





Probabilistic Influence Diagrams

interest is developed. Usually one does not start with the joint distribution but uses the
influence diagram model to determine a useful representation of the joint distribution. In
the case of decision influence diagrams, the diagram can be used to help solve the
decision problém(s) of interest. Examples of the use of influence diagrams can be founq
;‘m Barlow and Zhang (1987) and Lauritzen and Spiegelhalter (1988).

Definitions and Basic Resulis

An influence diagram is, first of all, a directed graph. A graphisaset, V, of
m;des or vertices together with a set, A, of arcs joining the nodes. It is said to be directed
i the axcs are arrows (directed arcs). Let V=(Vy,..vy) andlet A be a set of ordered
pairs of elements of V, representing th? directed arcs. That is, if [vi,vj]eA for 1<i,j<n,
then there is a directed arc (arrow) from vertex v; to vertex v; (the arrow is directed from
vito v)). If [vjvjle A, v; is said to be an adjacent predecessor of v; and v; is said to
be an adjacent successor of v;. The direction of arcs is meant to denote influence (or
possible dependence).

Circles (or ovals;) represent random quantities which may, at some time, be
. observed and consequently may change to data. Circle nodes are called probabilistic
nodes. Attached to each circle node is a conditional probability (density) function. This
function is a function of the state of the node and also of the states of the adjacent
predecessor nodes.

A double circle (or double oval) denotes a deterministic node which is a node
with only one possible state, given the states of the adjacent predecessor nodes; i.e., it
denotes a deteeministic function of all adjacent predecessors. Thus, to include the .
background information, H, in the graph, we would have to use a double circle around
H.
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The following concepts formalize the ideas used in drawing the diagrams of this

paper.

1.1 DEFINITION. A directed graph is cyclic, and is called a cyclic
directed graph, if there exists a sequence of ordered pairs in A such
that the initial and terminal vertices are identical; i.e., there exists an
integer k € n and a sequence of k arcs of the following type:

[v; ¥ LIy, v ],-..[v v ][v Vi ]
k

1L,

1.2 DEFINITION. An acyclic directed graph is a directed -graph
that is not cyclic.

1.3 DEFINITION. A root node is a node with no adjacent
predecessors. A sink node is a node with no adjacent successors. Note
that any acyclic directed graph must have at least one root node and one
sink node. -

1.4 DEFINITION. A Probabilistic Influence Diagram is an
acyclic directed graph in which .

i) nodes represent random quantities while directed arcs indicate possible
dependence; and

ii) attached to each node is a conditional probability function (for the node)
which depends on the states of adjacent predecessor nodes.

Given a directed acyclic graph together with node conditional probabilities (i.c., a
probabilistic influence diagram), there exists a unique joint probability_function
corresponding to the random quantities represented by the nodes of the graph. This is
because a directed graph is acyclic if and only if there exists a list ordering of the nodes

such that any successor of a node x in the graph follows node x in the list as well.
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Consequently, following the list ordering and taking the product of all node conditional
probabilities we obtain the joint probability of the random quantities corresponding to the

nodes in the graph. Note that in a cyclic graph the product of the conditional probability
functions anachéd to the nodes would not determine the joint probability function,

The following basic result shows that the absence of an arc connecting two nodes
in the influence diagram denotes the judgement that the unknown quantities associated
with these nodes are conditionally independent given the states of all adiacent predecessor

nodes.

i.S REMARK. ‘Let x; and x; represent two nodes in a probabilistic
influence diagram. If there is no arc connecting x; and x;, then x; and x;
are conditionally independent given the states of the adjacent predecessor
nodes; i.e.,

PxpX;twy, i, wyp) = pxiiwi,wi,w;;) plx;iw;wi,wi;)

where w; (w;) denotes the set of adjacent predecessor nodes to only x; (x;)
while w; denotes the set of adjacent predecessor nodes to both x; and x;.

1.6 REMARK. In a probabilistic influence diagram, if two nodes, x;
and x;, are root nodes then they are independent.

1.7 EXAMPLE. (Forensic Science). A robbery has been committed and
a suspect, a young man, is on trial. In the course of the robbery, a window
pane was broken. The robber had apparently cut himself and a blood stain

" was left at the scene of the crime. Let x represent the blood type of the
suspect, y the blood type of the blood stain found at the scene of the crime,
and 6 the quantity of interest, "the state of culpability” (guilt or innocence)
of the suspect. Formally, and before using the actual values of the
observable quantities, we have:

2
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1 if the suspect's 1 if the blood 1 if the suspect
blood type is A, stain type is A, 0 is guilty,
Xs= y= =
0 otherwise, 0 otherwise. 0 otherwise.

The following diagram is a probability model constructed for this case. Note that the
actual values of x and y that are known at the time of the analysis are not yet used. In fact,
the diagram describes the dependence relations among the quantities and the conditional

probabilities to be used.

p(x) p(yTx,9)

Figure 1.2. Influence Diagram for a Problem in
Forensic Science ; <

If p represents the proportion of people in the population with blood type A and if, fora
jury member that happens to be interested in probability, q represents his probability that
the suspect is guilty before the juror has learned about the blood evidence, then a
reasonable probability model is:

p iff=y=1

{q if @ =1 p ifx=1 1-p if6=y=0

B FE i POIX®)=\1 jfo=1and
1q if6=0. 1-p fx=0. o

0  otherwise.
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The objective of the jury ;ncmbcr is to obtain the probability of guilt (6=1) after observing
the evidence (x=y=1) namely that the blood type of the suspect is the same as that of the
stain. That is, the jury member needs to obtain p(6lx,y) evaluated at (8=x=y=1}.

2. PROBABILISTIC INFLUENCE DIAGRAM OPERATIONS

The Bayesian approach to Statistics is based on probability judgements and as such
follows the laws of probability. You are said to be coherent if i) you use probability to
fmeasure your uncertainty about quantities of interest and ii) you do not violate the laws of
probability when stating your measurements (probabilities). Probabilistic influence
diagra;ns (and influence diagrams in general) are helpful in assuring coherence. Clearly,
from coherence, any operation to be performed in a probabilistic influence diagram must

"not violate the laws of probability. The three basic probabilistic influence diagram
operations that we discuss next are based on the addition and product laws. These
operations are: 1) Splitting Nodes, 2) Merging Nodes, and 3) Arc Reversal.

Splitting Nodes

In general a node in a probabilistic influence diagram can denote a vector random
quantity. It is always possible to split such a node into other nodes corresponding to the
elements of the vector random quamity.' To illustrate ideas, suppose that a node
corresponds to a vector of two random quantities, x and y, with joint probability function
p(x,y). From the product law we know that —

' P(x.y) = pR)P(yix) = p(xly)p(y).

Hence, Figure 2.1 presents the 3 possible probabilistic influence diagrams that can be

used in this case showiné the two ways of splitting node (x,y).
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@ |O—O

ply) Fx) piyk) plxly) )

Figure 2.1,
Probabilistic Influence Diagrams for Two Random Quantities

" - The following propenrty is also a direct consequence of the laws of probability and

itis of special interest for statistical applications,

2.1 PROPERTY. Let x be a random quantity represented by a node of a
probabilistic influence diagram and let f(x) be a (deterministic) function of
Xx. Suppose we connect to the original diagram a deterministic node
representing f(x) using a directed arc from x to f(x). Then, the joint
probability distributions for the two diagrams are equal. (See Figure 2.2 for
illustration.) ‘

Proof. Let w and y represent the sets of random quantities that precede and succeed x,
respectively, in a list ordering. Note that p(f(x)Iw,x) = p(f(x)ix) = 1 and consequently
from the product law p(x,f(x)lw) = p(xiw). That is, node x may be replaced by node
(x.f(x)) without changing the joint probability of the graph nodes. Using the splitting
node operation in node (x,f(x)) with x preceding f(x), we obtain the original graph with
the additional deterministic node f(x) and a directed arc from x to f(x). Note also that no

other arc is necessary since f(x) is determined by x and p(ylw.f(x), x) = p(ylw,x).

Plxiw)
GF—D

plw) plyiw,x) pw) plytw,x)

Figure 2.2. Addition of a Deterministic Node
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Merging Nodes

The second probabilistic influence diagram operation is the merging of nodes.
Consider first a probabilistic influence diagram with two nodes, x and y, with a directed
arc from x to'y. The product law states that p(x,y) = p(x)p(y!x). Hence, without
changing the joint probability of x and y, the original diagram can be replaced by a single
node diagram representing the vector (x,y). The first two diagrams of Figure 2.1 in the
reverse order il!ustratc this operation. In general, two nodes, x and y, can be replaced by
a single node, representing the vector (x,y), if there is a list ordering such that x is an
immediate predecessor or successor of y.

It is not always possible to merge two adjacent nodes in a probabilistic influence
diagram. Note that two adjacent nodes may not be neighbors in any list ordering. For
eiamplc, consider the first diagram of Figure 2.3. Note that all pairs of nodes in this
diagram constitute adjacent nodes. '

E)—=n) || i=rls)

Flgure 2.3. Diagram with Adjacent Nodes, w and y,
drapy) not Allowed to Be Merged

-

However, w and y cannot be merged mtoTa nddt reprs, scrmng (w,y). Clearly the only list
ordering here is w<x<y and w and y are not immediate neighbors in this ordering. The
problem here is that to merge w and y we would need an arc from (w,y) to x and another
from x to (w,y). The reason for this is the existence of arcs [w,x] and [x,y] in the
original graph. If we were to have arcs in both directions between (w,y) and x, we
would not obtain, in general, the joint probability function from the diagram since
P(W,x,y) # p(xiw,y)p(w,ylx). Also it can be seen from the first diagram of Figure 2.3
that there exist two paths from w to y. This is the graphical way to see that w and y
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cannot be merged into a single node. To construct a graphical technique to check if two

nodes can be merged, we need the following definition and thcorem.

2.2 DEFINITION. A directed path from node x; to node x; is a chain
lof ordered pairs
(Ixpxp 1 Ixg ox Lesdxe  ox By o,
"k [kl K kt-lxkl] [kz i

corresponding to directed arcs which lead from x; to x;.

2.3 THEOREM. (Merging Nodes Theorem) In a probabilistic influence
diagram, nodes x and y can be merged if either
1) the only directed path between x and y is a directed arc connecting x
and y; or
" 2) there is no directed path connecting x and y.

Proof. To be definite, suppose that x precedes y in an associated list ordering
corresponding to a probabilistic influence diagram. Let wy (wy) be the set of adjacent
predecessors of x (y) but not of y (x) and let w,, be the set of node which are adjacent
predecessors of both x and y. Since there is no directed path from x to y except,
possibly, for a directed arc from x to y, we may add arcs from each node in wy to y and
from each node in wy to x without creating any cycles. This is possible because directed
arcs indicate possible dependence not necessarily strict dependence. We have of course
lost some graph information as a result of these arc additions.

In the associated list ordering of nodes for our modified diagram, the family of
nodes {wy,wy,wyy} precede both x and y. Since there is no other directed path from x 10
y other than possibly a directed arc from x to y, there exists an associated list ordering of
nodes for which x is an immediate predecessor of y in this list ordering. The product

p(xwa,wy.wxy)p(ylx,w,‘,wy.wxy)
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must appear in the representation for the joint probability function for all probabilistic
nodes based on the list ordering. Since
P>y, XIWg, Wy, Wyy) = PxIWg, Wy, Wy )P(YIX, Wy, Wy, Wyy)
by the product 'law, we can merge x and y.
Finally, suppose that there is a directed path from x to y other than a directed arc
from x to y. In this case it is not difficult to see that merging x and y would create a cycle

which is not allowed. ®

The above result is related to arc reversal, an important operation discussed next.

Revexzsing Arcs
The probabilistic influence diagram operation corresponding to Bayes' formula is
"that of arc reversal, Consider the diagram on the left in Figure 2.4. Using the merging
noc'ics operation we obtain the single node diagram in the center where the probability
function of the node (x,y) is obtained from the first diagram as p(x,y) = p(x)p(yix).
Using the splitting nodes operation we can obtain the diagram on the right of Figure 2.4,
Note that to obtain the corresponding probability functions we use

1) the theorem of total probability for p(y) = Z,p(yix)p(x), where Z, is the
sum (or integral) over all possible values of x, and
2) the multiplication law for p(xly) = p(x,y)/p(y) since p(y)p(xly) = p(x,y).

By substituting the appropriate expressions in p(xly) we obtain Ba);es‘ formula. That is,
p(xly) = {p(x)pGyx)} /{ Z,px)plyix)}.
Hence, by using the theorem of total probability and Bayes' formula when

performing an arc reversal operation, we can go directly from the left diagram to the right
~ one in Figure 2.4 without having to consider the one in the center.
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)

P poR) oY) P )

Figure 2.4. Reversing Arc Operation in a Two Node
Probabilistic Influence Diagram

Although the diagrams are different they have the same joint probability function

for node random quantities. This fact is formalized in the following definition.

2.4 DEFINITION. Two probabilistic influence diagrams are said to be
equivalent in probability if they have the same joint probability
function for node random quantities.

Consider the diagram of Figure 2.5 where w,, wy, and wy , are sets of adjacent
predecessors of x and (or) y as indicated by the figure. If arc [x,y] is the only &cmd
path from node x to node y'. we may add arcs [Wy,y] and [wy,x] to the diagram without
introducing any cycles. (See left diagram of Figure 2.6.) Remember that a directed arc
only indicates mb_l_g dependence.

The following result introduces the conditions under which arc reversal operations can be

performed.

2.5 THEOREM. (Reversing Arcs Theorem) Suppose that arc {x,y]
connects nodes x and y in a probabilistic influence diagram. [x.y] can be
reversed to [y,x], without changing the joint probability function of the
diagram if ) :

1) there is no other directed path from x to y,

2) all the adjacent predecessors of x (y), in the original diagram, become
‘also adjacent predecessors of y (x), in the modified diagram, and l

1
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3) the conditional probability functions attached to nodes x and y are also
modified in accord with the laws of probability.

Proof. Let wy ( wy) be the set of adjacent predecessors of x (y) but not of y (x) and
Wy y be the set of adjacent predecessors of both x and y. Since arcs represent possible
dependence, we can add arcs to the diagram in order to make the set (Wx,Wy,Wy y) an
adjacent predecessor of both x and y. Since there is no other directed path connecting x
and y, there is a list ordering such that x is an immediate predecessor of y in the list.
Note also that the elements of the set (wy,Wx,Wy y) are all predecessors of both xand y in
the list ordering. To obtain the joint probability function corresponding to the first
diagram we consider the product, following the list ordering, of all node conditional

probability functions. As a factor of this product we have

P(xlwy, Wy )P(YIX, Wy, Wy ) = PUXIWy, Wy, Wy o IP(YIX, Wy, Wy, Wy ) =
= p(X,ylwy, Wy, Wy y) = p(ylwx,wy,wx.y) P(xly, Wy, Wy, Wy ).

The first equality is due to the fact that x and w, are conditionally independent given
' (Wx,Wy y) and y and wy are conditionally independent given (wy, Wy y). [See Figure 251
The other two equalities follow from the product law.

Replacing p(xiwy,Wy )p(ylx,wy,Wy y) in the product of the conditional probability
functions for the original diagram by p(ylwy, Wy, Wy y)P(xly,Wg,Wy,Wx ) We obtain the
product of the conditional probability functions for the second diagram. This proves that
the joint probability functions of the two diagrams are equal. Finally, we notice that if

there were another directed path from x to y, we would create a cycle by reversing arc
[X.Y]. WhiCh is not aIIOWd. . . 5 -}
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In general, reversing an arc corresponds to applying Bayes' formula and the

theorem of total probability. However, it may also involve the addition of arcs and such

arcs, in some cases represent only pseudo dependencies. In this sense, some relevant
v

information may have been lost after arc reversal.

Figure 2.6. Equivalent Probabilistic Influence Diagrams.
Probability Nodes in the Right Diagram are Obtained
From the Left Diagram by Using Bayes' Formula
and the theorem of total probability.

3. CONDITIONAL INDEPENDENCE

The objective of this section is to study the concept of conditional independence
and introduce its basic properties. We beieve that the simplest and most intuitive way that
this study can be performed is by using all the visual force of the probabilistic diagrams.
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We now introduce the two most common definitions of conditional independence. -

3.1 DEFINITION. (Intuitive) Given random quantities x, y, and z, we
say that y is conditionally independent of x given z if the conditional
distribution of y given (x,z) is equal to the conditional distribution of y

given z.

The interpretation of this concept is that, if z is given, no additional information
about y can be extracted from x. The influence diagram representing this statement is
presented in Figure 3.1

Figure 3.1. Intuitive Definition of
Conditional Independence

3.2 DEFINITION. (Symmetric) Given random quantities x, y, and z,
we say that x and y are conditionally independent given z if the conditional
distribution of (x,y) given z is the product of the conditional distributions
of x given z and thatof y given z.

The interpretation is that, if z is given, x and y share no additional information.

The influence diagram representing this statement is displayed in Figure 3.2.

Figure 3.2, Symmetric Definition of
Conditional Independence
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Using the arc reversal operation, we can easily prove that the probabilistic
influence diagrams in Figures 3.1 and 3.2 are equivalent . Thus, Definitions 3.1 and 3.2
are equivalent, which means that in a specific problem we can use either one. To
represent the conditional independence described by both Figures 3.1 and 3.2 we can-
writc either xlylz or yll xlz. This is a very general notation since X, y, and z are general
random quantities (scalars, vectors, events, etc.). If in place of 1L we use N, then x
and y are said to be strictly dependent given z. We obtain independence (dependence)
and write x1Ly (xNy) if z is an event which occurs with probability one. It is important
to notice that the symbol 1l corresponds to the absence of an arc in a probabilistic
influence diagram. However, the existence of an arc only indicates possible dependence.
Although N is the negation of L1, the "absence of an arc" is included in the "presence of
an arc.”

The following proposition introduces the essence of the DROP/ADD principles for
conditional independence which are briefly discussed in the sequel. :

3.3 PROPOSITION. If xllylz then, for every f=f(x), we
have:

(i) fllylz; and
(i) x Lyl(z,5).

The proof of this property is the sequence of diagrams of Figure 3.3. First note
that (by Property 2.1) to obtain the second diagram from the first we can connect to x a
deterministlic node f using arc [x,f] without changing the joint probability function.
Consequently, by reversing arc [x,f] we obtain the third diagram. To obtain the last
diagram from the third we use the merging nodes operation. Relations i) and ii) of
Proposition 3.3 are represented by the second and the third diagrams of Figure 3.3.I
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Figure 3.3. Proof of Proposition 3.3

As direct consequences of Proposition 3.3 we have:
C1- If g=g(z) then x Ml ylz if and only if x1L(y,g)lz.
C2- Let f=f(x,z) and g=g(y,z). If xllylz then, fllglz and xLLyi(z,f,g).

“The concept of conditional independence gives rise to many questions. Among
them are the ones involving the DROP/ADD principles that we describe next. Suppose
that x, y, z, W, f, and g are random objects such that xilylz, f=f(x) and g=g(z). What
can be said about the relation 1l if f is substituted for x, g for z, (y,w) for y, or (z,w) for
2? In other words, can x, y, and z be reduced or enlarged without destroying the 1l
relation? In general, the answer is no. However, for special kinds of reductions or
enlargements the conditional independence relation is preserved.

First we present two simple examples to show that arbitrary enlargements of x, y,
' or‘z. may destroy the L relation. The forensic science example shows that 8lly but 6X
(x.y) or, in the present notation, considering z a sure event and w=x, 61Lylz but 6K,
(y,w)lz. Consider now that w; and w, are two independent standard normal random
variables; i.e., wy ~ wp ~ N(0,1), and wyllw,. If x= w; — w, and y = w; + Wy, then
xlly but certainly xNy! w,. Note that if z is a constant and w=w;, we conclude that
xllylz but xNyl(z,w).

Secondly, we present an example to show that an arbitrary reduction of z, the
conditioning quantity, can destroy the Il relation. Let wy, w,, and w be three mutually

independent standard normal random quantitit'zs; i.e.,, wyll(wa,w), (wl,v.vz)llw, _

-



Probabilistic Influence Diagrams

woll (wy,w), w w,, willw, wyllw, and wi~ wy~ w ~ N(0,1). Define x=w;-wy+w
and y=w;+w,+w, and note that xllylw but xNy. As before, if z is a constant we can

conclude that xLLyl(z,w) but xKylz.

The destruction of the 1l relation by reducing or enlarging its arguments is known
as. Simpson's paradox (for more details, see Lindley and Novick, 1981). The paradox,
however, is much stronger since highly positively correlated random variables could be
highly negatively correlated after some Drop/Add operations. For inschc. let zand w
be two independent normal random variables with zero means. Define x=z+w and y=z-w
and note that the correlation between x and y is given by correlation(x,y) = (1-r)(14r)’!

| where r is equal to the variance of w divided by the variance of z. Also, if z is given it is
clear that the conditional correlation is -1. In order to make cor(x,y) close to 1 we can
considex-' r arbitrarily small. This shows that we can have cases where x and y are
strongly positive (negative) dependent but, when z is given, x and y turn to be strongly
negative (positive) conditionally dependent. ]

The following is another important property of conditional independence. It is
presented in Dawid (1979).

3.4 PROPOSITION. The following statements are
equivalent;

(i) xllylz and x Ll wi(y,z);

(ii) xll(w,y)lz; and

(iii) xll wiz and xllyl(w,z).

17
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Q50 (&) 039
\ﬂ ey \0

Figure 3.4. Proof of Proposition 3.4,

Figure 3.4 is the proof of Proposition 3.4. Again, only the basic probabilistic
influence diagrams operations are used. The second graph is obtained from the first by
merging nodes w and y. The third graph is obtained from the second by splitting node
(w,y) and the first is obtained from the third by reversing arc [w.y].

The above simple properties are very useful in some statistical applications and
they are related to the concept of sufficient statistic. In the context of comparisons of
experiments a very general concept of sufficiency was introduced by Blackwell (1953).

We next discuss Blackwell's concept of sufficiency using probabilistic influence

diagrams.

. Blackwell Sufficiency

Suppose that we can perform either one of two experiments to learn about a
random quantity 0. In the first experiment, we observe x, knowing p(x10). In the second
experiment, we observe y, knowing p(y!0). If, furthermore, there exists a random
quantity x' such that 61l x'ly and p(x'l8) = p(x18), then we say that y is Blackwell
sufficient for x relative to 0.

In terms of probabilistic influence diagraxgs, we construct two diagrapls, the first
with nodes 0 and x connected by arc {6,x] and the second with three nodes 9, y, and x'
connected by arcs [0,y] and {y,x']. If in the sccof\d diagram, after eliminatihg node y,
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we obtain a diagram having only two nodes, @ and x', equivalent to the first diagram,
then we have Blackwell's concept of sufficiency. See Figure 3.5. In this sense x'is a
"garbling" of y. If we cannot observe both x and y, it is better to observe y and use

p(y!0) to make inferences about 8.

o—0] [0=0—=0] [O—0

Figure 3.5. Blackwell Sufficiency When the
Right and Left diagrams are equivalent

3.5 DEFINITION (Blackwell Sufficiency). A random

quantity, y, is sufficient for a random quantity, x, relative to a
random quantity, 6, if there exists another random quantity, x',
such that

(i) 0llxly and

(i) p(x'8) = p(x18).

To conclude, we present the following example which shows the usefulness of
Blackwell sufficiency in comparing experiments.

3.6 EXAMPLE. Let x and y be two Bernoulli quantities such that, given a parameter
0, Pr{x=118} = 6/2 and Pr(y=116) = 0. Suppose that we want to learn more about the
parameter 6, but we can only observe one of the random quantities x or y, but not both.
The question of which one to observe involves the cost of observation and other
considerations. For the moment let us suppose they have the same cost. If we can prove
that y is Blackwell sufficient for x relative to 8, we must prefer y since it is at least as
good as x for leaming about 8. We now prove that y is in fact Blackwell sufficient for x.
Suppose that we toss a fair coin and record r=1 if we obtain a tail and r=0 if we
obtain a head. - Define now the random quantity x'=yr. Figure 3.6 shows, on thc’ left, a
diagram relating 6, y, r, and x". After eliminating node r we obtain the diagram in the )
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center of Figure 3.6. The right diagram of Figure 3.6 is obtained after the climination of
node y. This last diagram is equivalent to the probabilistic diagram relating x and 0.

Hence, y is Blackwell sufficient for x relative to 6.

O—O—E

o) ber(@  Pr(x'=lly=1)=122 9 ber(0/3
Pr{x=1y=0)=0

Figure 3.6, Proof of Blackwell sufficiency
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