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Abstract
Contamination of titanium dental implants may lead to implant failure. There are two major types of contaminants: the 
inorganic and organic contaminants. The inorganic contaminants mostly consist of elements such as calcium, phos-
phorus, chlorine, sulphur, sodium, silicon, fluorine and some organic carbons. Whereas organic contaminants consist of 
hydrocarbon, carboxylates, salts of organic acids, nitrogen from ammonium and bacterial cells/byproducts. Contami-
nants can alter the surface energy, chemical purity, thickness and composition of the oxide layer, however, we lack clini-
cal evidence that contaminations have any effect at all. However, surface cleanliness seems to be essential for implant 
osseointegration.These contaminants may cause dental implants to fail in its function to restore missing teeth and also 
cause a financial burden to the patient and the health care services to invest in decontamination methods. Therefore, 
it is important to discuss the aetiology of dental implant failures. In this narrative review, we discuss two major types of 
contaminants: the inorganic and organic contaminants including bacterial contaminants. This review also aims to discuss 
the potential effect of contamination on Ti dental implants.
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1  Introduction

Dental implants can get contaminated due to the ecologi-
cal system in the oral cavity with abundant microorgan-
isms [1]. Common elemental contamination from organic 
carbon and traces of elements including oxygen (O), 
nitrogen (N), calcium (Ca) and phosphorus (P) found on 
dental implant surfaces are potentially linked to failure in 
re-osseointegration when parts of an implant had lost its 
osseointegration [2]. It has been shown re-osseointegra-
tion occurs when there is a formation of a direct structural 
and functional union between an implant and bone, it has 
been shown that properly cleaned implants indeed may 
re-osseointegrate [3]. Hence several factors such as surface 
topography, chemical purity, thickness and composition 
of the oxide layer, surface cleanliness, and the existence 

of metallic and non-metallic compounds on the surface 
seems to influence the success of implant osseointegra-
tion [4].

Currently, a growing amount of evidence [5, 6] sug-
gests that the implant surface topography and chemistry 
has great influence on the osseointegration process by 
affecting protein signalling and cell migration or differ-
entiation. Bone-implant contact area, mechanical inter-
locking and stress distribution are recognisably better in 
surfaces with a certain degree of roughness in comparison 
to smooth ones, favouring osteoblast-like cell colonisa-
tion [7]. However, it has also been shown that roughened 
surfaces enhance the accumulation of contaminants [8]. 
Nevertheless, the mechanisms by which inorganic and 
organic contaminants interact with the implant surfaces 
remain undefined. Although many methods of implant 
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decontamination have been attempted, none of them 
have succeeded in producing predictable results. Implant 
surface decontamination remains challenging and thus 
the development of new, effective methods is necessary 
[9, 10].

Topographical modification is frequently adopted in 
titanium-based implants to produce the desired surface 
properties by using different surface treatments sur-
face treatments such as sandblasting, chemical etching, 
anodization, laser treatment, and surface coatings [11]. 
Although these surface treatments can change the prop-
erties of the implant surfaces and on rare occasions, may 
also lead to undesired properties and hence, contamina-
tion of the implant surfaces.

Human body fluids contain trace elements such as 
chlorine and fluoride ions whereas our bone comprise of 
collagen, hydroxyapatite (Ca10(PO4)6(OH)2), and some ani-
onic and cationic substituents such as carbonates (H2CO3), 
sodium (Na), magnesium (Mg), zinc (Zn), fluorine (F), chlo-
rine (Cl), potassium (K) and silicon (Si) [12]. Thus, when the 
foreign materials are implanted in the human body, they 
encounter a hostile corrosive environment comprising of 
various media such as blood, water, Na, Cl, plasma, amino 
acids, and mucin in saliva [13].

Inorganic metal oxide such as titanium oxide (TiO2) and 
its alloys are commonly used in dental implants due to its 
favourable biocompatibility and mechanical properties. 
The ability of the oxide layer of titanium (Ti) to withstand 
the corrosion in saline and acidic environment make it an 
excellent implant material increasing the chance of re-
osseointegration [14]. However, after long term interaction 
with living tissue, the TiO2 will release small amounts of 
corrosion products and lead to dental implant contamina-
tion [14]. Corrosion due to bodily fluids can cause changes 
in material structure and release of unwanted inflamma-
tory by-products, and compromise implant’s mechanical 
stability [15].

Dental implants may also be contaminated when they 
are marketed, i.e. prior to any contamination from the oral 
cavity. Therefore, there is a possibility that contaminations 
may also depend on other matters than biological in situ 
effects. Therefore, sterile packaged medical devices must 
be periodically reviewed and documented by the manu-
factures that the implants are free of surface impurities 
[16].

Another cause of dental implant contamination is gal-
vanic corrosion. This is an electrochemical process that 
occurs when electrons can flow freely between two dif-
ferent materials with sufficiently different electrical poten-
tials [17].

The key circumstances that could influence the ini-
tial healing phase of the implant site and the survival 
rate of dental implants are the surgical factors, the time 

of implant surgery, site of implant placement, type of 
implant osteotomy, implant design and implant stabil-
ity [18]. These factors heavily influence the probability of 
exposure to contaminants. These contaminants may cause 
dental implants to fail in their function to restore missing 
teeth. Also, there is and also cause a financial burden to 
the patient and the health care services to invest in decon-
tamination methods. Therefore, it is important to discuss 
the aetiology of dental implant failures. In this review, we 
discuss two major types of contaminants: the inorganic 
and organic contaminants including bacterial contami-
nants. This review also aims to discuss the potential effect 
of these contaminants on Ti dental implants.

2 � Inorganic contaminants

2.1 � Reactive oxygen and nitrogen species (RONS)

Reactive oxygen and nitrogen species (RONS) are free radi-
cals and reactive molecules derived from molecular oxy-
gen and nitrogen species, both as intercellular as well as 
intracellular messengers. As can be seen in Table 1, RONS 
can be found in lasers (i.e. LLLT-low-level laser therapy), 
photosensitizers, bleaching agents, cold plasma, and resin 
cement as a by-product from dental applications [19]. At 
low or moderate concentration of RONS, it has beneficial 
effects which results in the angiogenesis (formation of new 
blood vessels), proliferation and re-epithelialisation of cells 
in the gingival and other tissues of the body, and vascular 
endothelial growth factor (VEGF) induced cell migration 
[18]. However, at very high levels of reactive oxygen spe-
cies (ROS), adverse effects may rise causing peri-implant 
inflammation, carcinogenesis & mutagenesis, mitochon-
drial dysfunction and cell death [19, 20].

2.2 � Calcium (Ca)

A large amount of the Ca contamination was found in the 
sodium hydroxide (NaOH) reagent [21]. Kizuki et al. [21] 
verified that treatment of Ti with NaOH reagent and heat 
treatments induced apatite formation with bone-bonding 
ability with Ti metal. Unfortunately, with increasing volume 
of NaOH reagent, the apatite formation was decreased due 
to Ca contamination found in the NaOH reagent. The Ca 
inhibited apatite formation on the Ti metal in SBF (Syn-
thetic/Simulated Body Fluid) by suppressing Na ion release 
from the sodium titanate into the surrounding fluid. Even 
a Ca contamination level of 0.0005% of the NaOH rea-
gent was sufficient to inhibit the apatite formation [21]. 
Exposure of Ti to simulated physiological solutions (i.e. 
Ringer’s solution and saline, which contains calcium and 
phosphate ions) leads to adsorption of calcium phosphate 
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on the surface of the oxide layer, spontaneously [15]. Pos-
itively charged Ca ions attached to negatively charged 
(PO4)3− and (CO3)2− acting as nucleation sites for apatite 
and improving bone to implant contact, thus resulting in 
good osseointegration [22].

2.3 � Phosphorus (P)

Chemical composition of the surface of the Ti dental 
implants plays an important role creating a surface where 
the bone cells can attach well thus allowing osseointegra-
tion to occur. A study had been conducted to examine the 
surface phosphorus contents of anodized medical-grade Ti 
samples [11]. The Ti samples were anodised in phosphoric 
acid solution at different voltages (10 V, 20 V, 30 V or 40 V) 
and created TiO2 layers on the surfaces. Anodisation in 
phosphoric acid solution increases the phosphor content 
of the surface may promote osseointegration and lead to 
secondary stability for the dental implants [11].

Furthermore, dental implant surfaces treated with 37% 
phosphoric acid modulates cytokine production by blood 
mononuclear cells, establishing a balance between pro-
teins with anti and pro-inflammatory activity, thus pro-
moting the success of dental implants [23]. A Ti surface 
coating based on calcium phosphate showed high hydro-
philicity and high osseointegration, promoting stem cell 
differentiation, increasing osteoblast production and bone 
formation, thus resulting in increasing bone formation in 
a shorter time [24].

One study characterized the surface of Ti healing abut-
ments before and after clinical placement to investigate 
the effects of the oral environment on device surfaces [25]. 
The researchers found a thick white residue containing C, 
N, O, Ca and P completely obstructing the Ti surface. They 
suggested that the presence of P contaminant came from 
biological residue of the oral cavity.

2.4 � Chlorine (Cl)

Hydrochloric acid (HCl) was used to clean the Ti surface. 
However, a minimal amount of Cl was detected on the 
implant surfaces. Fortunately, small amount of Cl did not 
weaken the Ti surfaces as the Cl formed Ti-Cl complex 
and soluble in water [26]. Another potential contamina-
tion by Cl was from sonicated solution of low-frequency 
ultrasound (used to treat chronically infected wounds). 
The sonication solution from the ultrasound treatment 
was able to alter the Ti surface chemistry, depositing Cl 
as well as Ca, aluminium (Al), Si, Na and K on the implant 
surface [27].

Saliva contains K, Na, N, chloride, bio-actonate products 
and proteins. However, during crevice corrosion, the con-
centration of chloride ions increases and reduces the pH 

value of saliva creating an acidic environment. The chloride 
ions attack the oxidation layer of dental implants leading 
to a corroded implant-abutment connection [17]. Hence, 
sterile saline can be used to reduce the minimal traces 
of chloride on implant surface [28]. However, Cl can be 
completely removed from the Ti implant surfaces either 
by rinsing or ultra-sonication, both in ultra-pure water [29].

2.5 � Sulphur (S)

Sulphur (S) compounds as well as Na, K, Ca, PO4, CO2 and 
mucin can be found in the mouth [30]. Traces of sulphates 
along with fluorides, magnesium oxides, silicates, and cal-
cium oxides are found as a result of the sandblasting and 
etching process of the implant surfaces [31]. Hydrochloric 
acid (HCl) and sulphuric acids (H2SO4) are frequently used 
to pre-treated Ti surfaces. S from the residual S2O8

2− or 
SO4

2− was detected from the samples treated with either 
Sodium persulfate (Na2S2O8) or H2SO4. However, the Ti-
acid complexes (titanium sulfate) was less dissolved in 
water, thus not suitable for decontamination of Ti surfaces 
as it can disturb the chemical modification of Ti surface 
[26]. Giner et al. demonstrated that a double acid etch-
ing treatment using hydrofluoric acid followed by sulfuric 
acid produced a dual roughness Ti surface which improved 
osteoblast adhesion, proliferation and differentiation thus 
enhancing osseointegration. S can be completely removed 
from the Ti samples by the non-thermal plasma treatment 
but not by UV treatment [32].

2.6 � Sodium (Na)

Traces of Na have also been reported on implant surfaces 
which have been treated with sodium-containing solu-
tions such as saline and sodium hypochlorite, with sodium 
hypochlorite causing a tenfold higher amount of trace Na 
than saline [28]. NaOH has been used in alkaline treat-
ment to create a sodium titanate layer by incorporating Na 
ions onto the Ti surface. The nanoporous hydroxyapatite/
sodium titanate bilayer has been reported to improve in-
vivo osteoconduction and osteointegration [33]. Moreo-
ver, the treatment of hydrophilicity of Ti discs using NaOH 
tend to enhance the early stages of cell adhesion, prolif-
eration, and differentiation [34]. In one study, SBF solution 
has been used during a coating procedure for Ti implants, 
causing precipitation of many minerals (e.g. Na, Ca, Mg, 
P) presented in the solution, which leads to a higher wear 
resistance of the implant surface [35]. A study done by 
Shibli et al. revealed traces of Na contaminant along with 
carbon, O, N, Ca, Al, and O on the Ti surface of the failed 
implants. The influence of the contaminants block the sites 
for the oxygen cathodic reaction thus preventing foreign 
ions such as iron or chromium to catalyse the oxygen 
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reaction. Hence, causing an increase in the dissolution rate 
of Ti implants and preventing re-osseointegration [36].

2.7 � Aluminium (Al)

Surface analysis of Ti implants using X-ray Photoelectron 
Spectroscopy (XPS) measurements revealed the presence 
of Al and fluoride which were deposited during the sand-
blasting and acid etching process [37]. The oxidized state 
of Al, (alumina) is considered to be stable in physiologi-
cal fluids with very minor tissue reaction. Therefore, it has 
been used as a coating material to enhance the corrosion 
resistance characteristics of dental implants [15]. In addi-
tion, favourable cell reactions were observed for a rough 
Ti surface enriched with Al, Ca and P ions, when incorpo-
rated into the Ti surface appears to improve viability of 
osteoblasts [22].

Some Ti dental implants may contain surface contami-
nants that may cause a problem during the osseointegra-
tion process. A study done by Semez et al. [38] showed 
that the amount of Al in a dental implant called MYIM-
PLANT (Nobel Biocare, India) was 12-fold higher than 
that found in Ti alloys typically used for dental implants 
(between 0 and about 0.06) [38]. Furthermore, another 
study suggested that a high concentration of residual 
aluminium oxide (AlO2) may interfere negatively with the 
osseointegration process [39].

2.8 � Silicon (Si)

Si was detected on the failed implants along with P, Ca, 
Na, S, Cl, Zn and copper (Cu) on the Ti surface. It has been 
suggested that the surface contaminants may enhance 
the inflammatory response, altering the healing process 
which leads to alteration of the oxide layer surface and 
failure in reosseointegration. The presence of Si is possi-
bly due to the passivation process where the Si was used 
as a coating or in treating Ti surfaces [36, 40]. Other than 
the passivation process, Si may come from ion dissolution 
from the glass storage vials or probably (less likely) from 
rubber gloves. It may also originate from the fabrication 
process, cleaning and sterilization process, the handling 
environment and storage (glass vials) and analysis prepa-
ration procedures [36].

Nevertheless, Si plays an essential element in bone 
metabolism including promoting osteoblast differen-
tiation, stimulation of collagen type I synthesis, allowing 
human cell adherence and mineralization of human tis-
sue [41, 42]. As such, Si has been used as a coating on Ti 
dental implants forming a Si sol–gel coating Ti. A study 
done by Martınez-Ibanez et al. [43] showed that the incor-
poration of tetraethyl orthosilicate (TEOS) to the sol–gel 
Si caused hydrolytic degradation that leads to releasing 

of Si compound to the media. This resulted in an increase 
in the effect of osteoinductive properties allowing for 
direct contact between new bone and the Ti implant [43]. 
Silicon-based coatings have properties in preventing bac-
terial infection post-implantation and therefore improved 
patient outcomes [44].

2.9 � Zinc (Zn)

Dental implants made of Zn were reported to cause den-
tal metal allergy in Japan [45]. Some of the traces of Zn 
ion can be found as this metal is added to toothpaste and 
mouthwash solutions as anti-plaque agents. This activ-
ity is believed to be due to retention in ‘oral micro reser-
voirs’ such as soft oral tissues, tooth surfaces and bacterial 
plaque [40]. Nevertheless, Zn has been recognized as an 
important trace element in increasing the cell proliferation 
in osteoblasts, bone formation and biomineralization. In 
addition, Zn has antibacterial properties therefore, attract-
ing researchers to incorporate the Zn into Ti surfaces in 
dental implants to enhance bioactivity. Co-implanted 
Zn and Mg ions into Ti implants showed good osteoin-
ductivity, pro-angiogenic and bacterial effects which can 
enhance rapid osseointegration [1, 46].

2.10 � Fluorine (F)

Traces of F and S can be found during the acid-etching pro-
cess [40]. Fluoride ions (up to 0.1 wt%) can also be found 
in commercial toothpaste, mouthwash solutions and pro-
phylactic gels. Its functions are to prevent development 
of dental caries and to alleviate dental sensitivity. How-
ever, high concentrations of fluoride ions exhibit negative 
effects on the protective oxide layer of Ti and its alloys, 
triggering localized corrosive degradation. The degree of 
corrosion of Ti and its alloys are depends on the concentra-
tion of fluoride ions and the pH of the fluoride-containing 
environments [14, 17, 47]. Besides, at a concentrations of 
3 ppm of fluoride ions, Ti alloy becomes discoloured and at 
a concentration above 20 ppm, the protective oxide layer 
becomes degraded [47]. Discoloration of Ti implants can 
be observed after undergoing autoclaving due to F con-
tamination [48].

2.11 � Hydrogen (H)

An acid etching technique is popularly used by manufac-
turers to texture the surface of dental implants. Combi-
nation of acids such as hydrofluoric acid-nitric acid are 
often used to remove the oxide layer of Ti surfaces. In the 
hydrofluoric acid pretreatment of Ti surfaces, the former 
attacks the oxide layer and reacts with Ti to form soluble 
Ti fluorides and H. When the free H is saturated, titanium 
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hydride is formed. The titanium hydride can dramatically 
affect the mechanical properties of Ti which cause embrit-
tlement of the surface layer. However, by adding nitric 
acid, it can reduce free H formation [13, 49].

A study on the fracture surface of retrieved Ti screw 
threads revealed a high amount of H absorption from 
biological environment of oral cavity to cause delayed 
fracture of a Ti implant [50]. A synergistic role of Si and 
H coating improves their interaction with osteoblasts. A 
study done by Mussano et al. [51] revealed that hydrogen-
rich films increased keratinocytes adhesion and viability 
thus enhancing osseointegration.

3 � Organic contaminants

3.1 � Hydrocarbons

The contamination of Ti implant surfaces takes only 
4 weeks for the freshly cut or previously photo-function-
alized implants to be covered with hydrocarbons no mat-
ter the type of surface treatment they have undergone 
[37]. The presence of hydrocarbon on the Ti surface may 
lessen osteoblast attachment as the cell adhesion protein 
cannot attach to such sites [52]. Moreover, hydrocarbon 
found in the air, water, or cleaning fluid can be continu-
ously adsorbed onto the Ti surface and significantly reduce 
the hydrophilicity of Ti during storage [53]. Photo-func-
tionalization has proven to be a valid method to reduce 
the amount of hydrocarbon contamination on Ti dental 
implants and improve osseointegration [37].

3.2 � Carboxylates

Carboxylates can be found from the coating of Ti surfaces. 
Carboxylated multi-walled carbon nanotube coated Ti has 
been shown to have increased osteoblast proliferation, 
differentiation, and matrix mineralization [54]. However, 
carboxylates contaminants can cause adverse effects on 
Ti surface. High amounts of carboxyl groups from carbox-
ylates and hydrocarbon can increase the (super) hydro-
philicity of Ti. This subsequently decrease the bonding 
with the oxide, N, and S atoms on protein and reduce the 
attachment of cells. In order to remove the carboxylate 
contaminant, high-energy photons such as non-thermal 
plasma and UV light are required to break the weak bonds 
between carboxyl groups and Ti [31].

3.3 � Salts of organic acids

The production of organic acids come from the pro-
cess of glycolysis by bacteria and may reduce pH to 
create a favourable environment for aerobic bacteria. 

Accumulation of organic acids leads to an acidic envi-
ronment and induces corrosion and discolouration of Ti 
implants [55].

3.4 � Nitrogen from ammonium residues

Presence of substances, like N, C, O, Ca, and P, found on the 
surface of the Ti healing abutments form a white residue. 
These white residues cause obstruction on the Ti surface. 
The existence of N and other elements residue may come 
from bacterial plaque, bolus, soft-tissue or protein com-
pounds in saliva that have adhered to the Ti surface [2]. 
In addition, bacterial biofilm increased the percentage of 
both carbon and nitrogen on the Ti surface. By using H2O2 
photolysis, the degraded biocompatibility of biofilm-con-
taminated Ti surfaces can be recovered and may have the 
potential for improving peri-implantitis [52].

A study reported that the microwave-assisted drying of 
HA (hydroxyapatite) samples were found to be effective in 
inhibiting the growth of Escherichia coli. The formation of 
ammonium nitrate during the drying process when cal-
cium nitrate and ammonia were added into the solution 
for TiO2 synthesis. The resultant, ammonium nitrate, acts 
as an oxidant for the combustion reaction [56].

3.5 � Bacteria

Bacterial colonization can damage the surface TiO2 layer. 
A study reported that the colonization of bacteria demon-
strates more prominent damage on the surface morphol-
ogy and chemistry of implant surfaces [57]. Bacteria can 
cause microbial corrosion where the acidic waste products 
created by microbes generate an acidic environment. The 
corrosion may lead to inflammation and occurrence of 
peri-implantitis. The severity of microbial corrosion can be 
reduced by using antibiotic sprays and dips to minimize 
microbe populations [14, 17]. Bacterial contamination 
can occur on dental implants during surgery and affect 
the osseointegration and the prognosis in a clinically sig-
nificant way; however scientific evidence in a systematic 
review concerning this is insufficient [58].

Combined usage of antiseptics such as chlorhexidine 
digluconate (CHX) or hydrogen peroxide H2O2 and pho-
todynamic therapy (PDT) was more effective in eliminat-
ing bacteria biofilm. This was supported by a study where 
the combination of antiseptics and PDT showed effective 
decontamination ability in eradicating Staphylococcus 
aureus biofilm from Ti surfaces [59].

Despite a wide range of organic and inorganic impu-
rities that may contaminate dental implant surfaces, the 
10 year clinical survival rate of the most commonly used 
oral implants is in the range of 90–95% and the results of 
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"modern, moderately rough oral implants are between 95 
and 99% at 10 years.[60].

4 � Conclusion

This review is targeted at both manufacturers and clini-
cians. Contaminations of dental implants are intimately 
associated with implant failures. From the summariza-
tion of the review (see Table 1), the contaminants may 
become beneficial and/or produce disastrous effects 
on dental implants. These may alter the surface energy, 
chemical purity, thickness and composition of the oxide 
layer. It is also known that the most common elemental 
contamination of Ti surfaces, potentially linked to implant 
failures are trace elements such as N, Ca, P, Cl, S, Na, Si and 
F, some organic carbons and bacterial cells / by-products. 
However, some of the contaminants such as Si and P are 
beneficial to the dental implants that promote osseointe-
gration. The traces of organic and inorganic contaminants 
can be found from the implant cleaning process, Ti surface 
treatment such as acid-etching and sand-blasting, biologi-
cal environment and also the surrounding environment. 
Various methods of removing contaminants are also intro-
duced with the hope of promoting osseointegration.
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