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influence diagrams. ,, -1. Introduction. Influence diagrams with decision nodes were invented in 1976 by 

Miller eL al. [cf. Howard and Matheson (1984)]. Shachter (1986) further developed 
. . 

methods for analyzing influence diagrams. S. Wright (1934) used diagrams to aid in 

understanding his "method of path coefficients". Although his diagrams pictorially 

resemble Gaussian influence diagrams [cf. Shachter ~nd Kenley (1988)], they are not 

based on the Bayesian paradigm. They are not in any sense influence diagrams. I. J. 

Good (1961) invented "causal nets" that resemble influence diagrams. He used them to 

illustrate his ideas of causality and conditional independence. Jn this respect they arc 

similar to influence diagrams. However he did not develop a comparable methodology 

for analyzing the diagrams. His diagrams are not influence diagrams as we define them 

below. 

Influence diagrams are useful for modeling statistical problems. Construction of 

the diagram is helpful in understanding the problem and communicating the 

interdependencies to others. In the process of constructing the influence diagram, a 

representation of the joint distribution of random quantities related to the problem of 
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interest is developed. Usually one docs not start with the joint distribution but uses_ the 

influence diagram model to determine a useful representation of the joint distribution. In 

the case of decision influence diagrams, the diagram can be used to help solve the 

decision problem(s) of interest. Examples of the use of influence diagrams can be found 

.~ Barlow and Zhang (1987} and Lauritzen and Spiegelhalter (1988). 

Definitions and Basic Results 

An influence diagram is, first of all, a directed graph. A graph is a set, V, of 

nodes or vertices together with a set, A, of arcs joining the nodes. It is said to be directed 

if the arcs are arrows (directed arcs). Let V=(v1, ..• ,v0 } and let A be a set ofordered 

pairs of elements of-V, representing th~ directed arcs. That is, if [vi,vj]E A for lSij~, 

· then there is a directed arc (arrow) from vertex vi to vertex vj (the arrow is directe<l from . 

vi to vj)- lf[vi,vj]E A, vi is said to be an adjacent predecessor ofvj and Vj is said to 

be an adjacent successor ofv1. The direction of arcs is meant to denote influence (or 

possible dependence). 

Circles (or ovals) represent random quantities which may, at some time, be 

observed and consequently may change to data. Circle nodes are called probabilistic 

nodes. Attached to each circle node is a conditional probability (density) function. TI-.is 

function is a function of the state of the node and also of the states of the adjacent 

predecessor nodes. 

A double circle (or double oval) denotes a deterministic node which is a node 

with only one possible state, given the states of the adjacent predecessor nodes; i.e.,_it 

denotes a deterministic function of all adjacent predecessors. Thus, to include the 

background information, H. in the graph, we would have to use a double circle around 

a 
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Probabilistic Influence Diagrams 

The following concepts formalize the ideas used in drawing the diagrams of this 

1.1 DEFINITION. A directed graph is cyclic, and is called a cyclic 

directed graph, if there exists a sequence of ordered pairs in A such 

that the initial and terminal vertices are identical; i.e., there exists an 

integer k ~ n and a sequence of k arcs of the following type: 

. . 
1.2 DEFINITION. An acyclic directed graph is a directed graph 

that is not cyclic. 

1.3 DEFINITION. A root node is a node with no adjacent 

predecessors. A sink node is a node with no adjacent successors. Note 

that any acyclic directed graph must have at least one root node and one 

sink node. 

1.4 DEFINITION. A Probabilistic Influence Diagram is an 

acyclic directed graph in which 

i) nodes represent random quantities while directed arcs indicate possible 

dependence; and 

ii) attached to each node is a conditional probability function (for the node) 

which depends on the states of adjacent predecessor nodes. 

Given a directed acyclic graph together with node conditional probabilities (i.e., a 

probabilistic influence diagram), there exists a unique joint probability functjQn 

corresponding to the random quantities represented by the nodes of the graph. This is 

because a directed graph is acyclic if and only if there exists a list ordering of the nodes 

such that any successor of a node x in the graph follows node x in the list as well. 

3 
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Consequently, following the list ordering and talcing the product of all node conditional 

probabilities we obtain the joint probability of the random quantities corresponding to the 

nodes in the graph. Note that in a cyclic graph the product of the conditional probability 

functions attached to the nodes would not detennjne the joint probability function. 

The following basic result shows that the absence of an arc connecting two nodes 

in the influenc-e diagram denotes the judgement that the unknown quantities associated 

with these nodes are conditionally independent given the states of all adjacent predecessor 

nodes. 

1.5 REMARK. · Let xi and Xj ·represent two nodes in a probabilistic 

influence diagram. If there is no arc connecting xi and Xj, then Xj and Xj 

arc conditionally independent given the states of the adjacent predecessor 

nodes; i.e., 

where wi (wj) denotes the set of adjacent predecessor nodes to only xi (x~ 

while wij denotes the set of adjacent predecessor nodes to both ~ and x;. 

1.6 REMARK. In a probabilistic influence diagram, if two nodes, "i 

and x;, are root nodes then they are independent 

1.7 EXAMPLE. (Forensic Science). A robbery has been committed and 

a suspect, a young man, is on trial. In the course of the robbery, a window 

pane was broken. The robber had apparently cut himself and a blood stain 

was left at the scene of the crime. Let x represent the blood type of the 

suspect, y the blood type of the blood stain found at the scene of the crime, 

and 0 the quantity of interest, "the state of culpability" (guilt or innocence) 

of the suspect. Formally, and before using the actual values of the 

observable quantities, we have: 



if the suspect's 
blood type is A, 

otherwise. 

if the blood 
stain type is A, 

otherwise. 

Probabilistic Influence Diagrams 

if the suspect 
is guilty, 

otherwise. 

The 'following diagram is a probability model constructed for this case. Note that the 

actual values of x and y that are known at the time of the analysis are not yet used. In fact. 

the diagram describes the dependence relations among the quantities and the conditional 

probabilities to be used. 

X 

Figure 1.2. Influence Diagram for a Problem in 
Forensic Science 

If p represents the proponion of people in the population with blood type A and if, for a 

jury member that happens to be interested in probability, q represents his probability that 

the suspect is guilty before the juror has learned· about the blood evidence, then a 

reasonable probability model is: 

p if8.t:y=l 

{

q if8=1 {p ifx=l 1-p if8=y=O " 
p(8) = p(x) = 1-p if x • o. p(y I x,8) = 1 if8 = 1 and 

1-qif8=0. y•x 

0 otherwise. 

5 
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The objective of the jury member is to obtain the probability of guilt (82 1) after obsen:mg ... 

the evidence (x=y=l) namely that the blood type of the suspect is the same as that of the 

stain. That is, the jury member needs to obtain p(8lx,y) evaluated at ( 8=x=y= 1 } . 

2. PROBABILISTIC INFLUENCE DIAGRAM OPERATIONS 

The Bayesian approach to Statistics is based on probability judgements and as such 

follo~s the laws of probability. You are said to be coherent if i) you use probability to 

~w-c your uncertainty about quantities of interest and ii) you do not violate the laws of 

probability when stating your measurements (probabilities). Probabilistic influence 

diagrams (and influence· diagrams in general) are helpful in assming coherence. Clearly, 

from coherence, any operation to be performed in a probabilistic influence diagram must 

· not violate the laws of probability. The three basic probabilistic influence diagram 

operations that we discuss next are based on the addition and product laws. These 

operations are: 1) Splitting Nodes, 2) Merging Nodes, and 3) Arc Reversal. 

Splitting Nodes 

In general a node in a probabilistic influence diagram can denote a vector random 

quantity. It is always possible to split such a node into other nodes corresponding to the 

elements of the vector random quantity.· To illustrate ideas, suppose that a node 

corresponds to a vector of two random quantities. x and y, with joint probability function 

p(x,y). From the product law we know that 

p(x,y) = p(x)p(ylx) • p(xly)p(y). 

Hence, Figure 2.1 presents the 3 possible probabilistic influence diagrams that can be 

used in this case showing the two ways of splitting node (x,y). 

6 
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Figure 2.1. 
Probabilistic Influence Diagrams for Two Random Quantities 

· The following propeny is also a direct consequence of the laws of probability and 

it is of special interest for statistical applications. 

2.1 PROPERTY. Let x be a random quantity represented by a node of a 

probabilistic influence diagram and let f(x) be a (detenninistic) function of 

x. Suppose we connect to the original diagram a deterministic node 

representing f(x) using a directed arc from x to f(x). Then, the joint 

probability distributions for the two diagrams arc equal. (Sec Figure 2.2 for 

illustration.) 

Proof. Let w and y represent the sets of random quantities that precede and succeed x, 

respectively, in a list ordering. Note that p(f(x)lw,x) = p(f(x)lx) = 1 and consequently 

from the product law p(x,f(x)lw) = p(xlw). That is, node x may be replaced by node 

(x,f(x)) without changing the joint probability of the graph nodes. Using the splitting 

node operation in node (x,f(x)) with x preceding f(x), we obtain the original graph with 

the additional dctcnninistic node f(x) and a directed arc from x to f(x). Note also that no 

other arc is necessary since f(x) is determined by x and p(ylw,f(x), x) • p(ylw,x) . 

~ 
p(w) p(ylw,x) 

Figure 2.2. Addition of a Deterministic Node 

7 
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Merging Nodes 

The second probabilistic influence diagram operation is the merging of nodes. 

Consider first a probabilistic influence diagram with two nodes, x and y, with a directed 

arc from x to y. The product law states that p(x,y) = p(x)p(ylx). Hence, without 

changing the joint probability of x and y, the original diagram can be replaced by a single 

node diagram representing the vector (x,y). The first two diagrams of Figure 2.1 in the 

reverse order illustrate this operation. In general, two nodes, x and y, can be replaced by 

a single node, representing the vector (x,y), if there is a list ordering such that x is an 

immediate predecessor or successor of y. 

It is not always possible to merge two adjacent nodes in a probabilistic influence 

diagram. Note that two adjacent nodes may not be neighbors in any list ordering. For 

example, consider the first diagram of Figure 2.3. Note that all pairs of nodes in this 

diagram constitute adjacent nodes. 

. __ Figure 2.3. Diagram with Adjacent Nodes, wand y, 
"· · · , . not Allowed to Be Merged 

However, w and y cannot be merged int~L1c:id'-.. repv,~!,jng (w,y). Ocarly the only list ._ / . 

ordering here is w<x<y and w and y are not immediate neighbors in this ordering. The 
. . 

problem here is that to merge wand y we would need an arc fu>m (w,y) to x and another 

from x to (w,y). The reason for this is the existence of arcs [w,x] and [x,y] in the 

original graph. If we were to have arcs in both directions between (w,y) and x, we 

would not obtain, in general, the joint probability function from the diagram since 

p(w,x,y) ~ p(xlw,y)p(w,ylx). Also it can be seen from the first·diagram of Figure 2.3 

that there exist two paths from w to y. This is the graphical way to sec that w and y 

I 
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cannot be merged into a single node. To construct a graphical technique to check if two 

nodes can be merged, we need the following definition and theorem. 

2.2 DEFINITION. A directed path from node X;_ to node xj is a chain 

of ordered pairs 

corresponding to directed arcs which lead from Xj to x.r 

2.3 THEOREM. (Merging Nodes Theorem) In a probabilistic influence 

diagram, nodes x and y can be merged if either 

1) the only directed path between x and y is a directed arc connecting x 
andy;or 

· 2) there is no directed path connecting x and y. 

Proof. To be definite, suppose that x precedes y in an associated list ordering 

corresponding to a probabilistic influence diagram. Let Wx (wy) be the set of adjacent 

predecessors of x (y) but not of y (x) and let Wxy be the set of node which are adjacent 

predecessors of both x and y. Since there is no directed path from x toy except, 

possibly, for a directed arc from x toy, we may add arcs from each node in Wx toy and 

from each node in wy to x without creating any cycles. This is possible because directed 

arcs indicate possjb!e dependence not necessarily strict dependence. We have of course -
lost some graph information as a result of these arc additions. 

In the associated list ordering of nodes for our modified diagram, the family of 

nodes ( wx,Wy,Wxyl precede both x and y. Since there is no other directed path from x to 

y other than possibly a directed arc from x toy, there exists an associated list ordering of 

nodes for which x is an immediate predecessor of y in this list ordering. The product 

p(xlwx,Wy,Wxy)p(ylx,wx,Wy,Wxy) 
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must appear in the representation for the joint probability function for all probabilistic 

nodes based on the list ordering. Since 

p(y,xlwx,Wy,Wxy) = p(xlwx,Wy,Wxy)p(ylx,wx,Wy,Wxy) 

by the product law, we can merge x and y. 

Finally, suppose that there is a directed path from x toy other than a directed arc 

from x to y. In this case it is noc difficult to sec that merging x and y would create a cycle 

which is not allowed. • 

The above result is related to arc reversal, an important operation discussed next 

Reversing Arcs 

The probabilistic influence diagram operation corresponding to Bayes' fonnula is 

· that of arc reversal. Consider the diagram on the left in Figure 2.4. Using the merging 

nodes operation we obtain the single node diagram in the center where the probability 

function of the node (x,y) is obtained from the first diagram as p(x,y) = p(x)p(ylx). 

Using the splitting nodes operation we can obtain the diagram on the right of Figure 2.4. 

Note that to obtain the corresponding probability functions we use 

1) the theorem of total probability for p(y) = ~(ylx)p(x), where ~ is the 

sum ( or integral) over all possible values of x. and 
2) the multiplication law for p(xly) = p(x,y)/p(y) since p(y)p(xly) • p(x,y). 

By substituting the appropriate expressions in p(xly) we obtain Bayes' formula. That is, 

p(xly) • {p(x)p(ylx)} / { I:,t1>(x)p(ylx)}. 

Hence, by using the theorem of total probability and Bayes' formula when 

performing an arc reversal operation, we can go directly from the left diagram to the right 

one in Figure 2.4 without having to c:onsub the one in the center. 

10 
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Figure 2.4. Reversing Arc Operation in a Two Node · 
Probabilistic Influence Diagram 

Although the diagrams are different they have the same joint probability function 

for node random quantities. This fact is fonnalized in the following definition. 

2.4 DEFINITION. Two probabilistic influence diagrams arc said to be 
equivalent in probability if they have the same joint probability 
function for node random quantities. 

Consider the diagram of Fi~ 2.5 where w1 , wy, and w-,..y are sets of adjacent 

predecessors of x and (or) y as indicated by the figure. If arc [x,y] is the 2nlx directed 

path from node x to node y, we may add arcs [w1 ,y] and [wy.x] to the diagram without 

introducing any cycles. (See left diagram of Figure 2.6.) Remember that a directed arc 

· only indicates~ dependence. 

The following result introduces the conditions under which arc reversal operations can be 

performed. 

2.5 THEOREM. (Reversing Arcs Theorem) Suppose that arc [x,y] 
connects nodes x and yin a probabilistic influe~ce diagram. [x,y] can be 
reversed to [y,x], without changing the joint probability function of the 
diagram if 
1) there is no other directed path from x to y, 
2) all the adjacent predecessors of x (y), in the original diagram. become 

· also adjacent predecessors of y {x), in the mxlified diagram. and I 

. 11 



Probabilistic Influence Diagrams 

3) the conditional probability functions attached to nodes x and y are also 

modified in accord with the laws of probability. 

Proof. Let Wx ( Wy) be the set of adjacent predecessors of x (y) but not of y (x) and 

wx,y be the set of adjacent predecessors of ~th x and y. Since arcs represent possible 

dependence, we can add arcs to the diagram in order to make the set (wx,wx,wx,y) an 

adjacent predecessor of both x and y. Since there is no other directed path connecting x 

and y, there is a list ordering such that x is an immediate predecessor of y in the lisL 

Note also that the elements of the set (wx,Wx,w1 ,y) are all predecessors of both x and yin 

the llsi ordering. To obtain the joint probability function corresponding to the first 

diagram we consider the product, following the list ordering, of all node conditional 

probability functions. As a factor of this product we have 

p(xlwx,Wx,y)p(ylx,w1,wx,y) = p(xlwx,Wy,Wx,y)p(ylx,wx,Wy,Wx,y) = 

• p(x,ylwx,Wy,Wx,y) = p(ylw1 ,Wy,Wx,y) p(xly,wx,Wy,Wx,y). 

The first equality is due to the fact that x and Wy arc conditionally independent given 

. (wx,Wx,y) and y and Wx are conditionally independent given (w1,wx,y>· [See Figure 2.5.] 

The other two equalities follow from the product law. 

Replacing p(xlw1 ,wx,y)p(ylx,w1,wx,y) in the product of the conditional probability 

functions for the original diagram by p(ylw1 ,w1,w1 ,y)P(xly,wx,Wy,Wx,y) we obtain the 

product of the conditional probability functions for the ~econd diagram. This proves that 

the joint probability functions of the two diagrams are equal. Finally, we notice that if 

there were another d)rected path from x to y, we would create a cycle by reversing arc 

[x,y], which is not allowed. • 

12 
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In general, reversing an arc corresponds to applying Bayes' formula and the 

theorem of total probability. However, it may also involve the addition of arcs and such 

arcs, in some cases represent only pseudo dependencies. In this sense, some relevant 

information may have been lost after arc reversal 

Figure 2.5. 

Figure 2.6. Equivalent Probabilistic Influence Diagrams. 
Probability Nodes in the Right Diagram arc Obtained 

From the Left Diagram by Using Bayes' Formula 
and the theorem of total probability. 

3. CONDITIONAL INDEPENDENCE 

The objective of this section is to study the concept of conditional independence 

and introduce its basic properties. We beieve that the simplest and most intuitive way that 

Ibis study can be performed is by using all the visual force of the probabilistic diagrams._ 

13 
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We now introduce the two most common definitions of conditional independence. • 

3.1 DEFINITION. (Intuitive) Given random quantities x, y, and z, we 

say that y is conditionally independent of x given z if the conditional 

distribution of y given (x,z) is equal to the conditional distribution of y 

given z. 

The intcrpn:tation of this concept is that, if z is given, no additional information 

· about y can be extracted from x. The influence diagram representing this statement is 

p~ted in Figure 3.1: 

Figure 3.1. Intuitive Definition of 
Conditional Independence 

3.2 DEFINITION. (Symmetric) Given random quantities x, y, and z, 

we say that x and y arc conditionally independent given z if the conditional 

distribution of (x,y) given z is the product of the conditional distributions 

of x given z and that of y given z. 

The interpretation is that, if z is given, x and y share no additional information. 

The influence diagram representing this statement is displayed in Figure 3.2. 

< Figure 3.2. Symmetric Dcfmition of 
_ Conditional Independence 
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Using the arc reversal operation, we can easily prove that the probabilistic 

influence diagrams in Figures 3.1 and 3.2 arc equivalent. Thus, Definitions 3.1 and 3.2 

arc equivalent, which means that in a specific problem we can· use either one. To 

represent the conditional independence described by both Figures 3.1 and 3.2 we can 

write either xilylz or yilxlz. This is a very general notation since x, y, and z are general 

random quantities (scalars, vectors, events, etc.). If in place of il we use ll , then x 

and y arc said to be strictly dependent given z. We obtain independence (dependence) 

and write xily (xlly) if z is an event which occurs with probability one. It is important 

to notice that the symbol il corresponds to the absence of an arc in a probabilistic 

influence diagram. However, the existence of an arc only indicates possible dependence. 

Although ll is the negation of il, the "absence of an arc" is included in the "presence of 

an arc.• 

The following proposition introduces the essence of the DROP/ADD principles for 

conditional independence which arc briefly discussed in the sequel 

3.3 PROPOSITION. lfxilylz then, for every f=f(x), we 

have: 

(i) fll ylz; and 

(ii) xilyl(z,t). 

The proof of this property is the sequence of diagrams of Figure 3.3. First note 

that (by Property 2.1) to obtain the second diagram ~m the first we can connect to x a 

deterministic node f using arc [x,f] without changing the joint probability function. 

Consequently, by reversing arc [x,f] we obtain the third diagram. To obtain the last 

diagram from the third we use the merging nodes operation. Relations i) and ii) of 

Proposition 3.3· are represented by the second and the third diagrams of Figure 3.3J 

- 15 
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Figure 3.3. Proof of Proposition 3.3 

As direct consequences of Proposition 3.3 we have: 

Cl- If g=g(z) then xilylz if and only if xll(y,g)lz. 

C2- Let f=f(x,z) and g=g(y,z). If xllylz then, fllglz and xllyl(z,f,g). 

The concept of conditional independence gives rise to many questions. Among 

them are the ones involving the DROP/ADD principles that we describe next. Suppose 

that x, y, z, w, f, and g are random objects such that xilylz, f=f(x) and g=g(z). What 

can be said about tlic relation ll if f is substituted for x, g for z, (y,w) for y, or (z,w) for 

z? In other words, can x, y, and z be reduced or enlarged without destroying the ll 

relation? In general, the answer is no. However, for special kinds of reductions or 

enlargements the conditional independence relation is preserved. 

F'll"St we present two simple examples to show that arbitrary enlargements ofx, y, 

or z may destroy the il relation. The forensic science example shows that 8ily but 8ll 

(x,y) or, in the present notation, considering z a sure event and w=x, 8llylz but 8ll 

(y,w)lz. Consider now that w1 and w2 are two independent standard normal random 

variables; i.e., w1 - w2 - N(O,l), and w1ll w2. If x= w1 - w2 and y = w1 + w2, then 

xlly but certainly xll.yl W2, Note that if Z is a constant and w=w1, WC conclude that 

xllylz but xll..yl(z,w). 

Secondly, we present an example to show that an arbitrary reduction of z, the 

conditioning quantity, can destroy the 11 relation. Let w1, w2, and w be three _mutually 

independent standard normal random quantities; i:e., w1il(w2,w), (w1,w2)llw, 

16 
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w2ll(w1,w), w1llw2, w1llw, w2llw, and w1- wr w - N(O,l). Define x=w1-w2+w 

and y=w1+w2+w, and note that xllylw but xli.y. As before, if z is a constant we can 

conclude that xllyl(z,w) but xli.ylz. 

The destruction of the 11 relation by reducing or enlarging its arguments is known 

as Simpson's paradox (for more details, sec Lindley and Novick, 1981). The paradox, 

however, is much stronger since highly positively correlated random variables could be 

highly negatively correlated after some Drop/Add operations. For ins~cc, let z and w 

be two independent normal random variables with zero means. Define x=z+w and y=z-w 

and note that the correlation between x and y is given by correlation(x,y) = (l-r)(l+r)-1 

where r is equal to the variance of w divided by the variance of z. Also, if z is given it is 

clear that the conditional correlation is -1. In order to make cor(x,y) close to 1 we can 

consider r arbitrarily small. This shows that we can have cases where x and y are 

strongly positive (negative) dependent but, when z is given, x and y tum to be strongly 

negative (positive) conditionally dependent. 
.: 

The following is another important property of conditional independence. It is 

presented in Dawid (1979). 

3.4 PROPOSITION. The following statements are 
equivalent: 

(i) xllylz and xllwl(y,z); 
(1i) xll(w,y)lz; and 
(ill) xll wlz and xllyl(w,z). 

17 
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Figure 3.4. Proof of Proposition 3.4. 

Figure 3.4 is the proof of Proposition 3.4. Again, only the basic probabilistic 

influence diagrams operations arc used. The second graph is obtained from the first by 

merging nodes wand y. The third graph is obtained from the second by splitting node 

(w,y) and the first is obtained from the third by reversing arc [w,y]. 

The above simple properties arc very useful in some statistical applications and 
I 

they are related to the concept of sufficient statistic. In the context of comparisons of 

experiments a very general concept of sufficiency was introduced by Blackwell (1953). 

We next discuss Blackwelrs concept of sufficiency using probabilistic influence 

diagrams. 

Blackwell Sufficiency 

Suppose that we can perform either one of two experiments to learn about a 

random quantity 8. In the first experiment, we observe x, knowing p(xl8). In the second 

experiment, we observe y, knowing p(yl8). If, furthermore, there exists a random 

quantity x' such that 8llx'ly and p(x'18) 111 p(xl8), then we say that y is Blackwell 

sufficient for x relative to 8. 

In terms of probabilistic influence diagrams, we construct two diagrams, the first 

with nodes 8 and x connected by arc [8,x] and the second with three nodes 8, y, and x' 

connected by arcs [8,y] and (y,x1. If in the second diagram, after eliminating node y, 

18 
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we obtain a diagram having only two nodes. 8 and x', equivalent to the first diagram, 

then we have Blackwell's concept of sufficiency. Sec Figure 3.5. In this sense x' is a 

"garbling" of y. If we cannot observe both x and y, it is better to observe y and use 

p(yl8) to make inferences about 8. 

I ©----+0---+0 I I~ I 
Figure 3.5. Blackwell Sufficiency When the 

Right and Left diagrams arc equivalent 

3.5 DEFINITION (Blackwell Sufficiency), A random 
quantity, y, is sufficient for a random quantity, x, relative to a 

random quantity, 8, if there exists another random quantity, x', 
such that 

(i) 8ilx'ly and 

(ii) p(x'l8)-= p(xl8). 

To conclude, we present the following example which shows the usefulness of 

Blackwell sufficiency in comparing experimcntS. 

3.6 EXAMPLE. Let x and y be two Bernoulli quantities such that, given a parameter 

8, Pr(x=Il8} = 8/2 and Pr(y=ll8) = 8. Suppose that we want to learn more about the 

parameter 9, but we can only observe one of the random quantities x or y, but not both. 

The question of which one to observe involves the cost of observation and other 

considerations. For the moment let us suppose they ha:vc the same cosL If we can prove 

that y is Blackwell sufficient for x relative to 8, we must prefer y since it is at least as 

good as .x for learning about 8. We now prove that y is in fact Blackwell sufficient for x. 

Suppose that we toss a fair coin and record r-=1 if we obtain a tail and r=O if we 

obtain a bead. • Define now the random quantity x'=yr. Figure 3.6 shows, on thd left, a 

diagram relating 8, y, r, and x'. After elimina~g node r we obtain the diagram in the 



Probabilistic Influence Diagrams 

center of Figure 3.6. The right diagram of Figure 3.6 is obtained after the elimination of 

node y. This last diagram is equivalent to the probabilistic diagram relating x and 8. 

Hence, y is Blackwell sufficient for x relative to 8. 

~~-.. l~I 
Pr[x',.lfy:OJ=O 

Figure 3.6. Proof of Blackwell sufficiency 
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