

Electronic Waste

Recycling and Reprocessing for a Sustainable Future

Edited by Maria E. Holuszko Amit Kumar Denise C. R. Espinosa

Editors

Dr. Maria E. Holuszko

The University of British Columbia NBK Institue of Mining Engineering 517-6350 Stores Road V6T 1Z4 Vancouver, BC Canada

Dr. Amit Kumar

The University of British Columbia NBK Institue of Mining Engineering 517-6350 Stores Road V6T 1Z4 Vancouver, BC Canada

Dr. Denise C. R. Espinosa

University of Sao Paulo Polytechnic School, Department of Chemical Engineering Av. Prof. Luciano Gualberto 380 – Butantã, São Paulo, SP 05508-010 Brazil

Cover Design: Wiley
Cover Image: © Andrei Kuzmik/
Shutterstock, Recyling symbol – public domain

All books published by WILEY-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

10.1002/9783527816392.fmatter, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/9783527816392.fmatter by Univ of Sao Paulo

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de>.

© 2022 WILEY-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

 Print ISBN:
 978-3-527-34490-1

 ePDF ISBN:
 978-3-527-81642-2

 ePub ISBN:
 978-3-527-81640-8

 oBook ISBN:
 978-3-527-81639-2

Typesetting Straive, Chennai, India Printing and Binding

Printed on acid-free paper

10 9 8 7 6 5 4 3 2 1

Contents

Preface xiii

1	Introduction, Vision, and Opportunities 1 Maria E. Holuszko, Denise C. R. Espinosa, Tatiana Scarazzato, and Amit
1 1	Kumar
1.1	Background 1 E-Waste 2
1.2	
1.3	Outline 8 References 9
_	
2	e-Waste Management and Practices in Developed and
	Developing Countries 15
	Pablo Dias, Andréa M. Bernardes, and Nazmul Huda
2.1	Introduction 15
2.2	Overview on WEEE Management and Practices 16
2.3	International WEEE Management and Transboundary Movement 18
2.4	WEEE Management and Practices – Developed and Developing
	Countries 19
2.5	Developed Countries 21
2.5.1	Switzerland 21
2.5.2	Japan 22
2.5.3	Australia 22
2.6	Developing Countries 23
2.6.1	Brazil 23
2.6.2	India 23
2.6.3	South Africa 24
2.6.4	Nigeria 25
2.6.5	Taiwan 25
2.7	Conclusions 26
	References 26

3	e-Waste Transboundary Movement Regulations in Various
	Jurisdictions 33
	Pablo Dias, Md Tasbirul Islam, Bin Lu, Nazmul Huda, and
2.1	Andréa M. Bernarde
3.1	Background 33
3.2	International Legislation and Transboundary Movement 34
3.3	Extended Producer Responsibility (EPR) 41
3.4	Regulations in Various Jurisdictions 41
3.4.1	Europe 43 France 43
3.4.1.1	
3.4.1.2	
3.4.1.3	
3.4.1.4	,
3.4.2	Americas 45
3.4.2.1	United States of America 45
3.4.2.2	
3.4.2.3	
3.4.3	Asia 47
3.4.3.1	1
3.4.3.2	
	Taiwan 49
	India 49
	Africa 49
	South Africa 49
3.4.4.2	6
3.4.5	Australia 50
3.5	Conclusions 51
	References 52
4	Approach for Estimating e-Waste Generation 61
	Amit Kumar
4.1	Background 61
4.2	Econometric Analysis 61
4.3	Consumption and Use/Leaching/Approximation 1 Method 62
4.4	The Sales/Approximation 2 Method 63
4.5	Market Supply Method 63
4.5.1	Simple Delay 63
4.5.2	Distribution Delay Method 63
4.5.3	Carnegie Mellon Method/Mass Balance Method 64
4.6	Time-Step Method 64
4.7	Summary of Estimation Methods 65
4.8	Lifespan of Electronic Products 65
4.9	Global e-Waste Estimation 66
	References 69

10.10029788527816392 finanter, Downloaded from https://onlineliblusy.wiley.com/doi/10.10029788527816392 finanter by Univ of See Paulo - Bezzil, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/eterms-and-conditions) on Wiley Office Library or release of see; OA articles are governed by the applicable Centwice Ommons License and Conditions (https://onlinelibrary.wiley.com/eterms-and-conditions) on Wiley Office Library for release of see; OA articles are governed by the applicable Centwice Ommons License and Conditions (https://onlinelibrary.wiley.com/eterms-and-conditions) on Wiley Office Library for release of see; OA articles are governed by the applicable Centwice Office Library for release of the applicable Centwice Office Cen

10.10029788527816392 finante, Develoaded from https://onlinelibilitys.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by Univer See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029788527816392 finante by University (https://onlinelibr

5	Materials Used in Electronic Equipment and Manufacturing
	Perspectives 73
	Daniel D. München, Pablo Dias, and Hugo M. Veit
5.1	Introduction 73
5.2	Large Household Appliances (LHA) 75
5.3	Small Household Appliance (SHA) 76
5.4	IT and Telecommunications Equipment 78
5.4.1	Computers and Notebooks 78
5.4.2	Monitors and Screens 79
5.4.3	Mobile Phones (MP) 81
5.4.4	Printed Circuit Boards (PCB) 83
5.5	Photovoltaic (PV) Panels 85
5.6	Lighting Equipment 86
5.7	Toys, Leisure, and Sport 86
5.8	Future Trends in WEEE – Manufacturing, Design, and Demand 89
	References 91
6	Recycling Technologies – Physical Separation 95
	Amit Kumar, Maria E. Holuszko, and Shulei Song
6.1	Introduction 95
6.2	Dismantling 96
6.3	Comminution/Size Reduction 97
6.3.1	Shredders 97
6.3.2	Hammer Mills 98
6.3.3	High-Voltage Fragmentation 98
6.3.4	Knife Mills 100
6.3.5	Cryogrinding 100
6.4	Particle Size Analysis 100
6.5	Size Separation/Classification 102
6.5.1	Screening 102
6.5.2	Classification 104
6.5.2.1	Centrifugal Classifier 104
6.5.2.2	Gravitational Classifiers 105
6.6	Magnetic Separation 106
6.6.1	Low-Intensity Magnetic Separators 106
6.6.2	High-Intensity Magnetic Separators 107
6.7	Electrical Separation 108
6.7.1	Corona Electrostatic Separation 108
6.7.2	Triboelectric Separation 109
6.7.3	Eddy Current Separation 110
6.8	Gravity Separation 111
6.8.1	Jigs 112
6.8.2	Spirals 112
6.8.3	Shaking Tables 113
6.8.4	Zig-Zag Classifiers 114

Contents	
6.8.5 6.8.6 6.9 6.10 6.11	Centrifugal Concentrators 114 Dense Medium Separation (DM Bath/Cyclone) 115 Froth Flotation 116 Sensor-Based Sorting 119 Example Flowsheets 119
	References 123
7	Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment 135 Jean-Philippe Harvey, Mohamed Khalil, and Jamal Chaouki
7.1	Introduction 135
7.2	Printed Circuit Boards 136
7.3	Pyrometallurgical Processes 137
7.3.1	Smelting 138
7.3.1.1	Copper-Smelting Processes – Sulfide Route 138
7.3.1.2	Copper-Smelting Processes – Secondary Smelters 142
7.3.1.3	Lead-Smelting Processes 142
7.3.1.4	Advantages and Limitations of Smelting Processes 146
7.3.2	Electrochemical Processes 147
7.3.2.1	High-Temperature Electrolysis 148
7.3.2.2	Low-Temperature Electrolysis 149
7.3.3	Other Pyrometallurgical Operations Used in Electronic Waste Recycling 152
7.3.3.1	Roasting 152
7.3.3.2	Molten Salt Oxidation Treatment 152
7.3.3.3	Distillation 153
7.3.3.4	Pyrolysis 155
	References 157
8	Recycling Technologies – Hydrometallurgy 165
	Denise C. R. Espinosa, Rafael P. de Oliveira, and Thamiris A. G. Martins
8.1	Background 165
8.2	Waste Printed Circuit Boards (WPCBs) 167
8.3	Photovoltaic Modules (PV) 172 Batteries 176
8.4 8.5	Batteries 176 Light-Emitting Diodes (LEDs) 178
8.6	Trends 180
0.0	References 181
9	Recycling Technologies – Biohydrometallurgy 189
	Franziska L. Lederer and Katrin Pollmann
9.1	Introduction 189
9.2	Bioleaching: Metal Winning with Microbes 189
9.3	Biosorption: Selective Metal Recovery from Waste Waters 191
9.3.1	Biosorption Via Metal Selective Peptides 194

viii

10.1002978857816392 finited, Downloaded from https://onlinethibmy.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library on [31/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 11/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Un

10.10029788327816392 finante, Develoaded from https://onlinelithusy.wiley.com/doi/10.10029788327816392 finante by University on [31/10023]. See the Terms and Conditions (https://onlinelithusy.wiley.com/doi/10.10029788327816392 finante by University of rather of see Paulo - Beauli, Weley Online Library on [31/10023]. See the Terms and Conditions (https://onlinelithusy.wiley.com/doi/10.10029788327816392 finante by University of rather of see Paulo - Beauli, Weley Online Library on [31/10023]. See the Terms and Conditions (https://onlinelithusy.wiley.com/doi/10.10029788327816392 finante by University of rather of see Paulo - Beauli, Weley Online Library on [31/10023].

9.3.2	Chelators Derived from Nature 196
9.4	Bioflotation: Separation of Particles with Biological Means 197
9.5	Bioreduction and Bioaccumulation: Nanomaterials from Waste 199
9.6	Conclusion 201
	References 202
10	Processing of Nonmetal Fraction from Printed Circuit Boards
	and Reutilization 213
	Amit Kumar and Maria E. Holuszko
10.1	Background 213
10.2	Nonmetal Fraction Composition 214
10.3	Benefits of NMF Recycling 215
10.3.1	Economic Benefits 215
10.3.2	Environmental Protection and Public Health 216
10.4	Recycling of NMF 218
10.4.1	Physical Recycling 218
10.4.1.1	Size Classification 219
10.4.1.2	Gravity Separation 219
10.4.1.3	Magnetic Separation 220
10.4.1.4	Electrical Separation 220
10.4.1.5	Froth Flotation 220
10.4.2	Chemical Recycling 221
10.5	Potential Usage 221
	References 223
11	Life Cycle Assessment of e-Waste – Waste Cellphone
	Recycling 231
	Pengwei He, Haibo Feng, Gyan Chhipi-Shrestha, Kasun Hewage, and
	Rehan Sadiq
11.1	Introduction 231
11.2	Background 232
11.2.1	Theory of Life Cycle Assessment 232
11.3	LCA Studies on WEEE 234
11.3.1	Applications on WEEE Management Strategy 234
11.3.2	Applications on WEEE Management System 235
11.3.3	Applications on Hazardous Potential of WEEE Management and
	Recycling 236
11.4	Case Study 236
11.4.1	Goal and Scope Definition 237
11.4.1.1	Functional Unit 237
11.4.1.2	System Boundary 238
11.4.2	Life Cycle Inventory 238
11.4.2.1	Formal Collection 239
11.4.2.2	Informal Collection 239
11.4.2.3	Mechanical Dismantling 239

x	Contents
---	----------

11.4.2.4	Plastic Recycling 240
11.4.2.5	Screen Glass Recycling 240
11.4.2.6	Battery Disposal 240
11.4.2.7	Electronic Refining for Materials 241
11.4.3	Life Cycle Impact Assessment 241
11.4.4	Results 241
11.4.4.1	Feature Phone Formal Collection Scenario 241
11.4.4.2	Feature Phone Informal Collection Scenario 243
11.4.4.3	Smartphone Formal Collection Scenario 244
11.4.4.4	Smartphone Informal Collection Scenario 246
11.4.5	Discussion 247
11.5	Conclusion 249
	References 250
12	Biodegradability and Compostability Aspects of Organic
	Electronic Materials and Devices 255
	Abdelaziz Gouda, Manuel Reali, Alexandre Masson, Alexandra Zvezdin,
	Nia Byway, Denis Rho, and Clara Santato
12.1	Introduction 255
12.1.1	Technological Innovation and Waste 255
12.1.2	Eco-friendliness 257
12.1.3	Organic Electronics 257
12.1.4	Opportunities for Green Organic Electronics 258
12.2	State of the Art in Biodegradable Electronics 258
12.3	Organic Field-Effect Transistors (OFETs) 260
12.3.1	Fundamentals 260
12.3.2	Anthraquinone, Benzoquinone, and Acenequinone 262
12.3.3	Quinacridones 262
12.4	Electrochemical Energy Storage 264
12.4.1	Quinones 264
12.4.2	Dopamine 265
12.4.3	Melanins 265
12.4.4	Tannins 268
12.4.5	Lignin 269
12.5	Biodegradation in Natural and Industrial Ecosystems 269
12.5.1	Degradation and Biodegradation 270
12.5.2	Composting Process 271
12.5.3	Materials Half-Life Under Composting Conditions 274
12.5.4	Biodegradation in the Environment 275
12.6	Microbiome in Natural and Industrial Ecosystems 276
12.6.1	The Ruminant–Hay Natural Ecosystem 279
12.6.2	The Termite–Wood Natural Ecosystem 280
12.6.3	The Industrial Composter–Biowaste Ecosystem 281
12.6.3.1	Municipal Composting Facility 281
12.6.3.2	Engineered Composting Facility 282

10.1002978857816392 finited, Downloaded from https://onlinethibmy.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library on [31/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 11/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Univer 6 Sao Paulo - Bezail, Wiley Online Library or 13/10/203] See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002978537816392 finited by Un

10.10027988527816392 finanter, Downloaded from https://onlinelibitary.wiley.com/doi/10.10029785527816392 finanter by Unive & Suo Paulo - Bazal, Wiley Online Library on [51/10/23] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA aricles are generated by the applicable Center Commons License

12.6.4	Specialized Inoculant Adapted to Organic Matter 282
12.6.5	Specialized Inoculant Adapted to Heavy Metals 283
12.7	Concluding Remarks and Perspectives 284
	Acknowledgment 285
	References 285
13	Circular Economy in Electronics and the Future of
	e-Waste 299
	Nani Pajunen and Maria E. Holuszko
13.1	Introduction 299
13.2	Digitalization and the Need for Electronic Devices 301
13.3	Recycling and Circular Economy 302
13.4	Challenges for e-Waste Recycling and Circular Economy 30
13.5	Drivers for Change – Circular Economy 306
13.6	Demand for Recyclable Products 309
13.7	Summary 310
	References 312

Index 315

10.1002/9783527816392.fmatter, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/9783527816392.fmatter by Univ of Sao Paulo

Brazil, Wiley Online Library on [31/10/2023]. See the Terms

Digitalization has played an essential role in social and technological development globally, while electronic and electrical equipment has become integral to our every-day lives. Digital devices provide broad access to education, instant information, continuous entertainment and contribute to mass communication, thus improving the overall quality of our lives. During the COVID-19 pandemic, the internet allowed us to function and remain a productive society worldwide.

Meanwhile, the life expectancy of most electronic devices, specifically small devices such as cellphones, tablets, and laptops, is getting shorter and shorter, resulting in alarming amounts of e-waste generation. Many discarded electronics are being improperly disposed of, hence posing a significant risk to the environment and human health. With an estimated annual growth of 3–4%, electronic waste is the fastest growing waste stream worldwide, exceeding 50 Mt annually in 2019, while only 20% of the e-waste is collected and recycled globally. The electronic devices have been reported to contain gold and copper grades, significantly exceeding the grades of many operating mines. The existence of precious metals in e-waste provides an economic incentive for recycling. On the other hand, the presence of hazardous substances in e-waste calls for complex reprocessing to decontaminate before its final disposal.

The development of efficient e-waste recycling methods and the recovery of precious metals and critical materials from e-waste are interesting and technically challenging. Furthermore, the informal urban mining of e-waste creates significant social and public health issues. Therefore, there was a need for a comprehensive overview of the current situation with e-waste generation, disposal, regulations, recycling technologies while providing a global perspective.

This book aims to overview the current global situation regarding e-waste, including technological issues with e-waste recycling and recovery of value from e-waste streams. The chapters in this book outline the definition of electronic waste, explore methods for e-waste estimation, identify challenges related to the timely information on e-waste collection and management, and elaborate on the practices in developed and developing countries. The book delivers information on currently used recycling technologies, including physical separation technologies, pyrometallurgy, hydrometallurgy, and biohydrometallurgy, and reviews materials used in the manufacturing of electronics as well as the development of new

materials for green-ecological and biodegradable electronics. Additionally, methods and ideas for new practices to facilitate sustainability in the electronics industry are proposed to "close the loop" in industrial production to minimize waste generation and possibly to promote a zero-waste scenario. The book concludes with a chapter on the circular economy in electronics and provides some perspective on the future of electronic waste.

This book was made possible through collaboration between international experts in the field of e-waste recycling. It collates academic and industrial expertise to provide a comprehensive overview of the scope of the problem with electronics worldwide, specifically on their fate as e-waste and the recycling efforts to shed light on the current e-waste paradigm.

Vancouver, July 2021

Maria E. Holuszko Amit Kumar Denise C. R. Espinosa