

CIC
energigUNE
MEMBER OF BASQUE RESEARCH
& TECHNOLOGY ALLIANCE

10th GERMN biennial NMR meeting

9th IberoAmerican NMR meeting

7th Iberian NMR meeting

26 to 29 April 2021

<https://germn2021.navus.io/>

Structure of NaREPSiO (RE = Sc, Y) Glass-Ceramics probed by Solid-State NMR

I.D.A. Silva,¹; A.M. Nieto-Munoz²; A.C.M. Rodrigues²; H. Eckert^{1,3}

¹São Carlos Institute of Physics, USP, São Carlos, Brazil

²Laboratory of Vitreous Materials, DEMA, UFSCar, São Carlos, Brazil

³Institut für Physicalische Chemie, WWU, Münster, Germany

e-mail: i.danciaes@gmail.com

The design of Na-ion all-solid-state batteries requires the optimization of materials to be used as solid electrolytes. Fast ion-conducting glass-ceramics are suitable for this purpose since they present the features of both glass phase and fast ion-conducting crystallites[1]. Glass-ceramics based on superionic crystalline $\text{Na}_5\text{RESi}_4\text{O}_{12}$ (N5, RE = Sc, Y) can be produced by controlled crystallization of sodium silicate glasses with specific compositions [2] and can reach ionic conductivities up to 0.1 S/cm [3]. Their compositions and properties can be isostructurally modified by Si \rightarrow P substitution. Precursor glasses of compositions $\text{Na}_{3.9}\text{RE}_{0.6}\text{P}_{0.3}\text{Si}_{2.7}\text{O}_9$ (NREPS) and $\text{Na}_{4.2}\text{RE}_{0.6}\text{Si}_3\text{O}_9$ (NRES), (RE = Sc, Y), were synthesized by the melting-quenching technique, and glass-ceramics were prepared according to the crystallization temperatures found by DSC. X-ray diffraction pattern of the glass-ceramics showed that the N5 crystal structure was found for NScS and NScPS glass-ceramics annealed at 905 and 925 °C, respectively. Multinuclear (^{29}Si , ^{23}Na , ^{31}P and ^{45}Sc) MAS NMR was used to monitor the conversion of the glassy precursor phase into the multi-phase glass ceramics at different stages of thermal annealing, confirming the successful substitution of $(\text{SiO}_4)^{4-}$ by $(\text{PO}_4)^{3-}$ ions in the N5 structure.

[1] H. Eckert, A. C. M. Rodrigues. *MRS Bulletin* **42**, (2017) 206;

[2] K. Yamashita, T. Nojuri, T. Umegaki, T. Kanazawa. *Solid State Ionics* **35**, (1989) 189;

[3] T. Okura, H. Monma, K. Yamashita. *J. Electroceram.* **24**, (2010) 83.