GrowCut (GC), were selected from populations having
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Figure 6: Comparison of results for L2 on exam AKa2: three
slices, out of 7, were annotated.

the same distribution, against the opposite alternative.

In the Wilcoxon test results, 3DBGrowth presented signif-
icantly better Dice (DSC'), Jaccard (JAC) and Hausdorf's
Distance (H D) than GrowCut. For the Running Time (RT),
there was no significant difference, which implicates that
both methods presented comparable processing time.

IV. CONCLUSION

The semi-automatic segmentation of vertebral bodies in a
volumetric scenario is a challenging task, due to the large
number of slices in the exams. To obtain a proper 3D
reconstruction of the vertebrae, one has to pay attention on
allowing a fast and accurate segmentation of slices. We have
investigated this challenge and used the slope coefficient of
the annotation time, so that the specialists' annotations were
extrapolated from a slice to its neighbours up to a given limit
without losing accuracy and, at the same time, reduced the
total time spent on manual annotation.

On the dataset used, on average, only 37% of the slices
with vertebral body content had to be annotated, conse-
quently making the process faster (on average, 36 seconds
for each vertebral body). We have proposed 3DBGrowth
method, which significantly outperforms GrowCut and keeps
comparable running time. Moreover, 3DBGrowth presented
the best results even with simple/sloppy seed points, which
demands less effort on the annotation process.
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