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lntroduction: In this paper we propose an approximation scheme to the solutions of some linear 

PDE, following the scheme proposed in [1] for the integral equation of type (A ) and on general . 

spaces, that, works in the spare of the regulated functions (i.e., functions that have discontinuities 

only of the first kind).

In the first part we repropose the theorems of approximation done in [1] into the context of 

the regulated right-continuous functions, now in the frame of the left-continuous one. Essentially, 

we need the left-continuity here, to he able to transform freely integral equations of the first kind 

into one of the second kind and vice-versa.

In the second part we apply the results of the first part to approximate the solutions of a linear 

0.1).E. on /?-spaces (actually a P.D.E.) and in the third part, we apply another time the results

obtained in the first one, to a delayed PDE.

To develop the arguments in the second part, we will roughly follow Pazy [2] (concerning the 

theory of semigroups), together with a theorem that gives an answer to the following question on 

linear forced PDE: how much one must have to restrict the forcing function, to gets the solution in 

the system kept by the usual variation-of-constant formula, being strong? In this direction we are 

using a llonig result (3] that extends and amplify one bv Travis [•!), connecting semi-variation and 

semigroup.

Finally: the equations whose solutions we arc approximating here, are interesting by themselves, 

and 1 hope it would be a nice reason to do it.

I. The Scheme of Approximation to the integral equation of type (A )

In this section we keep the notations and definitions of (5) and |2): A' is a B-space and for 

n,b E IR. U {+oo.— oo). the set 6'([a,6).A‘) of the regulated functions from [n,6] into A’, is a B- 

space, when endowed with the sup norm (if 6 = oo (or respect.: a = -oo), we define / E C»'([a,6], A') 

satisfying lim fit) = /(-foo) < oo (or respect.: lim fit) = ((-oo) < oo]). The integral equation
I —or* f —-'■O

which we are dealing with is the:

1.(K) •rf,A‘(As)*(.<) = u{t) - »(<r)r(/) - x(n) -f
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where x is regulated and « € ft C G([«,6],x). The integral considered here is the interior (or 

Dushinik type) integral and K £ Gq • 5VrH([a,6], £(A)), with L(X) denoting the usual space of all 

linear and bounded operators on X.

Under quite general conditions (see [5]) the equation (A') has an unique resolvent

R € G°i • SVu([a,6], L{X)) with the solution done by:

/:(d x(l) = u(0 - R{Ua)[u(a) - x(a)] - •d,R{t,3)u(s).

In (1) it was proposed a scheme of approximation to x and u connected by (A') or (p), in the 

case in which they are right-continuous regulated functions. Now we translate the scheme to the 

left-continuous case, and no surprises arise in such translation. We only recall that G~([a,6],A) 

denotes the closed subspace of the left-continuous regulated functions. Moved by the definition of

G-[d,Z,t) = {/ 6 C-([«,t],A-); ||/(0 -Efjxr(0ll < r. 6 Z),

[where Z C Xy and >s the usual characteristic function on the interval (d,_ j, </,], of the partition 

d of [n,6], and < > 0) we locate our analysis on (jn„|,£n) C (rfm_i,dm]-

Theorem 1”. Given Z a bounded subset of X, d 6 D and the operator K in (A"), set for every 

( > 0 and the function x £ G~(d, Z,c) its i-t/i (-approximation (,(1 < » < p).

For every r; > 0, let us consider the correspondent division 6 > d such that rj > wg(Kdi) 

(0 < » < m — 1).

Fixed (6n-i,^n) C (dm_i,rfm], and u(n) £ X, we define the operator At : A'm+I —♦ A*

.....Cm) = «(«) - *(«) + Cm - A'(6„,rfoK|-
m-1

- Y, - c,]
(=1

such that, for all t £ (6n_i,j„] there exists a 7 = 7(e,7j), with

(1) ||u(t) - d((z(a),{i,{2.....MW <

and 7 decreasing faster then (. The value 7 is
m

1(1.0 = ‘0 + SV^m + n-Var^iXT)
i-1
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Theorem 2“. Given R the mapping in (/>), d G Ify,,*), ant/ for c > 0 let be u G G~{dyZ,e) 

with i-th (-approximation r,(l < i < m). For tj > 0 set 6 the partition such that tj > ws(Rdi),

if K ± dm, and for all t G (6»-i,6») C 

(Wm_|,dm], if 6n = 6m in which case we extend the result by continuity to t = Sn, we have for a 

fixed initial x(a) and u(a):

(0 < i < m — 1). Then for all t G (6„_i,^n] C (dm — 11

II*(<)“ fl<(x(«),u(a),r|,...,rm)|| <

< <0 + 5VMm](/?)) + r?(||i(a) - «(a)|| + ^(^/SX,7))
m

(2)
i=l

where

Bt(x(a),ti(n),r|,...,rm) = rm + /2(6„,d0)|x(«) - «(«) + ri]+
m -1

+ ^tf(6„,d|)(r/+, - r/].
/=l

In the next section we will consider the interval [a,6] being the [0, oo) one.

II. The PDE x- Ax \ f

II.1. Let be A the generator of a C°-semigroup (T(f) G L{X)\t > 0} and x,/ G G"([0,6],X). 

Honig in [2], reaches the following result:

Proposition. ([2], Corol. 8). Defining the space Dgt(A) being the set domain of A endowed with

the graph-norm (i.e.: ||x|| = ||x||x + IMzllx» 1 € D{A)), then for every f G G ([0,6], Dgt(A)),

the strong solution (in the sense that the derivative is taken in X) of

x = Ax + /(3) (x(0) = x0)

is done by

z(t) = T(t)z0+ f 
Jo

T(t - s)f{s)ds.(4)

This result is fundamentally due to the fact that the function T : [0,6] -♦ L{Dor{^)>X) is 

absolutely continuous, hence of bounded semivariation, and so we can apply the results of the 

theory of bounded semi variations functions to the theory of the C°-semigroups.
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Using the representation theorem for linear operator on the space G~([0,b],X) (see [5]) we get 

that (4) is equal to

/: d.R(tys)f(s),(5) *W = /(<)+

where

-!> (* 6 X),- o)xda - H(t,s)x + x(6) — A(f,j)x

=1 1 if s t 
0 if s > t o

H(tys)

and 72(t,0) = T(t). This last equality arises when we compare the equations (4) and (5) in the 

homogeneous (i.e., with / = 0) case.

Observe that if / would not be left-continuous at t > 0, we cannot allways separate f(t) from 

the integral term in (5). For look at this, take the example even in the scalar case, for i > 0 small:

1 if b € Qn(f -€,<)
10 if 6 = t
Oin(i-«,0\Qn(i-«,0{/<(*) =

where Q is the set of the rational numbers in IR.

Observe also, that the equality (4) in the context that we are moving on, is the equation 

(p) associated to (A). But, what about the kernel A*? We get K by renormalizing (4) and then 

“solving” R in (p) with an operator resolvent S. Having in mind that the relation among the kernel 

and the resolvent of the (A ) equation is bicontinuous (see (5], Rem. 2, p.13), then K € Gq • SVu 

is exactly the operator S renormalized. However, our main interest is by now to show an example 

in which we get approximations of the solution of a PDE in the form (3) by applying the scheme 

get in the Theorem 2" above.

To do it, we state the:

Proposition 1. Let be R as in (5). Then given d = {d0,d\ rfp} a finite division of [0,6], we get 

for each rj > 0, that the division 6 induced by rj and d in the Theorem 2~, do not depends on s.

,...,

Proof: First of all, we see that for each rj > 0 we have always «>$(//(•,<f,)) = 0, (i > 0), because

S > d.
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To end the proof we take under consideration that for each t|,£j > 0, it’s true:

/" -I"i: T{t\ - a)rU7 - T{t7 - a)dcr T(t)Ht.9

Proposition 2. Suppose the semigroup (T(t))(>o being generated by A. Given rj > 0 and d 6 

then the division S of [0,6] in the Theorem 2~ can be taken as S = dU6“, where the elements of d* 

are recursively done by: Sq = 0 and for n £ IN:

K+, = 4r'"(<^:+“ )l/’l
for computable real numbers ft and M > 1.

If, moreover, (T(t))oo is a contraction C°-semigroup, then we can take 6 as d U 6, where the 

elements 6n(»i > 0) of 6, are 6n = nq.

Proof: Choose some / > 0 such that sup ||7’(f)|| = M < oo. Let be /? > }/n||T(/)||, (i.e.
0<KI

||T(/)|| < c0I). Then using the result of the Proposition 1 above, we end the proof. ■

In the following, we give an example of a linear PDE (actually an O.D.E.) in two different 

kinds of /7-spaces, with the sake of to be more specific in the application of the above results.

II. 2. Example: Suppose n : (n,oo) —► IR a function of class C\ with n(x) > 0 for x > 0 and such 

oo as x -» oo (in the part 11.2.3 below, these condition on the mapping a, as wethat /' n(Od{ —

will see, can be weakened).

du du
(7) -7^{t,x) + a(i)—(t,z) = /(/, x) (< € [0,6), i > 0)dl

with initial condition u(0,x) = 0(x) for x > 0 (where <f> is a given smooth function with 0(0) = 0].

Making V,FZ G~([0,b],X):

(8) U(t)x = u(t,x) and F(t)x = /(t,x),

let us take F € ft C G“([0, oo), X). [We note that we can enclose some controllability particularities 

(e.g. the controls being applied only on the boundary of a region) when choosing such ft]. Then, 

according (8), we can transform (7) into the problem:

( U{t) = ,4[[/(t)] + F{t)
l 1/(0) = 0

(9) (F 6 ft, t > 0)
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applied on x > 0.

Here we have A being the operator

(10) Av = a.v1 (v in the domain of A).

Let us study the problem (9) into two different kinds of X.

II.2.1 - Consider

X - (u : (0, oo) —► IR; v is C° and u(0) = 0; v(x) -*ooas2-* oo}

with the sup norm.

In this case the domain of A, is

D(A) = {u G A';v G C1 and a.v' G A},

and A is the generator of the contraction C°-scmigroup (see (2)).

T(t) = etA(11)

Let us go now to apply the Theorem 2“ in the specific case in which F(0) = 0 

We remember that for each v G A, we have

liin(/--ytr(r+,)® = r(0» (*>0).
r—o T

Fixing a finite division d of (0,oo) and the m elements in A-. 0 = rj,72,...,rm> and keeping 

for each c > 0, tj > 0:

6 = {prj\p = 0,1,2,..., n) U rf,

the result (2) yields: if for all F e G""(|0,oo),D<7rM)) in (9) we have

m m

11^(0 - Er«%'(0llcr = ii^(0(*> - ■ xr(on+sup 
0<*<rf.

+ ||[F(0/(*)|| < €
0<x<dm

i=l «=1
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and for all t G (6n-l,$m) C [dm-udm], we define G A' as:

(*n - do) / <£(<7)<f<7+
JO

- r,){a)da,

(n = + l«n» (/ -
r—«oo

+r1ii" Df- r Jo

(12)

1=1

we get
O'

m—1

IKO - U < ‘(i + SV-|(«)) + KIWI + INI + Dlr'+> - T'll)'(13)
f=J

Observe that we can write the second term of the inequality (13) more explicitly, looking at the

definition of the semivariation of 72:

SV[oM( H) < c,

where c is taken as the constant for which

IM T{dm - a)f{a)da\\ < c||/|| 
Jo

for all step-function / : [0,rfm] —* X.

II.2.2. A' = Lr(IR+),(l <p< oo)

Now we define the domain of the infinitesimal generator A = Ar:

D(AP) = {v : Lp{lR+);v has an absolutely continuous element in its equivalent class, and 

r(0) = 0, and ai/ G />r(IR+)}.

By a well-known application of the Lutner-Phillips theorem for the dissipative operator Av—y 

(with sup af(x) < M < oo) we have an estimate on the norm of T(t) = Tr(J) (t > 0):

I|7p(<MIl,(IV*) < «<“ll^lLr(IV»)(U)

where m = sup a!{x) < oo.

II.2.3. Finally, if we treat the problem by direct integration along the characteristic directions of 

the P.D.E. in the problem (7), (see [6]), it is possible to weaken the conditions on the function a, 

improving the estimates in (14).
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In fact, the function a can have a finite number of zeros on IR+,zj,..mz^ in such a way that 

for every n > /<o = maz{/+,a,(zjf) where A’ = l,...,N) there is M^ < oo such that:

I|7,(0IIl(L,(R+)) ^(15)

. The number Z+ that appears in the definition of po above is: /+ = lim a'(x) for ultimately positive
T—• 4-00

a and Z+ = —oo if a it is ultimately negative.

The estimate (15) is a substancial improvement over the (14) one, and this is reflected in the 

approximation of the solution of (9), when transferring the results of the part 2.1 above, to the Lp

context.

III. The delayed PDE ^u(t,x) = g£yu(t,z) + u(t - r, x) + v(f,x).

Mere we consider r > 0 and the u(-,x) and »(•,*) as regulated left-continuous functions in the

variable t.

Our goal in this part is to approximate the regulated left-continuous solutions of the system in

the La context, for 1 6 [—r, 6), (b > 0), and x 6 [0,jt] and Q € (—r, 0]:

&«(*»*) = xp«(*,*) + «(* - r,r) + v{t,x),
lit G'([-r,0),/,2([0,jr),nt))such that <f>{-r) = 0 and u(0,x) = </W(*), 

, u(-,x) 6flC f?"([-r,5),L2((0,jr))) for every x.
(16)

i
!
I
I If we consider
I

l'(0.V(O:|0,ir]—> IR (* > -r)

defined by

U(t)x = u(/,x) and V(t)x = v(itx),

where

f/€C7-([-r,5],M[0,jr))

and

V€flCC-([-r,6],iJ([0,1r])

then formally we can transform (31) in an integral equation applicable to each x € as the

next result shows:
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Theorem 4. Carrying on the above conditions and notations, we have that (16) is equivalent to

{ U{t) - J*r T(t - s)V(s - r)ds = Jl_r T(t - s)V(s)ds 
l/(-r) = 0(17)

where (T(())t>o is the C°-semigroup generated by the operator A, that is the minimal extension to 

a closed densely defined linear operator in Lj, of the map

d2*
V ----* -^r

dx2

defined for all smooth ♦ which vanishes at 0 and *.

A is a dissipative operator, then (T(<)){>0 is of contraction.

Actually, for all l > 0,T(t) € L(Z,2([0,x])) and T(t)^(i) = £e“nJ<4'n 'sin(nx) where 4is
n=1

the usual hilbertian coefficient of V in the (sine) orthonormal basis of ^2((0,7r)),

oo

♦ V(s)sin(ns)<fo.

Proof: From (17), we have:

(18) 1/(0 =r AU{t) + U(t-r) + V(t)

Defining Un(t) and K,(t) the iisusal hilbertian coefficients of U(l) and V'(t), respectively, in the 

(sine) basis of /^((O,*)), formally processing the derivative, (18) yields, for all n = 1,2,...,

l>(0 = -n7Un(t) + lUt-r)+ V„(t).

Then:

l/„(0«n’' - <A.(-r)e"’r = J‘ ' r)d,+ J en’’Vn(s)d,nUU„(s -

and:

/: T{t - s)V{s)ds.(19) T(t - s)U(s - r)dsV(t)-

For all the properties of (T(<))t>o and A we could have directly calculate the semigroup and 

the duality map of A (that is a very nice application of the divergence theorem), but to follow 

closely the aims of this work we refer the eventual readers to [6] or ((8), Ex. 4). ■
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Corollary 1. (The exact problem which we are defiling with). The equality (19) is equivalent to 

the Integra/ equation of type (A’):

= J‘ d.Z(t,»)V(s)■d.l<(t,,)U(s)(20)

with initial condition:

-L -dtZ(9,s)V(s\m
where for all tys > -r we define:

= | I‘rrT(t->)do ift>s + r 
\ 0 if t < s + r

= f -Jt,T{t-o)do if t > s 
l 0 ift<s

The operators A’, Z belong to Gq • .9Vru([-r,6], Lj([0, ir])).

A•(*.«)

Z(M)

Proof: It follows easily from the representation theorem for linear operators on G"([— r,6],X),X 

being a J?-space, (see [7], Th.1.5.1), and on the fact that K(t, s) = 0 if — r < t < 0, because in this 

case s > t - r for t > 3.m

At this point, fixing the forcing term V in (20) we are able to represent U approximately by 

a step function on L2([0, xj) (in the sense of the Theorem 1") and hence, applying U(t) on each 

i G [0,ir], we are able to represent the approximate solution of the process (16) which we are 

dealing with. This will be done in the following:

Theorem 6. Let be b > 0 and a division d of [—r, 6) with p elements, and with 0 G d and suppose 

Vp in Z/2([0, *]) withthat there exists V\ i •••»

J-r .=1

for a fixed p > 0 on d (\~ is the usual characteristic function on the intervals (di_i,di], 1 < r <

p, of d).

Then there exist a division dh of |-r, b] with dK > d and a computable step function G on 

the intervals generating by dK in such a way that G solves (20) and G can be kept so close toU as 

wanted.
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Proof: Let be the division of |-r,6]

dK = <-r = rf''.rf''... d'; = o.rfj;,,. ...<£ = M

containing the points of {/r;/ € IN) 0(0,6), and for a given r; > 0 the points of the division 

6 IN} O (0,6) ordered by the usual order in IR.

Define for all i, 1 < i < q,Ui = Vj, on each interval ,(/,•] and set Ujy for each interval 

< j < «o, as the following.

To reach our aim we drop the proof in three essential cases depending on the relative position 

of A j = (dj-i,d>] and Aj+i = (dj,rfj+i). The analysis of the general case will be a straightforward 

extension of these three:

(1st case): Aj,Aj+j C (0,r) and the approximation to F(t) is constant (say Va) in (6j_i,6j+j), 

(2nd easel: Aj, AJ+j C (0, r) and the approximations to F(t) in Aj and Aj+| are different (respec­

tively Vn and Vn+i),

(3rd easel: Aj,Aj+i C (r,2r) and the approximation to F[f.) is Vn in (6j_i,6j+j).

Let us denote now the elements , of dh for which dJ> < dl> - r,(i G IN).

We define (following the theorem 1“ above):

v>
V, = v, + v„ + Mrff, </*■>-, + /'■(<. 4' )[V|+

/=!
(21) ~ V|).

Then we ran see that:

(in the 1st ease): ||(/>+l - (/,|| < ||[A(rfi+,,r/J) - A(rf'\rff'))V,|l+

+ DllM<+,.''/')]■ (l/l+.-U)ll+ 
/=1 
Pj + »

/=r,+i

(22)

where the symbol (~) denotes the formal statement in the second part of the inequality, and 

(in the 2nd easel:

lic/j+i - Uj\\ < ||K*+i - va\\ + (~)(23)
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and

fin the 3rd cage):

lltfi+1 - Will < (~)(24)

Remembering that for every U 6 L*([Offf]) and b > a, and c > 0:

j\(b-a)U da)b =T{b + c — a)U dr -

T(r)U dr||3 < c\\U\\7,

where the last inequality follows for (T(f))(>0 is of contraction, then (22) - (24), respectively, yields:

ii^+i-Vjii<n(r.ii + Divwi-viii) 
i=i

Pj+i

+ E il + (4+i-'-<'ff)Hiviii = (A)
/=Pi+i

ll^+l-t/ill<rn+1-V;|| + (A)

(25)

(note that <f£+| < 0),

(note that a > g).(26)

(note that in this case pj > q).Pj+i - Uj\\ < (A) :(27)

Then we can see by means of (25) - (27) that it is possible to compute a step function U :

|-r,6] —» jL2((0,7t]) namely:

9+m0
(on dh)m = E w.-xr(0

«=i

in such a way, that, for every 6 > 0:

W(<) + f d.K(t,*)U{s) = G(t) 

has a solution U{t), satisfying for all t € (rfj_|,rff) C (—r,0):

(b>t>-r)

U{1) = G{t) = Un

and for all t 6 (d%_x,d%] C (0,6], the following statement: if ||l/(t) - £/n|| <€,(<> 0), then

7+m0

l|G(t)- E Vixr(0ll < (* + f)« + A(i7,V,....V,.).
1=7+1
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So, for t E (—r, 6] we keep:

IRQ - F(Q|| < 6 + {b + r)c + A(ij, K,,..., Vr.)

where A(r/) -» 0 as rj -> 0, and F{t) = Jlr dtZ(t,s)V(s).

In particular if one wants, f/(t) can be taken as:

tf(0 = 0*
i=i

Note that this theorem assures us the possibility in to keep a result in the sinthesys of a system 

of the (A') type what is not so easy (see (1], 3.).
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