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We present some exact solutions of relativistic second order hydrodynamic equations in theories with
conformal symmetry. Starting from a spherically expanding solution in ideal hydrodynamics, we take into
account general conformal second order corrections and construct, for the first time, fully analytical
axisymmetric solutions including the case with nonzero vorticity. These solutions are time reversible
despite having a nonvanishing shear stress tensor, and provide a useful quantitative measure of the second
order effects in relativistic hydrodynamics.
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Given the apparent success of the hydrodynamic descrip-
tion of the quark-gluon plasma formed in ultrarelativistic
heavy-ion collisions at RHIC and the LHC [1], significant
progress has been achieved in the foundation and applica-
tions of relativistic hydrodynamics. In particular, there have
been many attempts [2–9] to derive a consistent theory of
second order relativistic hydrodynamics which generalizes
the original Israel-Stewart theory [10]. Some of them have
already been implemented in numerical codes for practical
applications in heavy-ion collisions [11].
Second order hydrodynamic equations typically contain

many new variables compared with ideal hydrodynamics,
and it seems an impossible task to solve them analytically.
Indeed, although there are a number of exact solutions of
relativistic ideal hydrodynamics known in the literature
(see, e.g., [12–20]), with few exceptions [21–23] there has
been little hope of generalizing them to include even the
first-order (Navier-Stokes) corrections in the relativistic
domain, let alone second order ones.
In this paper, we expand the current knowledge of

analytic solutions in relativistic hydrodynamics by present-
ing the first nontrivial exact solutions to the general second
order conformal hydrodynamic equations including the
case with nonzero vorticity. Our solutions are explicit, have
a surprisingly simple mathematical structure, and are valid
for rather generic values of the transport coefficients
involved. They thus serve as a useful reference point of
the future study of various second order effects in relativ-
istic hydrodynamics.
Our strategy to construct solutions of conformal hydro-

dynamics is similar to that of Gubser et al. [21–23]. We
start with the following rewriting of the Minkowski metric
(x⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

):

ds2 ¼ −dt2 þ dz2 þ dx2⊥ þ x2⊥dϕ2

¼ x2⊥
�
−dt2 þ dz2 þ dx2⊥

x2⊥
þ dϕ2

�
: (1)

This shows that the Minkowski space is conformal to
AdS3 × S1 up to a Weyl rescaling factor x2⊥. We shall solve
the hydrodynamic equations in the latter space, and then
conformally map the solution to the Minkowski space.
The solution that we are after is simply described in the
so-called global coordinates of AdS3 [24] where the metric
dŝ2 ≡ ds2=x2⊥ takes the form

dŝ2 ¼ −cosh2ρdτ2 þ dρ2 þ sinh2ρdΘ2 þ dϕ2: (2)

ρ is defined in terms ofMinkowski coordinates ðt; r; x⊥Þ via

cosh ρ ¼ 1

2Lx⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ

q
;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2⊥

p
andL is the radius parameter of AdS3.

We shall denotevariableswith a “hat” for quantities in global
coordinates x̂μ ¼ ðτ; ρ;Θ;ϕÞ. In this coordinate system, we
consider hydrostatic fluid static in “time” τ. This is charac-
terized by the flow velocity (ûμûμ ¼ −1)

ûτ ¼ − cosh ρ; ûρ ¼ ûΘ ¼ ûϕ ¼ 0: (3)

The corresponding flow velocity in Minkowski coordinates
is obtained by uμ ¼ −x⊥ dx̂ν

dxμ ûν (x⊥ is the Weyl rescaling
factor [21]) and reads

ut ¼ −
L2 þ r2 þ t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ
p ;

~u ¼ 2t~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ ðrþ tÞ2ÞðL2 þ ðr − tÞ2Þ

p :

(4)

This is a radially expanding spherically symmetric flowwith
vanishing shear tensor σμν ≡ Δμναβ∇αuβ ¼ 0whereΔμναβ≡
1
2
ðΔμαΔνβ þ ΔμβΔναÞ − 1

3
ΔμνΔαβ, Δμν ≡ gμν þ uμuν, and

nonvanishing expansion rate
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θ≡∇μuμ ¼ 3
ur

r
: (5)

(Note that θ̂ ¼ 0 since the flow is static in global coordinates.
This quantity does not transform homogeneously under the
Weyl rescaling.)
With this flow velocity ûμ, the energy-momentum tensor

of viscous conformal fluids (i.e., relativistic fluids in which
the energy density ϵ̂ is given by ϵ̂ ¼ 3p̂ with p̂ being the
pressure) is written as T̂μν ¼ ϵ̂ûμûν þ ϵ̂Δ̂μν=3þ π̂μν. π̂μν is
the shear stress tensor that is symmetric and traceless, and
is typically chosen to be orthogonal to the flow ûμπ̂μν ¼ 0
(the so-called Landau frame [25]). It enters the energy-
momentum conservation equations ∇̂μT̂

μν ¼ 0 (in x̂ coor-
dinates) as follows:

D̂ ϵ̂ ¼ 0; (6)

4ϵ̂ D̂ ûμ þ Δ̂μν∇̂νϵþ 3Δ̂μ
ν∇̂απ̂

να ¼ 0; (7)

where the comoving derivative is D̂≡ ûμ∇̂μ and we have
already set θ̂ ¼ σ̂μν ¼ 0. (6) and (7) should be supple-
mented with the constitutive equation for π̂μν. Its most
general form is rather complicated [8], but when σ̂μν ¼ 0 it
can be written as [3,4]

π̂μν ¼ −
τπ
ϵ̂1=4

Δ̂μ
αΔ̂ν

βD̂π̂αβ þ λ1
ϵ̂
π̂hμλπ̂νiλ þ

λ2
ϵ̂1=4

π̂hμλΩ̂νiλ

þ λ3ϵ̂
1=2Ω̂hμ

λΩ̂νiλ þ κϵ̂1=2ðR̂hμνi − 2ûαR̂
αhμνiβûβÞ;

(8)

where R̂μναβ is the Riemann curvature tensor, Ahμνi≡
ΔμναβAαβ, and Ω̂μν ≡ 1

2
Δ̂μαΔ̂νβð∇̂αûβ − ∇̂βûαÞ is the vor-

ticity tensor. The transport coefficients τπ , κ, λi (i ¼ 1; 2; 3)
are dimensionless, and are rescaled by the appropriate
power of ϵ̂. This is because these coefficients are dimen-
sionful in the original Minkowski space and are propor-
tional to ϵ to some power in a conformal fluid. After the
Weyl rescaling, this is converted to a power of ϵ̂ ¼ x4⊥ϵ.
For our purposes, it is important to emphasize that π̂μν are

treated as independent variables which should be determined
self-consistently by the constitutive equation (8). This follows
the spirit of the original Israel-Stewart approach, and has been

recently put on a firm ground in [8] where (8) was derived via
the consistent truncation of the Boltzmann equation doubly
expanded in powers of σμν and πμν. This is indeed crucial for
our problem since the commonly employed lowest-order
substitution π̂μν↔ − 2ησ̂μν (η is the shear viscosity) fails in
this case because σ̂μν ¼ 0.
Since the background space-time is conformally equiv-

alent to flat space, the term proportional to κ vanishes
identically. The vorticity tensor also vanishes Ω̂μν ¼ 0 for
the flow velocity (3). Moreover, (6) shows that ϵ̂ (hence
also π̂μν) does not depend on τ. The equation for π̂μν then
simplifies to

π̂μν ¼ λ1
ϵ̂
π̂hμλπ̂νiλ: (9)

Assuming π̂μν is diagonal, we find the solution

ðπ̂ρρ; sinh2ρπ̂ΘΘ; π̂ϕϕÞ ¼ ϵ̂

λ1
×

8>><
>>:

ð−1;−1; 2Þ;
ð−1; 2;−1Þ;
ð2;−1;−1Þ:

(10)

Plugging (10) into (7), we see that the x̂μ ¼ τ component is
trivially satisfied and the x̂μ ¼ Θ;ϕ components reduce to
∂Θϵ̂ ¼ ∂ϕϵ̂ ¼ 0. The x̂μ ¼ ρ component is nontrivial and
reads

∂ρϵ̂þ 4ϵ̂ tanh ρþ 3ð∂ρπ̂
ρρ þ ðtanh ρþ coth ρÞπ̂ρρ

− sinh ρ cosh ρπ̂ΘΘÞ ¼ 0: (11)

This can be easily solved as

ϵ̂ ∝

8>>>>>>>><
>>>>>>>>:

�
1

cosh2ρ

�
2þ 9

2ðλ1−3Þ;

�
1

cosh2ρ

�
2

ðtanh2ρÞ 9
2ðλ1−3Þ;

�
1

cosh2ρ

�
2
�

tanh2ρ
cosh2ρ

�
− 9
2ðλ1þ6Þ

:

(12)

The corresponding energy density in Minkowski space
reads

ϵ ∝

8>>>>>>>><
>>>>>>>>:

1
ðL2þðtþrÞ2Þ2ðL2þðt−rÞ2Þ2

�
4L2x2⊥

ðL2þðtþrÞ2ÞðL2þðt−rÞ2Þ

� 9
2ðλ1−3Þ;

1
ðL2þðtþrÞ2Þ2ðL2þðt−rÞ2Þ2

�
1 − 4L2x2⊥

ðL2þðtþrÞ2ÞðL2þðt−rÞ2Þ

� 9
2ðλ1−3Þ;

1
ðL2þðtþrÞ2Þ2ðL2þðt−rÞ2Þ2

�
4L2x2⊥ððL2þðtþrÞ2ÞðL2þðt−rÞ2Þ−4L2x2⊥Þ

ðL2þðtþrÞ2Þ2ðL2þðt−rÞ2Þ2

�
− 9
2ðλ1þ6Þ

:

(13)

The temperature is given by Tðt; rÞ ∝ ϵ1=4ðt; rÞ.
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As a consistency check, we have numerically confirmed
that

R
T00d3~r is constant in t for all these three solutions.

For the first two solutions we need to require λ1 > 3 in
order for the total energy to be finite.
Equation (10) shows that λ1 essentially plays the role of

the Reynolds number Re−1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
π̂μνπ̂μν

p
=ϵ̂ ∼ 1=λ1. Since

the constitutive equation (3) involves the expansion in
inverse powers of the Reynolds number [8], consistency
requires that λ1 has to be large. In particular, the ideal hydro
limit corresponds to λ1 → ∞, contrary to the naive expect-
ation λ1 → 0. Indeed, in the limit λ1 → ∞ the above
solutions reduce to the spherically expanding solution in
ideal hydrodynamics previously obtained by Nagy using a
different method [19]. (The particular solution with L ¼ 0
was found earlier [15].) We see that the finite-λ1 corrections
break rotational symmetry down to axial symmetry (ϕ
rotation). We also see that they create peaks and dips in the
energy density profile. In Fig. 1, we plot the time evolution
of ϵðt; x⊥; z ¼ 0Þ for these three solutions and compare
them with the ideal-fluid solution. The zero and divergence
at x⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ t2

p
in the second and third solutions are

smoothed out for nonzero values of z.
Note that the solutions (13) are invariant under t → −t;

that is, they are time reversible despite πμν ≠ 0. A simple
look at the energy-momentum conservation equations tells
us that time reversal invariance is broken if πμν is not even
under this operation. In fact, when t → −t we have that the
spatial flow velocity changes as ~u → −~u, while θ → −θ,
σμν → −σμν. Thus, in the Navier-Stokes approximation
πμν ∼ −2ησμν, one can clearly see that time reversal
invariance is broken, which is of course associated with
the production of entropy [25]. However, our solutions are
static in τ and dissipationless σ̂μν ¼ θ̂ ¼ 0. Clearly, then, a
nontrivial solution of (9) implies that π̂μν is even under time
reversal. Thus, it is indeed possible to find time-reversible
fluid configurations in second order hydrodynamics.
Presumably, in the context of kinetic theory, our solutions
may correspond to some kind of a nontrivial fixed point of
the Boltzmann equation that never reaches local thermal
equilibrium. This certainly deserves further study.
In [19], Nagy also derived an exact ideal-fluid solution

with rotation. It is easy to accommodate this solution in our
framework. For fluid rotating around the z axis, we just turn
on the ϕ component of the velocity.

ûτ ¼
−cosh2ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ρ − ω2

p ; ûϕ ¼ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ρ − ω2

p ; (14)

with the obvious constraint 1 ≥ ω ≥ 0. The corresponding
flow velocity in Minkowski space is

ut ¼ −
L2 þ r2 þ t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL2 þ t2 þ r2Þ2 − 4r2t2 − 4ω2L2x2⊥
p ;

~u ¼ 2t~rþ 2ωLð~r × ~ezÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ t2 þ r2Þ2 − 4r2t2 − 4ω2L2x2⊥

p ; (15)

in agreement with [19]. The modified flow velocity (14)
still satisfies θ̂ ¼ σ̂μν ¼ 0. The energy density is given by

ϵ̂ ∝
1

ðcosh2ρ − ω2Þ2 ; (16)

or in Minkowski space,

ϵ ∝
1

ððL2 þ t2 þ r2Þ2 − 4r2t2 − 4ω2L2x2⊥Þ2
: (17)

Naturally, this solution has nonzero vorticity

Ω̂τρ ¼
−ω2 cosh ρ sinh ρ

ðcosh2ρ − ω2Þ3=2 ;

Ω̂ϕρ ¼
ω cosh ρ sinh ρ

ðcosh2ρ − ω2Þ3=2 :

t 0

t 1

t 2
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FIG. 1 (color online). The time evolution of the energy density
profile ϵðx⊥Þ at z ¼ 0 and t ¼ 0; 1; 2 for the three solutions in
(13). We set L ¼ 1 and λ1 ¼ 10. The dashed lines represent the
ideal solution in the limit λ1 → ∞.
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We now include second order corrections to this solution
keeping the flow velocity (14) unchanged. Temporarily
assuming τπ ¼ λ2 ¼ 0, we find that the solution to (8),

π̂μν ¼ λ1
ϵ̂
π̂hμλπ̂νiλ þ λ3

ffiffiffî
ϵ

p
Ω̂hμ

λΩ̂νiλ; (18)

is given by

ðπ̂ρρ; sinh2ρπ̂ΘΘ; π̂ϕϕÞ ¼ ϵ̂
λ1

�
α; β; γcosh2ρ

cosh2ρ−ω2

�
;

π̂ττ ¼ ω

cosh2ρ
π̂τϕ ¼ ω2

cosh4ρ
π̂ϕϕ: (19)

The parameters ðα; β; γÞ in (19) can be any of the following
four possibilities:

ðα; β; γÞ ¼

8>>><
>>>:

�
1−

ffiffiffiffiffiffiffiffi
9−4f

p
2

;−1; 1þ
ffiffiffiffiffiffiffiffi
9−4f

p
2

�
;

�
1þ

ffiffiffiffiffiffiffiffi
9−4f

p
2

;−1; 1−
ffiffiffiffiffiffiffiffi
9−4f

p
2

�
;

(20)

α ¼ γ ¼ −
β

2
¼

8<
:

1
2
ð−1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4f=3
p Þ;

1
2
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4f=3
p Þ;

(21)

where we defined

f ≡ λ1λ3ω
2sinh2ρffiffiffî

ϵ
p ðcosh2ρ − ω2Þ2 : (22)

In the f → 0 limit, the first three solutions in (20)–(21)
reduce to (10), while the last solution reduces to the one
with λ1 ¼ 0. Below we consider only the last two solutions
(21) because they satisfy Δ̂μ

αΔ̂ν
βD̂π̂αβ ¼ π̂hμλΩ̂νiλ ¼ 0,

namely, they are solutions even when τπ; λ2 ≠ 0.
Substituting (19) and (21) into (7), we are left with the

following nonlinear differential equation:

∂ρϵ̂þ
4 cosh ρ sinh ρ
cosh2ρ − ω2

ϵ̂þ 3

�
∂ρπ̂

ρρ þ 4 cosh ρ sinh ρ
cosh2ρ − ω2

π̂ρρ
�

þ 9ð1 − ω2Þ coth ρ
cosh2ρ − ω2

π̂ρρ ¼ 0: (23)

To solve this, we employ an ansatz

ϵ̂ ¼ A2ðρÞsinh4ρ
ðcosh2ρ − ω2Þ4 ; (24)

with which we can write π̂ρρ ¼ bðρÞϵ̂ where bðρÞ is the
root of

AðρÞ ¼ λ3ω
2

3bðρÞðλ1bðρÞ þ 1Þ : (25)

First we find the special solution where A is a constant. In
this case, (23) requires either ω ¼ 1 or b ¼ − 4

21
. When

ω ¼ 1, the solution turns out to be the same as the ideal one

ϵ̂ ¼ A2

sinh4ρ
; (26)

where A is arbitrary. On the other hand, when b ¼ − 4
21
,

A ¼ 7λ3ω
2

4ð 4
21
λ1 − 1Þ ; (27)

is the solution. Note that if we take the limits ω → 0 and
λ1 →

21
4
in (27) such that A remains finite, (24) reduces to

the second solution in (12).
To find general solutions, we now take into account the ρ

dependence of AðρÞ. (23) can be cast into a differential
equation for bðρÞ

9λ1b2 þ 4λ1bþ 3bþ 2

bðλ1bþ 1Þð4þ 21bÞ ∂ρb ¼ ð1 − ω2Þ coth ρ
cosh2ρ − ω2

: (28)

The above equation can be integrated as

bð21bþ 4Þe1ðλ1bþ 1Þe2 ¼ C
sinh2ρ

cosh2ρ − ω2
; (29)

where e1 ¼ 105−32λ1
7ð4λ1−21Þ, e2 ¼ 1þ 9

4λ1−21
and C is the integra-

tion constant. Given b�ðρÞ as the solution to (29), we can
obtain the energy density accordingly. In the limit λ1 → ∞,
(29) indicates that b → 0, and we recover the ideal
solution (16).
In conclusion, we have found several novel exact

solutions to the second order conformal hydrodynamic
equations in which πμν is treated as independent variable.
The ideal-fluid limit of these solutions reduces to previ-
ously known results. Our solutions encode very interesting
nonlinear effect as well as the vorticity contribution, which
has never been studied before. We showed that the second
order equations allow for nontrivial time-reversible solu-
tions in which πμν cannot be approximated by its Navier-
Stokes limit. Although these solutions are rather special,
they cannot be ruled out as nonphysical simply using the
second law of thermodynamics. We hope that the new
solutions described here may not only shed new light on
the analytical structure of the nonlinear second order
hydrodynamic equations but also serve as a test of
numerical codes for the hydrodynamic simulation of
heavy-ion collisions.
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