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Abstract
Accurate vessel trajectory prediction is crucial for navigational
safety, route optimization, traffic management, search and rescue
operations, and autonomous navigation. Traditional data-driven
models lack real-world physical constraints, leading to forecasts
that violate vessel motion dynamics, such as in scenarios with lim-
ited or noisy data where sudden course changes or speed variations
occur due to external factors. To address this limitation, we propose
a Physics-Informed Neural Network (PINN) approach for trajec-
tory prediction that integrates a streamlined kinematic model for
vessel motion into the neural network training process via first-
and second-order, finite-difference physics-based loss functions.
These loss functions, discretized using the first-order forward Euler
method, Heun’s second-order approximation, and refined with a
midpoint approximation based on Taylor series expansion, enforce
fidelity to fundamental physical principles by penalizing devia-
tions from expected kinematic behavior. We evaluated PINN using
real-world AIS datasets that cover diverse maritime conditions and
compared it with state-of-the-art models. Our results demonstrate
that the proposed method reduces average displacement errors by
up to 32% across models and datasets while maintaining physical
consistency. These results enhance model reliability and adherence
to mission-critical maritime activities, where precision translates
into better situational awareness in the oceans.

CCS Concepts
• Information systems → Location based services; • Comput-
ing methodologies→ Neural networks; • Applied computing
→ Transportation.
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1 INTRODUCTION
Enhancing situational awareness on ocean transportation is key for
preventing collisions, a risk that has grown significantly due to the
substantial increase in maritime traffic in recent years [1, 2, 27]. Be-
yond improving situational awareness, the accurate prediction of fu-
ture vessel movements is critical for a wide range of maritime appli-
cations. These include enabling efficient navigation through route
optimization, reducing fuel consumption and transit times [30]; sup-
porting proactive traffic management to alleviate congestion and
improve safety in busy waterways [29, 36]; informing timely and
effective responses during maritime emergencies, such as search
and rescue operations; aiding in the detection and tracking of ves-
sels involved in illicit activities, thereby contributing to maritime
security [18]; and providing vital input for the safe and reliable
operation of autonomous vessels [5]. Trajectory prediction has
emerged as an extensively explored research area in the maritime
domain, driving innovation across applications [11, 31].

Innovative approaches are being developed to address the chal-
lenges of accurate trajectory prediction, particularly using machine
learning techniques. One significant recent advancement in ma-
chine learning is the Physics-Informed Neural Networks (PINNs),
well-suited for applications governed by physical principles [5, 26],
such as vessel trajectory prediction. Unlike purely data-driven mod-
els that rely solely on observed data, PINNs embed domain-specific
physical laws into the neural network training process, improving
data efficiency, enhancing generalization, and ensuring physically
consistent predictions. As vessel movement follows kinematic prin-
ciples, PINNs can integrate these dynamics into the model, leading
to accurate and reliable forecasts.

Over the past decade, maritime trajectory prediction research
has shifted from relying solely on physical principles to adopt-
ing data-driven models, leveraging classical machine learning and,
more recently, deep learning [11, 29, 31]. This transition has been
particularly impactful in recent years, with deep learning models
achieving significant improvements in prediction accuracy. These
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advancements began with RNN-based architectures such as LSTMs
and GRUs [4, 20, 24], progressed to CNNs [19], and now encompass
more advanced models such as Temporal Convolutional Networks
(TCNs) [13], Graph Neural Networks (GNNs) [30], and Transform-
ers [12, 15]. The initial objective was to improve prediction accuracy
by using large datasets and introducing novel approaches through
architectural changes or model fusion [9, 28]. Additionally, some
approaches incorporate a distance-based loss function to minimize
the displacement between predicted and actual trajectories [7, 32].
However, in scenarios involving limited, sparse, or noisy data, the
accuracy of these models remains limited, especially when sudden
course changes or speed variations arise due to environmental fac-
tors. PINNs offer a promising solution by integrating physical laws
with observed data, enabling them to achieve more accurate and
reliable predictions, even under challenging conditions.

Moreover, since the International Maritime Organization (IMO)
mandated the adoption of the Automatic Identification System (AIS)
in 2004 [21] and its subsequent satellite integration in 2008 [16],
AIS data has become integral to maritime research. Particularly,
dynamic AIS messages containing crucial kinematic information
such as latitude, longitude, speed over ground (SOG), and course
over ground (COG) have been extensively leveraged for diverse
applications, including vessel trajectory prediction. While predomi-
nantly data-driven approaches have utilized these core AIS features
as inputs for prediction models [31], some methods have further
incorporated derived kinematic attributes — including acceleration,
jerk, COG rate, and bearing — to capture complex vessel mobility
patterns [1]. However, a critical gap remains: the lack of integrated
modeling of kinematic constraints inherently embedded in AIS
data, which fundamentally governs real-world vessel dynamics.
Our work addresses this gap by integrating vessel kinematic con-
straints into data-driven models through a PINN framework.

This paper proposes a PINN framework that leverages first- and
second-order finite-difference physics-based loss functions to en-
hance vessel trajectory prediction using AIS data. These loss func-
tions, derived from a simplified kinematic model of vessel motion,
enforce physical consistency by penalizing deviations from physi-
cally expected kinematic behavior. The model is discretized using a
first-order forward Euler method and Heun’s second-order approx-
imation, implemented with forward finite differences. To further
improve accuracy, a midpoint approximation based on a first-order
Taylor series expansion is also incorporated into the calculation
of expected displacement. Importantly, the framework is model-
agnostic, allowing seamless integration with state-of-the-art deep
learning architectures, including RNNs, CNNs, ConvLSTM, TCNs,
and Transformers, for vessel trajectory prediction. The main con-
tributions are summarized as follows:

• We propose a novel PINN approach incorporating physics
constraints into neural network training via Euler’s first-
order and Heun’s second-order forward finite-difference loss
functions, using a mid-point approximation based on a Tay-
lor series expansion to refine the expected displacement.

• We benchmark the PINN framework on widely used se-
quence models — LSTMs, GRUs, CNNs, ConvLSTMs, TCNs,
and Transformers — exhibiting its model-agnostic nature.

• We assessed PINN efficacy by varying the model complexity,
prediction horizons, and approximation order, while factor-
ing in navigational area complexity.

• We validate prediction accuracy by selecting models that bal-
ance physical plausibility with optimal convergence, rather
than focusing solely on minimizing displacement error.

The remainder of this paper is organized as follows: Section
2 reviews recent related work; Section 3 outlines the methodol-
ogy and proposal formulation; Section 4 presents and analyzes the
experimental results; and Section 5 concludes with final remarks.

2 RELATEDWORK
With the surge of studies in physics-driven machine learning, sev-
eral review studies explored its applicability across domains [5, 26].
However, in the intersection of ocean mobility, maritime system re-
liability, and shipping operations, the meeting between PINNs and
their applications remains underexplored. This gap exists largely
due to the lack of direction and synthesis needed to support future
research, define sound baselines, and map the landscape of physics-
guided learning in ship movements and operations. To build such a
foundation, we categorize the literature into groups based on how
physical knowledge is integrated into models:

(1) Physics as Structure: models that directly embed physical
laws (i.e., equations) into their architectures, ensuring that
vessel trajectories conform to established physical principles;

(2) Physics as Direction: hybrid methods that enrich data-
driven models with features, priors, or multi-modal signals,
blending domain knowledge with learning from data; and,

(3) Physics as Correction: approaches that use physics to reg-
ularize or correct predictions, such as guiding generative
processes or refining numerical outputs to achieve realistic
and reliable predictions.

Within these categories, detailed subsequently, current models
often incorporate only partial physics. Many physics-informed ap-
proaches utilize environmental data or simple motion constraints
but have not yet fully captured the complexities of ship dynam-
ics (e.g., hull hydrodynamics and six-degree-of-freedom motions1).
Fully integrating high-fidelity naval architecture models into neural
networks remains challenging due to computational complexity
and the requirement for specialized expert knowledge. Furthermore,
working with AIS data inherently poses constraints, as it typically
lacks detailed kinematic and dynamic measurements.

This paper serves as a primer on applying PINNs to AIS data
for ocean mobility and related applications. Current AIS-based re-
search predominantly employs 2-DoF models, ignoring the z-axis,
although scenarios like shallow waters or vessel drafts may require
3-DoF. The integration of full 6-DoF motion remains limited. While
research continues to evolve, this work takes a significant step by
introducing the first theoretical framework that integrates kine-
matic physics into neural networks for trajectory modeling, with
the aim of enhancing model applicability, usability, and accuracy.

16-DoF: Surge (forward/backward), Sway (left/right), Heave (up/down), Roll (rotation
around X-axis), Pitch (rotation around Y-axis), and Yaw (rotation around Z-axis).
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(1) Structure –Models Constrained by Equations

Zhao et al. (2024) [35] propose a framework for Autonomous
Underwater Vehicles (AUV) that integrates PINNs with classical
dynamic equations to capture the full 6-DoF motion of AUVs. The
study embeds the spatial maneuvering motion equations directly
into the loss function of a fully connected neural network, which
is trained via a multi-step iterative process using a fourth-order
Runge–Kutta scheme for time integration. Simulation experiments
demonstrate that PINN yields stable, accurate, generalized long-
term motion prediction even with limited training data. Field tests
on a micro-AUV confirm effective trajectory tracking with control
errors below one degree.

Papandreou et al. (2025) [17] propose an interpretable model
that augments traditional physics-based motion prediction by opti-
mizing hydrodynamic parameters via constrained nonlinear least
squares. The model integrates a 3-DoF2 physics-based framework
(incorporating rudder and propeller forces and vessel resistance)
with data-driven parameter tuning to capture ship-specific behav-
iors. Eleven parameters, including those governing the resistance
polynomial and rudder force coefficients, are estimated using syn-
thetic trajectory data derived from realistic ship maneuvers. Vali-
dation on datasets of two container ships demonstrates that fitted
models predict trajectories with 51.6 − 57.8% higher accuracy and
72.36 − 89.67% greater consistency than conventional baselines.

Mathioudakis et al. (2025) [14] present a three-dimensional physics-
based model for ship motion prediction of long container vessels.
The model integrates dynamic equations for surge, sway, and yaw
with hydrodynamic derivative methods to compute forces from
control inputs (rudder and propeller) and environmental effects
(wind, waves, and currents) via numerical integration. Validation
against a baseline model and sea trial data shows the model can
replicate vessel trajectories under typical conditions while revealing
challenges during transient maneuvers with small rudder angles.

(2) Direction – Hybrid and Augmented Learning

Lang, Wu, and Mao (2024) [10] present a physics-informed grey-
box model for ship speed prediction, combining a physics-based
(PINN) and a data-driven (XGBoost) component. The methodol-
ogy uses parallel modeling, where PINNs estimate the expected
calm water speed from propulsion power and draft using speed-
power model tests, whereas XGBoost predicts speed reduction un-
der current ocean conditions. Validation with full-scale data from a
chemical tanker demonstrates that the model achieves a 30% better
prediction accuracy than a traditional black-box model and reduces
the arrival time error by about 50%.

Chen et al. (2025) [3] propose a hybrid approach that combines
LSTM with a PSO-GWO (i.e., swarm-based meta-heuristic) algo-
rithm for short-time ship trajectory prediction. The model captures
the nonlinear and time-varying characteristics of vessel motion
through long-term dependencies in AIS data. Results indicate that
this approach achieves lower mean absolute and squared errors
while reducing the optimization time and enhancing predictive
accuracy and efficiency.

2 3-DoF: Surge (forward/backward), Sway (left/right), and Heave (up/down).

Guo et al. (2025) [8] introduce a vessel-influenced LSTM model
for trajectory prediction, incorporating vessel influence maps to
capture the effects of surrounding vessels. The model integrates ves-
sel motion, environmental, and static factors with the influence of
neighboring vessels while also using Gaussian prediction combined
with Monte Carlo dropout to estimate uncertainty. A temporally
weighted hybrid loss function is proposed to balance prediction
accuracy with uncertainty quantification. Experiments on AIS data
from Galveston Bay, USA, show that the model achieves lower
mean distance errors than baselines on standard and unseen test
sets, particularly under complex maritime conditions.

Suo, Ding, and Zhang (2024) [25] propose a deep-learning frame-
work based on Mamba for ship trajectory prediction that employs
a selective state-space model to process long sequential data effi-
ciently. The model integrates hardware-aware state expansion and
a simplified architecture to overcome the limitations of conven-
tional methods such as LSTM, GRU, and Transformer. The model
improved prediction accuracy, inference speed, and resource uti-
lization on AIS data from the Beijing–Hangzhou Canal.

Zhao et al. (2025) [34] propose a deep learning framework that
integrates inter-ship interactions and navigational uncertainties
into the prediction model. It is built upon an encoder-decoder LSTM
architecture that incorporates three key attention-based modules:
a Position Attention Block that captures mutual positional influ-
ences among vessels, an Information Fusion Block that integrates
differential navigation state information to represent uncertainty,
and a Global Attention Block that dynamically aligns encoder out-
puts with the decoder’s context. The experimental results on AIS
datasets frommultiple maritime regions demonstrate that themodel
outperforms baseline models.

Song et al. (2024) [22] propose the Transformer Gravity model,
a gravity-inspired deep learning framework to forecast global mar-
itime traffic flows and enhance risk assessments for non-indigenous
species spread via ballast water. The model extends traditional grav-
ity formulations by integrating features, such as shipping flux den-
sity, geodesic distances, bilateral trade volumes, and graph-based
centrality metrics, into a Transformer architecture that effectively
captures short- and long-term dependencies in vessel movement.
Evaluated on global shipping networks derived fromAIS data (2017–
2019), this approach demonstrates over 10% higher prediction accu-
racy compared to conventional deep-gravity and regression models.

(3) Correction – Generative and Precision-Critical Models

Zhang et al. (2025) [33] propose a diffusion probabilistic frame-
work for long-term vessel trajectory imputation that tackles ex-
tensive AIS data gaps. Their model uses a pre-trained trajectory
embedding block to extract movement patterns and a transformer
encoder to condition the reverse denoising process, generating
continuous, multi-point imputed trajectories. A physics-guided
discriminator enforces kinematic constraints between positional
and angular data and curbs cumulative error. Experiments on a
real-world AIS dataset demonstrate that this approach recovers
long-term vessel trajectories with improved accuracy compared to
existing imputation methods.

Ferreira and Campbell (2025) [6] introduce an RNN architecture
that incorporates a Decimal Preservation (DP) layer to capture
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minute latitude and longitude variations and mitigate floating-point
rounding errors. Against the Ornstein–Uhlenbeck baseline, the
proposed architecture reduces the prediction errors of cargo vessels
by up to 50% and demonstrates that the DP layer enhances the
performance of Elman’s RNN, LSTM, and GRU models.

3 METHODOLOGY
This section defines the trajectory prediction problem and details
the proposed PINN architecture.

3.1 Preliminaries
Trajectory. A trajectory T is a sequence of points generated by
a moving object. Each point 𝑝𝑡 in the trajectory represents the
object’s coordinates (𝑥𝑡 , 𝑦𝑡 ) and its kinematic state at time 𝑡 :

T = {𝑝1, 𝑝2, . . . , 𝑝𝑛} (1)

where 𝑛 is the number of temporal observations in the trajectory.
For vessel trajectories, each point 𝑝𝑡 = (𝑥𝑡 , 𝑦𝑡 , 𝑣𝑡 ,𝜓𝑡 , 𝑎𝑡 , ¤𝜓𝑡 ) is char-
acterized by the following features at time 𝑡 :

• 𝑥𝑡 : Latitude (in degrees)
• 𝑦𝑡 : Longitude (in degrees)
• 𝑣𝑡 : Speed Over Ground (SOG, in meters per second)
• 𝜓𝑡 : Course Over Ground (COG, in degrees)
• 𝑎𝑡 : Acceleration (in meters per second squared)
• ¤𝜓𝑡 : rate of change of COG (in degrees per second)

Accordingly, for a point 𝑝𝑡 , the input feature vector for the neural
network model is defined as its transpose 𝑝𝑡𝑇 = x𝑡 :

x𝑡 = [𝑥𝑡 , 𝑦𝑡 , 𝑣𝑡 ,𝜓𝑡 , 𝑎𝑡 , ¤𝜓𝑡 ]𝑇 (2)

Trajectory Prediction. Trajectory prediction is the task of fore-
casting the future trajectory with respect to a point of interest 𝑝𝑡 .
That is, Tpred = {𝑝𝑡+1, 𝑝𝑡+2, . . . , 𝑝𝑡+𝐻 }, of a moving object, given
its observed trajectory Tobs = {𝑝1, 𝑝2, . . . , 𝑝𝑡 }. 𝐻 is the prediction
horizon, indicating the number of future time steps to be predicted.

3.2 PINN Architecture
The principle of PINNs is to train a neural network to learn from
observed data and satisfy underlying physical equations. A PINN,
denoted 𝑓𝜃 (x𝑡 ), acts as a function approximator, learns a mapping
from the input feature vector x𝑡 = 𝑝𝑡

𝑇 to the predicted output
ŷ𝑡+𝑖 = [𝑥𝑡+𝑖 , 𝑦𝑡+𝑖 ]𝑇 , which is a vector of latitude and longitude at
future time 𝑡 + 𝑖 , for 𝑖 = 1, 2, . . . , 𝐻 .

To train the PINN, we minimize a loss function, as depicted in
Figure 1. This function is a weighted sum of two distinct terms: the
data loss and the physics loss. The data loss ensures the model’s pre-
dictions align with observed trajectory data, while the physics loss
enforces adherence to the underlying kinematic constraints govern-
ing vessel motion. This dual objective allows PINNs to complement
data-driven approaches by incorporating physical consistency into
their predictions.

Data Loss. The data loss component, Ldata (𝜃 ), quantifies the dis-
crepancy between the predicted trajectory and the ground truth
data; to that end, we use the Mean Squared Error (MSE):

Figure 1: The PINN’s training framework optimizes the
model by integrating data and physics losses to guide it to-
wards physically informed trajectory predictions. PINN train-
ing is an iterative optimization process. In each iteration, the
network generates predictions based on input data. A total
loss is computed by comparing these predictions to ground
truth and physical laws, respectively. The optimizer then
minimizes the loss by updating the network’s parameters,
repeating until convergence.

Ldata (𝜃 ) =
1
𝑁

𝑁∑︁
𝑖=1

𝐻∑︁
𝑗=1



y𝑖,𝑡+𝑗 − ŷ𝑖,𝑡+𝑗


2 (3)

where:
• 𝑁 is the batch size, representing the number of trajectories
used in each training iteration.

• 𝐻 is the prediction horizon.
• y𝑗,𝑡+𝑖 = [𝑥 𝑗,𝑡+𝑖 , 𝑦 𝑗,𝑡+𝑖 ]𝑇 is the ground truth latitude and
longitude vector for the 𝑗-th trajectory at time 𝑡 + 𝑖 .

• ŷ𝑗,𝑡+𝑖 = 𝑓𝜃 (x𝑗,𝑡 ) = [𝑥 𝑗,𝑡+𝑖 , 𝑦 𝑗,𝑡+𝑖 ]𝑇 is the corresponding pre-
dicted output vector 𝑓𝜃 , for time step 𝑖 for the 𝑗-th trajectory.

• ∥ · ∥2 denotes the squared Euclidean norm.
Minimizing data loss constrains PINN to approximate a mapping

to replicate observed trajectory patterns in the training data.

First-Order Physics Loss. The physics loss component, Lphy (𝜃 ),
is the cornerstone of the PINN framework. It enforces physical
plausibility by penalizing deviations from a simplified kinematic
model of vessel motion. Specifically, we use a forward Euler ap-
proximation (a first-order finite difference method) of the kinematic
equations to estimate the expected change in latitude and longitude
over a discrete time step Δ𝑡 . This expected change is then compared
against the change predicted by the neural network. To estimate
the expected displacement, we consider the input parameters at
time 𝑡 : 𝑣𝑡 (SOG),𝜓𝑡 (COG), 𝑎𝑡 (acceleration), and ¤𝜓𝑡 (COG rate). To
improve the first-order approximation, we incorporate a midpoint
𝜓𝑚𝑖𝑑,𝑟𝑎𝑑 derived from the Taylor series expansion:

𝜓

(
𝑡 + Δ𝑡

2

)
≈ 𝜓 (𝑡) + ¤𝜓 (𝑡) · Δ𝑡

2
(4)
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Approximating the rate of change of ¤𝜓 (𝑡) and converting angles to
radians, we obtain the midpoint:

𝜓𝑚𝑖𝑑,𝑟𝑎𝑑 = 𝜓𝑡,𝑟𝑎𝑑 + 1
2
· ¤𝜓𝑡,𝑟𝑎𝑑 · Δ𝑡 (5)

where𝜓𝑡,𝑟𝑎𝑑 = 𝜓𝑡 · 𝜋
180 and ¤𝜓𝑡,𝑟𝑎𝑑 = ¤𝜓𝑡 · 𝜋

180 are the COG and COG
rate in radians, respectively.

Using the midpoint 𝜓𝑚𝑖𝑑,𝑟𝑎𝑑 , the expected changes in latitude
and longitude, Δ𝑥expected and Δ𝑦expected, can be computed using
either a small-angle approximation or a great-circle approximation
to Earth’s curvature; both approaches were adopted in our evalua-
tion. The small-angle approximation offers computational efficiency,
suitable for short prediction horizons, and is formulated as:

Δ𝑥expected ≈
(
𝑣𝑡 · cos(𝜓mid, rad)

+ 1
2
· 𝑎𝑡 · Δ𝑡 · cos(𝜓mid, rad)

)
· factor

Δ𝑦expected ≈
(
𝑣𝑡 · sin(𝜓mid, rad)

+ 1
2
· 𝑎𝑡 · Δ𝑡 · sin(𝜓mid, rad)

)
· factor
cos(𝑥𝑡,rad)

(6)

where factor = Δ𝑡
𝑅
· 180𝜋 ,𝑅 is Earth’s radius,Δ𝑥𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 andΔ𝑦𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

refer to known x and y coordinated displacements, as observed in
the data.

Conversely, for enhanced accuracy, particularly over longer pre-
diction horizons, the great-circle approximation is employed, formu-
lated as:

Δ𝑥𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = arcsin
(
sin(𝑥𝑡,𝑟𝑎𝑑 ) · cos(𝑑)

+ cos(𝑥𝑡,𝑟𝑎𝑑 ) · sin(𝑑) · cos(𝜓𝑚𝑖𝑑,𝑟𝑎𝑑 )
)
− 𝑥𝑡,𝑟𝑎𝑑

Δ𝑦𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = arctan 2
(
sin(𝜓𝑚𝑖𝑑,𝑟𝑎𝑑 ) · sin(𝑑) · cos(𝑥𝑡,𝑟𝑎𝑑 ),

cos(𝑑) − sin(𝑥𝑡,𝑟𝑎𝑑 ) · sin(𝑥𝑡,𝑟𝑎𝑑 )
) (7)

where the angular distance 𝑑 , accounting for Earth’s radius 𝑅 (ap-
proximately 6,371,000 meters), is computed as:

𝑑 =

(
𝑣𝑡 + 1

2 · 𝑎𝑡 · Δ𝑡
)
· Δ𝑡

𝑅
(8)

The predicted x and y displacements in latitude and longitude from
the neural network are computed as finite differences:

Δ𝑥pred,𝑡+𝑖 = 𝑥𝑡+𝑖+1 − 𝑥𝑡+𝑖
Δ𝑦pred,𝑡+𝑖 = 𝑦𝑡+𝑖+1 − 𝑦𝑡+𝑖

(9)

The mismatch between these predicted and expected changes is
then expressed by the finite difference physics residuals:

𝑟𝑥,𝑡+𝑖 = Δ𝑥pred,𝑡+𝑖 − Δ𝑥expected,𝑡+𝑖
𝑟𝑦,𝑡+𝑖 = Δ𝑦pred,𝑡+𝑖 − Δ𝑦expected,𝑡+𝑖

(10)

Finally, the physics loss Lphy (𝜃 ) is computed by averaging the
sum of squared residuals over all time steps within the prediction
horizon and all trajectories in the batch:

Lphy (𝜃 ) =
1

𝑁 · 𝐻

𝑁∑︁
𝑖=1

𝐻∑︁
𝑗=1

(
𝑟2𝑥,𝑖,𝑡+𝑗 + 𝑟

2
𝑦,𝑖,𝑡+𝑗

)
(11)

Second-Order Physics Loss. Despite using midpoint approxima-
tions, the physics loss based on the first-order forward Euler method
limits its ability to capture dynamics within each time-step (Δ𝑡 ).
This limitation leads to discretization errors, especially for longer
time steps, as it only considers derivatives at the beginning of the
interval. To address this limitation, we introduce a second-order
physics loss using Heun’s method (a type of Runge-Kutta 2), which
offers a balance between computational simplicity and improved ac-
curacy over the first-order approach, making it particularly suitable
for modeling maritime trajectory dynamics.

Heun’s method improves on Euler by incorporating derivative
information at both the beginning and an estimated endpoint of the
interval through a predictor-corrector approach. First, the predictor
step uses the forward Euler method to obtain an initial estimate of
the state at 𝑡 + Δ𝑡 , denoted with a superscript 𝑃 :

𝑥𝑃𝑡+Δ𝑡 = 𝑥𝑡 + ¤𝑥𝑡 · Δ𝑡

𝑦𝑃𝑡+Δ𝑡 = 𝑦𝑡 + ¤𝑦𝑡 · Δ𝑡
(12)

where ¤𝑥𝑡 = 𝑑𝑥
𝑑𝑡

���
𝑡
and ¤𝑦𝑡 = 𝑑𝑦

𝑑𝑡

���
𝑡
are the derivatives evaluated using

the kinematic model with the vessel’s state at time 𝑡 .
Second, the corrector step refines this estimate by computing

the derivatives again, using the kinematic model evaluated at the
predicted state at 𝑡 + Δ𝑡 . These derivatives are denoted as follows.

¤𝑥𝑃𝑡+Δ𝑡 =
𝑑𝑥

𝑑𝑡

����
𝑥𝑃
𝑡+Δ𝑡 ,𝑦

𝑃
𝑡+Δ𝑡

, ¤𝑦𝑃𝑡+Δ𝑡 =
𝑑𝑦

𝑑𝑡

����
𝑥𝑃
𝑡+Δ𝑡 ,𝑦

𝑃
𝑡+Δ𝑡

Heun’s method then averages the derivatives from the beginning
(𝑡 ) and the predicted end (𝑡+Δ𝑡 ) to compute the final expected change
in state over the interval Δ𝑡 :

Δ𝑥expected =
1
2
( ¤𝑥𝑡 + ¤𝑥𝑃𝑡+Δ𝑡 ) · Δ𝑡

Δ𝑦expected =
1
2
( ¤𝑦𝑡 + ¤𝑦𝑃𝑡+Δ𝑡 ) · Δ𝑡

(13)

These computed increments, Δ𝑥expected and Δ𝑦expected, repre-
sent the kinematically expected changes for the second-order physics
loss Lphy (𝜃 ). This loss function then quantifies the discrepan-
cies between these expected displacements and the correspond-
ing predicted displacements by the neural network, Δ𝑥pred,𝑡+𝑖 and
Δ𝑦pred,𝑡+𝑖 (Eqs. 9). The resulting residuals, 𝑟𝑥,𝑡+𝑖 and 𝑟𝑦,𝑡+𝑖 , com-
puted as the difference between predicted and expected displace-
ments (Eqs. 10), are squared and averaged, yielding the final second-
order physics loss value (Eq. 11). Minimizing this loss constrains
the PINN to produce trajectories that not only fit the data but also
strongly adhere to the second-order kinematic approximations pro-
vided by Heun’s method.

Total Loss Function. The total loss function, Ltotal (𝜃 ), minimized
during the PINN training process, is a weighted combination of the
data and physics loss:

Ltotal (𝜃 ) = Ldata (𝜃 ) + 𝜆 · Lphy (𝜃 ) (14)

Here, 𝜆 ≥ 0 is a non-negative hyperparameter controlling the
relative importance of the physics loss in the total loss. By adjusting
𝜆, the model can balance its adherence to observed data with its
compliance to the kinematic model.
For consistent scaling in model training and physical fidelity in
loss computation, input kinematic features (𝑥𝑡 , 𝑦𝑡 , 𝑣𝑡 ,𝜓𝑡 , 𝑎𝑡 , ¤𝜓𝑡 ) are
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first normalized to [0, 1] and then denormalized back to their origi-
nal units to compute physics-informed residuals. To balance their
contribution in the loss, these residuals—quantifying discrepancies
between predicted and expected displacements—are normalized by
the latitude and longitude ranges in the training set. We further
assume that 𝑣𝑡 ,𝜓𝑡 , 𝑎𝑡 , and ¤𝜓𝑡 remain constant at their last observed
values throughout the prediction horizon 𝐻 , providing a practical
basis for enforcing kinematic constraints without future input.

4 EVALUATION
This section details the experimental setup and presents a compre-
hensive performance analysis of our PINN framework, implemented
in Python 3 using the Keras/TensorFlow libraries.

4.1 Dataset and Preprocessing
For evaluation, we selected two distinct AIS datasets from different
maritime regions, sourced from AISViz/MERIDIAN [23]. The first
dataset originates from the Arctic region (LON -95 to -75, LAT
55 to 66), which is characterized by sparse vessel traffic due to a
navigation season limited to 4 months annually. In contrast, the
second dataset is derived from the Strait of Georgia (LON -128 to
-122, LAT 48 to 51), a region known for its high density of vessel
traffic, but trajectories with frequent turns and speed alterations.
We collected the Arctic dataset, which spans two years (2022-2023)
and a dataset of six months (January - June, 2023) from the Strait
of Georgia.

For each region, AIS messages were extracted, retaining the
following attributes: MMSI, timestamp, latitude, longitude, Speed
Over Ground (SOG), Course Over Ground (COG), and ship type.
These extracted AIS messages were then filtered based on ship
type and vessel identification number (MMSI). Subsequently, vessel
trajectories were extracted for each region by grouping the filtered
AIS messages according to their MMSI. Finally, we prepared the
AIS dataset for evaluation by applying the following preprocessing
steps to each extracted trajectory.

Noise Filtering. Trajectories with invalid MMSI identifiers and
AIS messages with duplicate timestamps were removed. To focus on
moving vessels, AIS messages with SOG below 0.5 knots (indicating
anchored vessels) were excluded. Trajectories were retained only if
they exhibited a minimum length of 300 data points. Finally, COG
values were wrapped to the range [0, 360) degrees to address issues
of non-north GPS settings.

Time-based Trip Segmentation. Vessel trajectories, spanning
long periods and regions, often include multiple trips and stationary
periods. To isolate individual trips, we segmented trajectories if the
time gap between consecutive points exceeded 60 minutes.

Cubic Hermite Interpolation. Trajectory segments are inter-
polated into 2-minute intervals using Cubic Hermite splines. This
method uses position and derivative (slope) information at each
data point for interpolation, ensuring smooth transitions without
overshooting or oscillations and preserving the trajectory’s shape.
This makes it well-suited for capturing realistic vessel maneuvers,
including abrupt direction and speed changes.

Kinematic Feature Derivation. Vessel SOG (𝑣𝑡 ) and COG (𝜓𝑡 )
can be influenced by external factors such as wind, ocean currents,
and weather conditions. Therefore, deriving acceleration (𝑎𝑡 ) and
COG rate ( ¤𝜓𝑡 ) from these values is crucial to capture changes in
vessel mobility patterns and modes. Acceleration (𝑎𝑡 ) represents
the rate of change of SOG (𝑣𝑡 ) over time, while COG rate ( ¤𝜓𝑡 ) is
the rate of change of COG (𝜓𝑡 ). In our dataset, SOG values were
converted from 𝑘𝑛𝑜𝑡𝑠 to𝑚/𝑠 . Acceleration (𝑚/𝑠2) and COG rate
(𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠) were then derived using finite differences as follows:

𝑎𝑖 =
𝑣𝑖 − 𝑣𝑖−1
𝑡𝑖 − 𝑡𝑖−1

, ¤𝜓𝑖 =
𝜓𝑖 −𝜓𝑖−1
𝑡𝑖 − 𝑡𝑖−1

(15)

After preprocessing the trajectories of cargo and tanker vessels from
both regions, we kept only 3 hour segments to ensure consistent
input and output sequences for model training and testing. Key
statistics of the resulting datasets reveal the following: for the Strait
of Georgia, we have 4, 315 cargo segments (819, 265 data points) and
773 tanker segments (161, 331 data points); for the Arctic region, the
dataset comprises 277 cargo segments (143, 399 data points) and 216
tanker segments (76, 675 data points). Their spatial distributions
are visualized in Figures 2 and 3, respectively.

Figure 2: Dense vessel traffic in the Strait of Georgia, depicted
by Cargo and Tanker trajectories.

Figure 3: Cargo and Tanker trajectories in the Arctic, high-
lighting sparse maritime traffic.

4.2 Evaluation Metrics
To evaluate the accuracy of the prediction models, we employed
both classical regressionmetrics, such asMeanAbsolute Error (MAE)
and Mean Squared Error (MSE), and state-of-the-art trajectory pre-
diction metrics, such as Average Displacement Error (ADE) and
Final Displacement Error (FDE). ADE and FDE directly quantify
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spatial accuracy, which is critical for navigational decision making
in maritime contexts.

MSE averages the squared differences between predicted (𝑦𝑖 ) and
actual (𝑦𝑖 ) locations. Although MSE is computationally straightfor-
ward and emphasizes larger errors, it is highly sensitive to outliers.
MAE averages the absolute differences, treating all errors equally
and exhibiting greater robustness to outliers. The formulas for MAE
and MSE are given in Eq. 16, where 𝑛 denotes sample size.

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |, MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (16)

ADE represents the average distance between predicted (𝑥𝑖 , 𝑦𝑖 )
and actual (𝑥𝑖 , 𝑦𝑖 ) locations over all time steps, providing a com-
prehensive measure of trajectory accuracy. Lower ADE values indi-
cate better overall prediction. FDE, in contrast, measures only the
distance between the final predicted (𝑥𝑛, 𝑦𝑛) and actual (𝑥𝑛, 𝑦𝑛)
locations. Lower FDE values suggest better accuracy in predicting
the trajectory endpoint and reduced error accumulation over time.
The formulas for ADE and FDE are given in Eq. 17, where 𝑛 is the
trajectory length.

ADE =
1
𝑛

𝑛∑︁
𝑖=1

𝐻𝑑

(
(𝑥𝑖 , 𝑦𝑖 ), (𝑦𝑖 , 𝑦𝑖 )

)
FDE = 𝐻𝑑

(
(𝑥𝑛, 𝑦𝑛), (𝑥𝑛, 𝑦𝑛)

) (17)

where 𝐻𝑑 represents the Haversine distance between two points,
calculated as:

𝐻𝑑 = 2·𝑅·arcsin

√︄
sin2

(
Δ𝑥

2

)
+ cos(𝑥1) · cos(𝑥2) · sin2

(
Δ𝑦

2

)
(18)

Here, 𝑅 represents the Earth’s radius, and Δ𝑥 = 𝑥2−𝑥1, Δ𝑦 = 𝑦2−𝑦1,
where 𝑥 and𝑦 denote latitude and longitude in radians, respectively.
Distance errors are computed in meters in this evaluation.

4.3 Setting Model I/O and Hyperparameters
DL Model Architectures. We selected various state-of-the-art
Deep Learning (DL) models that have been widely used by re-
searchers in trajectory prediction and sequence modeling. This
selection consists of a range of architectures, including Recurrent
Neural Network (RNN)-based models (LSTMs and GRUs), Convolu-
tional Neural Networks (CNNs), Temporal Convolutional Networks
(TCNs), Hybrid architectures (ConvLSTMs), and Transformers.

Data Preparation for Model I/O. To prepare the dataset for
DL models, we begin by performing feature-wise normalization
using Min-Max scaling and subsequently apply a sliding-window
approach. For each trajectory, we extracted the input sequences
𝑋 and the corresponding target sequences 𝑌 by sliding a window
of length𝑊in +𝑊out. Given a trajectory and denoting 𝑡 as the last
time step of the input window, the input sequence 𝑋 comprises𝑊in
consecutive feature vectors ending at time step 𝑡 :

𝑋𝑡 = {x𝑡−𝑊in+1, x𝑡−𝑊in+2, . . . , x𝑡 }
The corresponding target sequence 𝑌 , representing the prediction
horizon𝑊out, consists of𝑊out output vectors starting from time
step 𝑡 + 1:

𝑌𝑡 = {y𝑡+1, y𝑡+2, . . . , y𝑡+𝑊out }

Applying this sliding window generated input-target pairs (𝑋𝑡 , 𝑌𝑡 )
from all trajectories for training, validation, and testing. For each
vessel type, 10% of the trajectories were assigned to the test set. Of
the remaining trajectories, 80% for training and 20% for validation.

Hyperparameter Settings. The physics loss weight, 𝜆, is a crucial
hyperparameter for PINNs. To assess its influence, we performed
experiments on 𝜆 values ranging from 0.0001 to 1.0. All other hy-
perparameters were kept consistent across models and datasets.
All models were trained with Adam optimizer (initial learning rate
0.001) for up to 50 epochs and with a batch size of 32. The models
were optimized for MSE, but performance was monitored using
both MSE andMAE. Hidden layers used ReLU activations, while the
output layers employed linear activations. Training was regularized
using Early Stopping and the ReduceLROnPlateau scheduler, based
on validation performance.

We used an encoder-only Transformer configured with 2 layers,
128 model dimensions, 4 attention heads, and 256 feed-forward
dimensions, along with dropout and default positional encoding.
For TCN, we used residual blocks with increasing dilation rates
{2𝑖 }4

𝑖=0. For other models, we used 64 hidden units for 1-layer and
64/32 units for 2-layer setups.

4.4 Performance Analysis
To comprehensively assess efficacy, we evaluated our PINN inte-
grated models against baselines without physical constraints, based
on the following criteria:

(1) Model Complexity: We varied the complexity of DL mod-
els to investigate their ability to balance data-driven accu-
racy with physics constraints. Basic refers to simpler con-
figurations (e.g., single-layer LSTMs, GRUs, CNNs, or fewer
TCN residual blocks), while Complex refers to models with
deeper or wider layers, or additional residual blocks.

(2) Waterway Complexity: We considered waterway com-
plexity in the performance analysis, as areas such as ports
or waypoints are more complex than open seas. Two cases
were considered: Case 1 (all sliding windows) includes both
dynamic and open-seas, whereas Case 2 (beginning, middle,
and end windows) focuses on dynamic areas.

(3) PredictionHorizon:Wevaried the lengths of the prediction
horizon to assess the models’ robustness against temporal
uncertainty and error accumulation.

(4) Score Selection: Instead of relying on the lowest ADE/FDE
scores for assessment, we selected these scores based on
physics plausibility, robust validation performance, and syn-
ergistic convergence, asmonitored through training/validation
data loss and physics loss curves across epochs.

(5) Numerical Approximation: We assessed the performance
based on the order of numerical approximations.

Arctic Dataset. Table 1 presents the mean ADE and FDE for vari-
ous DL models, evaluated with and without PINN regularization
across two levels of model complexity. The results consistently
show that incorporating PINN reduces both ADE (up to 32%) and
FDE (up to 27%) across nearly all model types and complexity levels.
However, as model complexity increases, the performance gains for
architectures like ConvLSTM and TCN do not improve significantly,
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likely due to their higher data requirements for optimal conver-
gence. Nonetheless, these complex models with PINN still achieve
significantly lower errors compared to their non-PINN counterparts
and are close to their basic implementations, suggesting that PINN
regularization enables effective model training even with relatively
small datasets.

Table 1: Model performance by level of model complexity.
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = 𝐴𝑟𝑐𝑡𝑖𝑐 , 𝑉𝑒𝑠𝑠𝑒𝑙 = 𝑇𝑎𝑛𝑘𝑒𝑟 ,𝑊𝑖𝑛 = 30𝑚𝑖𝑛,𝑊𝑜𝑢𝑡 = 30𝑚𝑖𝑛, Δ𝑡 = 2𝑚𝑖𝑛

Models No PINN First–Order PINN

ADE FDE ADE FDE

B
as
ic

LSTM 2584 ± 840 4354 ± 1508 2296 ± 679 3950 ± 1469
GRU 2769 ± 793 4913 ± 1383 2477 ± 741 4447 ± 1288
CNN 3385 ± 1036 5409 ± 1818 3336 ± 841 5406 ± 1300
ConvLSTM 1613 ± 529 2615 ± 873 1384 ± 454 2215 ± 871
TCN 2036 ± 751 3428 ± 1386 1811 ± 643 3444 ± 1334

C
om

pl
ex

LSTM 2176 ± 789 3483 ± 1532 2081 ± 655 3474 ± 1322
GRU 2542 ± 833 4330 ± 1288 2218 ± 635 3898 ± 1430
CNN 2687 ± 939 4570 ± 1530 2552 ± 698 4285 ± 1262
ConvLSTM 1961 ± 737 3010 ± 1432 1596 ± 503 2383 ± 872
TCN 2652 ± 1703 4479 ± 2367 1800 ± 520 3232 ± 1085

Table 2 shows the model performance trends as prediction hori-
zons increase based on best performing models, ConvLSTM and
TCN. It is evident that the First–Order PINN consistently reduces
ADE across all prediction horizons. The percentage decrease com-
pared to No PINN models ranges from approximately 11% to over
37% for basic models, while it ranges from 15% to 33% for complex
models. Overall, the percentage reduction in ADE through the inte-
gration of PINN is consistently positive on all horizons and models,
demonstrating its robust performance enhancement.

Table 2: Model performance by prediction horizon length.
Dataset = Arctic, Vessel = Tanker,𝑊𝑖𝑛 = 30m,𝑊𝑜𝑢𝑡 = 10/20/30m, Δ𝑡 = 2min

Models No PINN (ADE) First Order PINN (ADE)

10m 20m 30m 10m 20m 30m

Basic ConvLSTM 1047 1258 1613 895 1091 1384
TCN 1259 1565 2036 788 1254 1811

Complex ConvLSTM 1395 1616 1961 1189 1318 1596
TCN 1384 1997 2652 1018 1330 1800

As stated before, vessel maneuvers differ significantly between
dynamic areas (e.g., ports and waypoints), while course and speed
adjustments are less frequent in open seas. Therefore, averaging
performance across entire trajectories (Case 1) can obscure the
nuanced benefits of physics-informed models, particularly in areas
like the Arctic (see Figure 3). To specifically assess the impact of
physics approximations, we also strategically selected test windows
(Case 2) to capture varying navigation contexts. Table 3 reveals that
prediction errors (ADE and FDE) are higher in Case 2 than in Case 1,
indicating greater complexity in the selected test windows. Notably,
the integration of First–Order PINN consistently reduces errors
in both cases, highlighting its effectiveness with smaller datasets
regardless of navigational complexity.

Strait of Georgia Dataset. As a dense and narrow waterway, the
Georgia Strait exhibitsmore complex and dynamic vessel movement
patterns compared to the Arctic. Although it is not a large dataset,
the 6-month Georgia dataset contains more trajectories than 2
years of Arctic data. As shown in Table 4, overall average and

Table 3: Model performance by complexity of water area.
Dataset = Arctic, Vessel = Tanker,𝑊𝑖𝑛 = 30m,𝑊𝑜𝑢𝑡 = 30m, Δ𝑡 = 2min

Basic Models No PINN First-Order PINN

ADE FDE ADE FDE

Case 1 ConvLSTM 1613 ± 529 2615 ± 873 1384 ± 454 2215 ± 871
TCN 2036 ± 751 3428 ± 1386 1811 ± 643 3444 ± 1334

Case 2 ConvLSTM 2169 ± 776 3248 ± 1202 1716 ± 596 2674 ± 1035
TCN 2409 ± 861 4057 ± 1556 1999 ± 886 3512 ± 1734

final displacement errors were significantly reduced compared to
the Arctic dataset (see Table 4) as models converged better with
more data. Unlike the Arctic, both open seas and port areas are
geometrically complex in this dataset. Consequently, we computed
errors for all sliding windows (Case 1), where the PINN approach
yielded ADE error reductions of up to approximately 12% and FDE
15%, highlighting its subtle yet crucial benefits.

Table 4: Displacement errors - No PINN vs. First-Order PINN
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = 𝐺𝑒𝑜𝑟𝑔𝑖𝑎, 𝑉𝑒𝑠𝑠𝑒𝑙 = 𝑇𝑎𝑛𝑘𝑒𝑟 ,𝑊𝑖𝑛 = 30𝑚𝑖𝑛,𝑊𝑜𝑢𝑡 = 30𝑚𝑖𝑛, Δ𝑡 = 2𝑚𝑖𝑛

Complex Models No PINN First–Order PINN

ADE FDE ADE FDE

LSTM 740 ± 219 1394 ± 515 722 ± 204 1358 ± 461
GRU 805 ± 222 1566 ± 529 799 ± 224 1549 ± 500
CNN 1318 ± 480 2288 ± 838 1162 ± 378 2014 ± 682
ConvLSTM 637 ± 197 1177 ± 447 654 ± 203 1237 ± 427
TCN 800 ± 233 1596 ± 518 784 ± 216 1369 ± 494

Furthermore, MAE and MSE were computed for both latitude
and longitude (see Table 5), which show that longitude errors are
consistently larger than latitude errors, indicating that east-west
motion is harder to predict. The first-order PINN significantly re-
duced longitude errors (MAE by 2–10% and MSE by up to 23%),
especially for the CNN model. This indicates that the kinematic
constraint mainly reduces the noisier longitude errors, whereas
the already small latitude errors remain largely unchanged and
contribute little to the overall prediction.

Table 5: PINN Impact on Spatial Dimensions.
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = 𝐺𝑒𝑜𝑟𝑔𝑖𝑎, 𝑉𝑒𝑠𝑠𝑒𝑙 = 𝑇𝑎𝑛𝑘𝑒𝑟 ,𝑊𝑖𝑛 = 30𝑚𝑖𝑛,𝑊𝑜𝑢𝑡 = 30𝑚𝑖𝑛, Δ𝑡 = 2𝑚𝑖𝑛

Complex
Models

No PINN First–Order PINN

MAE MSE MAE MSE

LAT LON LAT LON LAT LON LAT LON

LSTM 0.0041 0.0066 0.00005 0.00012 0.0041 0.0064 0.00005 0.00012
GRU 0.0046 0.0070 0.00006 0.00014 0.0046 0.0069 0.00006 0.00014
CNN 0.0074 0.0115 0.00016 0.00035 0.0065 0.0104 0.00011 0.00027
ConvLSTM 0.0036 0.0057 0.00004 0.00010 0.0036 0.0059 0.00004 0.00010
TCN 0.0044 0.0072 0.00006 0.00016 0.0043 0.0070 0.00006 0.00015

First–Order vs. Second–Order Physics. Wealso analyzedwhether
adding second-order dynamics to PINN improves predictive accu-
racy compared to a first-order approximation, specifically on the
smaller Arctic dataset. As shown in Table 6, switching from a first-
order to a second-order PINN yields marginal gains in ADE and FDE
across models (e.g., ConvLSTM reduced ADE slightly from 1596
to 1558). This subtle difference is expected, as the Arctic dataset
reflects less dynamic conditions, featuring predominantly open-sea
navigation with low traffic density. Also, predicting over a short
horizon (≤ 30 min) with small time steps (2 min) means higher-
order effects have limited time to accumulate and significantly
impact the predictions. Moreover, the first-order PINN has already
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achieved a significant improvement. For TCN, the second-order
PINN does not yield further improvement, but when considering
the complex area (Case 2), it reduces ADE and FDE to 1927 and
3408 respectively, from first-order errors (see Table 3).

Table 6: Model performance by order of approximations.
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = 𝐴𝑟𝑐𝑡𝑖𝑐 , 𝑉𝑒𝑠𝑠𝑒𝑙 = 𝑇𝑎𝑛𝑘𝑒𝑟 ,𝑊𝑖𝑛 = 30𝑚𝑖𝑛,𝑊𝑜𝑢𝑡 = 30𝑚𝑖𝑛, Δ𝑡 = 2𝑚𝑖𝑛

Complex Models First–Order PINN Second–Order PINN

ADE FDE ADE FDE

LSTM 2081 ± 655 3474 ± 1322 1973 ± 507 3408 ± 1252
GRU 2218 ± 635 3898 ± 1430 2198 ± 587 3841 ± 1379
CNN 2552 ± 698 4285 ± 1262 2222 ± 715 3750 ± 1346
ConvLSTM 1596 ± 503 2383 ± 872 1558 ± 536 2319 ± 900
TCN 1800 ± 520 3232 ± 1085 1823 ± 610 3465 ± 1332

Transformer. To further assess PINN efficacy, we also evaluated
an encoder-only Transformer, whose capacity to model long-range
dependencies suits complex sequential tasks like trajectory predic-
tion. Given the Transformer’s inherent requirement for substantial
training data to achieve convergence, we conducted experiments
using the Georgia dataset. As presented in Table 7, both ADE and
FDE errors exhibited reductions when switching from No PINN
settings to First-Order PINN in both cases.

Table 7: Model performance by complexity of water area and
order of numerical approximations.
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = 𝐺𝑒𝑜𝑟𝑔𝑖𝑎, 𝑉𝑒𝑠𝑠𝑒𝑙 = 𝑇𝑎𝑛𝑘𝑒𝑟 ,𝑊𝑖𝑛 = 30𝑚𝑖𝑛,𝑊𝑜𝑢𝑡 = 30𝑚𝑖𝑛, Δ𝑡 = 2𝑚𝑖𝑛

Transformer No PINN First–Order PINN Second–Order PINN

ADE FDE ADE FDE ADE FDE

Case 1 605 1046 554 992 573 1023
Case 2 691 1112 629 1087 645 1092

Although Second–order PINN did not yield further improve-
ments in terms of ADE and FDE magnitudes, it is noteworthy that
the standard deviation of displacement errors decreased, as evi-
denced by the reduced spread in the box plot of displacement errors
shown in Figure 4.

Figure 4: Transformer - First Order versus Second Order.

PINNs Complexity. PINN training typically requires more time
than standard supervised learning due to the additional physics
loss computation. As shown in Figure 5, using our finite difference
approach, the training time increases moderately for the first-order
PINN and significantly for the second-order PINN compared to the
non-PINN baseline. Moreover, tuning the weight parameter 𝜆 is
necessary to achieve optimal convergence. However, the proposed
finite difference approach is faster and consumes less memory
compared to standard PINNs that rely on automatic differentiation,

which requires storing and computing intermediate operations and
their derivatives via a computational graph.

Figure 5: LSTM training time comparison (Arctic Dataset).

Sample Prediction Results. Figures 6 and 7 show predicted tracks
from the Arctic and Georgia regions, respectively. These tracks are
generated by combining predictions across all sliding windows
using the best performing models for each region: ConvLSTM for
the Arctic and Transformer for Georgia. As observed in Figure 6, the
track predicted by the Non-PINN ConvLSTM significantly deviates
from the ground truth. TheADE of tracks predicted byConvLSTM is
1417m for Non-PINN and 982m for First-Order PINN. In Figure 7, the
track predicted by the Non-PINN Transformer shows many spikes,
indicating notable deviations from the reference line. The ADE
in this case 535m and 463m for Non-PINN and First-Order PINN,
respectively. This also proves that even when a comparatively good
amount of data is available, a PINN model can enforce kinematic
constraints and improve prediction accuracy.

Figure 6: Arctic - Observed vs. ConvLSTM Predicted Tracks.

5 CONCLUSION AND FUTUREWORK
Recent DL-based approaches for vessel trajectory prediction are
data-intensive and lack explicit integration of vessel motion dynam-
ics. Consequently, their prediction accuracy suffers due to sudden
vessel maneuvers or in response to complex weather conditions.
To address these limitations, we proposed a PINN-based approach,
leveraging first- and second-order numerical approximations im-
plemented via forward finite differences. Our experimental results
demonstrate that this approach provides a valuable trade-off, effec-
tively combining data-driven learning with physical consistency,
while exhibiting improved performance even with limited data.

While training PINNs can be computationally demanding and
requires careful hyperparameter tuning, this approach presents a
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Figure 7: Strait of Georgia - Observed vs. Transformer
Predicted Tracks.

compelling direction towards more robust, accurate, and general-
izable prediction models. To further advance this research, future
work will integrate higher-order numerical approximations to im-
prove prediction accuracy in complex maritime scenarios and over
longer prediction horizons. The security and safety of maritime nav-
igation are also inherently dependent on inter-vessel interactions.
Consequently, our ongoing goal is to incorporate spatial relation-
ships among vessels directly into our PINN framework, further
ensuring physical plausibility in complex multi-vessel scenarios.
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