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Abstract

In supervised learning, training and test datasets are often sampled from distinct distributions. Domain adaptation tech-
niques are thus required. Covariate shift adaptation yields good generalization performance when domains differ only by
the marginal distribution of features. Covariate shift adaptation is usually implemented using importance weighting, which
may fail, according to common wisdom, due to small effective sample sizes (ESS). Previous research argues this scenario
is more common in high-dimensional settings. However, how effective sample size, dimensionality, and model perfor-
mance/generalization are formally related in supervised learning, considering the context of covariate shift adaptation, is
still somewhat obscure in the literature. Thus, a main challenge is presenting a unified theory connecting those points.
Hence, in this paper, we focus on building a unified view connecting the ESS, data dimensionality, and generalization in
the context of covariate shift adaptation. Moreover, we also demonstrate how dimensionality reduction or feature selection
can increase the ESS and argue that our results support dimensionality reduction before covariate shift adaptation as a good
practice.

Keywords Covariate shift adaptation - Effective sample size - High-dimensional data - Dimensionality reduction

1 Introduction test/target distribution Py,. Features are sampled from
different marginals Qy # Px while labels are sampled

A fundamental assumption in supervised statistical learn- according to the same conditional distribution Qyx = Pyjy.

ing is that the data used to train our models and the data we
want to make predictions for are sampled from the same
distribution. Usually, real-world machine leaning applica-
tions, explicitly or implicitly, rely on this assumption’.
However, that assumption is violated when there is
covariate shift [7, 8]. In this scenario, we have a train-
ing/source joint distribution Qy, which differs from the
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In the training phase, labeled pairs {(x;,y;)};_, are iden-
tically and independently sampled from Qy,, while unla-
beled vectors {x}};_, are identically and independently
sampled from Py. If the marginal distributions of features
have density functions px and ¢, such that
support(py) C support(gyx), the most common approach to
adapt a model for the target distribution is to employ an
empirical error weighted by w(x) = px(x)/gx(x) [7-11].
The weighting scheme may fail when the effective
sample sizes (ESS) are small. According to common wis-
dom, a small ESS hurts model’s performance in the target
distribution. As previous research argues, e.g., [12], that
kind of scenario is common when working with high-di-
mensional data. However, to the best of our knowledge,
there is no unified and rigorous view on how the three key
concepts (i) effective sample size (ESS), (ii) data dimen-
sionality, and (iii) generalization of supervised models

! See, for example, [1-6].
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under covariate shift are connected to each other. In this
paper, we present a unified theory connecting the three
concepts. Moreover, we also explore how dimensionality
reduction or feature selection can increase the effective
sample size.

This paper is organized as follows. In Sect. 2, we dis-
cuss previous results and explain our contribution to the
debate. In Sect. 3, we briefly review importance weighting
and introduce a new connection between effective sample
size and generalization in the context of covariate shift
adaptation. In Sect. 4, we introduce dimensionality to the
problem showing how it connects to the other two concepts
and then illustrate these connections with a toy experiment.
Finally, in Sect. 5, we show how dimensionality reduction
and feature selection can lead to a larger effective sample
size. We conclude our discussion with real-data experi-
ments that supports feature selection before covariate shift
adaptation as a good practice.

2 Related work

There is a rich literature on the problem of covariate shift
adaptation® or related subjects. The main interest has been
to develop methods to estimate the density ratio
w [9, 11, 13-15]. Some of the proposed methods aim to
reliably estimate w in high-dimensional and unstable set-
tings [14, 15], when the more traditional approaches may
fail. However, according to the common wisdom of the
area, even if we could perfectly estimate w, we would still
have to deal with poor performance due to small effective
sample sizes (ESS), especially in high-dimensional set-
tings. Understanding the role of small ESS and possible
ways to attenuate it may, therefore, be productive. The
covariate shift adaptation literature has already tried to
articulate the relationships between ESS and generalization
in high-dimensional settings, also proposing dimensional-
ity reduction as a cure. In spite of that, we believe these
previous attempts fail in connecting these concepts in a
unified manner and as explicitly as we propose to do in this
paper.

In recent years, [16] proposed a regularization method
that controls the ESS and offers sharper generalization
bounds while correcting for covariate shift. However, the
authors do not explore how the number of features plays an
essential role. Another work that explores the concept of
ESS in the context of covariate shift adaptation is [17]. In
that work, the authors present the relationship between ESS
and generalization bounds in a transductive learning sce-
nario. Besides transductive learning not being as common
as inductive learning in practice, the authors also do not

2 See [8] for a general view.
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explore how dimensionality plays an essential role in the
problem.

The idea of features dimensionality being related to ESS
is explored in [12], without formalizing the connection to
generalization. The authors also motivate how dimension-
ality reduction can make ESS bigger; however, the central
hypothesis adopted in this case is that dimensionality
reduction does not depend on the data, which, in most
cases, is not valid. In a more recent paper, [18] proposes a
dimensionality reduction method to make covariate shift
adaptation feasible, especially when estimating weights.
The authors show how the number of features is indirectly
related to transductive generalization bounds and effective
sample size when the correction is made by Kernel Mean
Matching [9]. In addition to the results being restricted to a
particular case, the authors implicitly assume that the
mapping that defines dimensionality reduction is given
beforehand and does not depend on the training data, what
is not realistic.

In this paper, we complement previous works by for-
mally articulating the relationship among ESS, general-
ization of predictive models in the inductive scenario, and
dimensionality as explicitly as possible. We present a
unified theory connecting the three concepts, which was
not observed by us in the literature. We also show that
dimensionality reduction, even considering that the map-
ping may depend on the data, mitigates low ESS by making
the source and target domains less divergent.

3 Effective sample size (ESS)
and generalization in covariate shift
adaptation

3.1 Importance weighting

To keep our discussion as self-contained as possible, we
first use this subsection to quickly summarize key points
behind importance weighting.

Given a hypothesis class H and a loss function L, our
goal is finding a hypothesis #* € H that minimizes the risk
R assessed in the target distribution Pyy using data from
source distribution Qxy. From now on we assume: (i)
Qyx = Pyix and Qx # Px; (ii) distributions Py and Qy have
probability density functions (p.d.f.s) px and gx such that
support(py) C support(gy). Then, the risk can be written in
terms of the source distribution:

R(h) = Exp, Eyx[L(h(x),y)] (1)

— [P Bl v @)
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= [EXNQX [Ey\x[w(x) . L(h(X), }’)] (3)

We would like to find a hypothesis 2ERM € H that mini-
mizes a weighted version of the empirical risk while also
obtaining a low value for R. Assume we have an estimate w
for the “true” weighting function w = py/¢x and that we
have pairs {(x;,y;)};_, that are identically and indepen-
dently (i.i.d.) sampled from Qy,. The weighted empirical
risk is thus given by

N 1< .

Ralh) == > w(xi) - L(h(x:),3,) )
i=1

In practice, we might also want to add a regularization term

Q(h) to penalize for the complexity of the hypothesis .

3.2 Relationship of effective sample size (ESS)
and generalization in covariate shift
adaptation

To introduce the concept of effective sample size in the
context of covariate shift adaptation, we first describe how
this heuristic is employed within the importance sampling
literature [19-21], where it originally comes from. We
assume the “true” importance function (density ratio) is
known up to a constant. This assumption enables us to
achieve some theoretical results and is also adopted in
previous works [12, 22, 23]. The strategy we use to show
the relevance of the effective sample size in covariate shift
adaptation is to find an asymptotic approximation for that
quantity and then connect it to a known generalization
bound.

The ESS formulation we use is slightly different from
the most usual one [19-21] in the sense we are concerned
with percentage of effective samples and not with the
number of effective samples’. Given the two definitions are
not very different, the intuitions and some results regarding
ESS are easily adaptable. We present our definition in the
following.

Consider two probability distributions P, and Q, over
Z C RY with probability density functions p, and g, such
that support(p,) C support(g,). From now on, we call P,
the target distribution and Q, the source distribution. We
thus sample from Q, in order to estimate the integral

|z 8(@)p.(z)dz = Zfljggg(z)qz(z)dz, with ¢g: Z — R inte-
grable. A key quantity in this problem is the importance
function, which is given by w x p;/q,.

Suppose we have an independent and identically dis-
tributed (i.i.d.) sample {z;}/_, from the source distribution
0, and we want to use the (self—normalized4) importance

3 In the literature, it is common to present the ESS as n - I:{.—S'En, while
we are concerned only with ES‘E,, (Equation 5).

sampling estimator n~' >, w;g(2;) in order to estimate
the integral of interest. The weights are given by
wi=w;/ > wj,  where  w; =w(z;) X py(2:)/q.(2:),
i € [n]:={l1,....,n}. Then, the effective sample size is
defined as

n E"}—l Wy ®)
= Elzzi?lwvfz ©

Intuitively, the effective sample size is the percentage of
effective samples. For example, if the effective sample size
equals 1/2, then the importance sampling estimator effec-
tiveness is the same of a Monte Carlo estimator with n/2
samples. That formulation can be used to approximate, via
Delta Method, the ratio of Monte Carlo estimators’ vari-
ance and the self-normalized importance sampling esti-
mator’ variance, using the derivation made by [24]. While
that work motivates the use of the ESS, other approaches
can be derived from [20] and [21]. The latter presents the
relationship between effective sample size and the eucli-
dean distance between the vector (wy,...,w,) and the
”ideal” balanced vector (1/n, ..., 1/n). Furthermore, effec-
tive sample size informs about the importance sampling
estimator’s convergence rate [25]. Said that, the results
presented in this section, in the context of covariate shift
adaptation, resembles the results presented by [25] in a
different context.

To move forward, we introduce the concept of Rényi
Divergence, which plays a central role in our analysis:

E/ﬁn(Pza Qz) =

Definition 1 (Rényi Divergence [26]) Consider two
probability distributions Py and Qx over X C Rd, with
probability density functions py and ¢y such that
support(px) C support(gyx). The Rényi Divergence of order
o > 1 of Py from Qy is given by:

[ -

Consequently, the Rényi Divergence of order 2 of Py from
Oy is given by Ds(Px[|Qx) = log Exp,[20]].

1
Da((PX”QX) = ﬁlo

Despite all previous work, the question of how we
should transpose the effective sample size concept to the
covariate shift adaptation framework remains. In the fol-
lowing, we make explicit the close relationship between
the ESS and generalization bounds under covariate shift

* We show the case of the self-normalized estimator because it
returns the most usual definition for the ESS, which is also used in the
context of covariate shift [16]. In spite of that, we show that this
definition for the ESS is still useful for the non-normalized case while
performing covariate shift adaptation.

@ Springer
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adaptation. As we start talking about covariate shift adap-
tation, we substitute z by a vector of features x, the set Z
by X or X x ) and the function g by the loss function L.
Before we move on, we must establish that the effective

sample size ES’EH(PX,QX) converges almost surely to the
quantity ESS*(Py, Qx), which plays a central role in our
analysis. ESS*(Px,Qx) can be considered a population
version for the effective sample size. From now on, we
may call it by population effective sample size or only
effective sample size, when it is not ambiguous.

Theorem 1 Consider two probability distributions Py and
Oy over X C RY, with probability density functions px and
gx such that support(py) C support(gy). Suppose we have a
random sample {x;}_,, identically and independently
sampled from the distribution Qx, and we define

w; = w(x;) < px(X)/qx(X;). Assume that
0<Ex~g, [W(X)z} < 00. Then,

ESS,(Py, Q) = ESS'(Pr, Os) (8)
where

ESS"(Px, Qx) := exp[—Da(Px||Qx)] 9)

The quantity D, (Px||Qx) is the Rényi Divergence of order
2 of Py from Qy [26].

The proof can be found in the “Appendix”. The last
theorem can be seen as a variation of some of the results
presented by Agapiou et al. [25]. While the authors focus
on related but different divergences, we choose to present
this result in terms of the Rényi Divergence because, in that
way, we can connect it to other results in the literature.
Furthermore, it is essential to state that similar results hold
for other effective sample size definitions as, for example,
the one used by [12] divided by n, to give the percentage of
effective samples considering the non normalized weights
for covariate shift adaptation.

It is fascinating how Rényi Divergence naturally emer-
ges when working with the effective sample size. It is a
crucial point to understand that, when calculating the
effective sample size, we are approximating a quantity
inversely proportional to the exponential of Rényi Diver-
gence of order 2 of Py from QOx.

Now we focus on the understanding of how effective
sample size relates to generalization of adapted supervised
models. For Theorem 2, consider some conditions. Let X
denote the input space, ) the label set, and let L : V-
[0,1] be a bounded loss function. Denote the target dis-
tribution of features by Px and the source distribution of
features by Qx, such that Py is dominated by Q. Consider
‘H to be the hypothesis class used by the learning algorithm
and f : X — ) to be the labeling function we want to learn

@ Springer

about. We denote by Pdim(U) the pseudo-dimension’ of a
real-valued function class U [27]. Pdim is used here to
quantify the complexity of a hypothesis class through the
loss function. Finally, R is the risk assessed in the target
distribution P, and R, is the weighted empirical error
calculated using the true weighting function (density ratio)
and samples {x;}"_,, identically and independently sam-
pled from the source distribution Q.

Theorem 2 (Adapted from [22]) Define the function
Ly(x) := L[h(x),f(x)] and let H be a hypothesis set such
that ~ Pdim({L,:h € H}) =p<oo.  Assume  that
ESS*(Px, Ox) = exp|—D1(Px||Ox)], D2(Px||Ox) <oo, and
the target/source density ratio w > 0. Then, for any
0 € (0,1), with probability at least 1 — 8, we have that:

sup[R(h) — R, (h)] < (10)
heM

5 2-en 4 3
- 21 . p-logT—i-logg 8 (1)
~ \/ESS*(Py, Ox) n

See [22] for the proof and replace D, by ESS* to get this
version of the theorem.

It is clear from Theorem 2 that ESS*(Px,Qx) plays a
fundamental role when learning f from data. A larger
ESS*(Px,Qx) leads to a tighter generalization bound.

Consequently, if ES’E,, (Pyx, Ox) is a good approximation for
ESS*(Px, Ox), the rationale behind using effective sample
size as a heuristic for diagnosis of covariate shift adaptation
becomes clearer. To conclude, we should mention that [23]
shows a similar result to Theorem 2 with less assumptions,
namely, assuming the existence of a labeling function f and
that w > 0. However, we chose the form provided by [22],
as it gives us a more straightforward expression without
losing the property that is key to our approach, to say, that
a larger ESS*(Px,Qx) leads to a sharper generalization
bound.

4 The role of dimensionality

In Sect. 3, we showed the effective sample size’s role in
the context of covariate shift adaptation exploring its
asymptotic relationship with generalization bounds. How-
ever, we still need to understand the role that dimension-
ality plays during covariate shift adaptation. In Theorem 3,
we demonstrate that the Rényi Divergence of source and
target distributions does not decrease with the number of
features, and, consequently, the population effective

> A pseudo-dimension is an extension of VC Dimension for real-
valued classes of functions.
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sample size does not increase with the number of features,
which explains potential adaptation problems for high-di-
mensional data.

Theorem 3  Given two joint probability distributions Py, x,
(target) and Oxi % (source) over X C RY,
D;(Px, x,||0x, x,) <00, with joint probability density func-

tions Dxi x; and qx; x;» such that
support(px, x,) C support(gy, x, ), we have that

DZ(le,Xz| Qx,,xz)ZD2(Px|||Qx1) (12)
And, consequently,

ESS"(Px,, Ox) > ESS" (Px x,, Oxi x.) (13)

The proof can be found in the “Appendix”. This theo-
rem can be seen as a particular case of the Data Processing
Inequality [26].

Combining the results of Theorems 2 and 3, we con-
clude that performing covariate shift adaptation with many
features may not be feasible, as we would potentially have
loose generalization bounds.

Note that Theorem 3 does not necessarily say that by
reducing dimensions or selecting the most relevant fea-
tures, we will have a bigger effective sample size.
Reducing dimensions or selecting features is a random
process that depends on data, and we have ignored this fact
so far. In Sect. 5, we consider the randomness of the
dimensionality reduction or feature selection step to prove
that we can increase the effective sample size by following
these procedures before conducting covariate shift
adaptation.

4.1 A toy experiment

In this section, we present a toy experiment in order to
illustrate the relationship between effective sample size,
Rényi divergence, dimensionality, and performance of
supervised methods.

Assume there are two joint distributions of features and
labels P, and Q with densities p; and g, being the case that
Q describes the source/training population and that P;
describes the target/test population. Moreover, we assume
that we are facing the classical covariate shift problem, that
is, pi(ylx) = q(ylx) = p(ylx) but p;(x) # g(x), plus the
fact that we cannot sample the labels from the test popu-
lation.  Finally, consider g(x) = N (x]0,1;) and
p.(x) =N(x|i-1,1,), for 2 #0, with d indicating the
number of dimensions. Suppose p(y|x) = N (y[100 - x;, 1),
that is, y depends on x only through its first coordinate x;.

Firstly, we calculate D,(P;||Q) and ESS*(P;,Q) as
functions of d and then simulate how the predictive power

of a decision tree regressor deteriorates as d increases and
ESS*(P,, Q) decreases. We train the trees by minimizing
the empirical error weighted by the true weighting function
w in the training set, also imposing a minimum of 10
samples per leaf as a regularization strategy. We choose to
work with decision trees since they are fast to train and
robust against irrelevant features. Thus, it is reasonable to
expect that a great part of performance deterioration is not
due to noisy features but because of small ESSs.

The first step to calculate ESS*(P;, Q) and D, (P,||Q) is
to calculate exp[D(P;||Q)]:

explDx(P410)] = Ever. |22 (14)

_ EXNPZ{eXp[—%(X—/lll)T(X— 11)]} is)
exp[—1xx|

e O

= exp(d/?) (17)

The last equality is true since exp(A Zle Xj) ~
LogNormal(d/?,d2*). Then, D,(P;||Q) =d)* and
ESS*(P;, Q) = exp(—d?).

Figure 1 depicts the behavior of Rényi Divergence and
ESS*(P,, Q) as functions of d. We also vary the value for
/. Given that D,(P,||Q) only depends on |/| and not on
sign(4), we consider the case where 4 > 0. When || is
bigger, the divergence between the source and target dis-
tributions also increases. Finally, to check how large d
affects performance of a regressor, we, for each d, (i)
sample 50 training and test sets of size 109, (ii) train the
trees on the training set minimizing the weighted empirical
error and (iii) assess the regressors on the test sets. The
third plot of Fig. 1 represents the average root-mean-square
test error (£ standard deviation). Clearly the regressor
deteriorates as the divergence between domains grows and
the ESS decreases.

5 The use of dimensionality reduction/
feature selection to make effective sample
size bigger

In this section, we present dimensionality reduction and
feature selection as ways to obtain a bigger effective
sample size. The two main results of this section are given
by Theorems 4 and 5. We show that linear dimensionality
reduction and feature selection, under some conditions,
decrease Rényi divergence between the target and source
probability distributions, leading to a bigger effective
sample size. This result accounts for the dimensionality

@ Springer
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Fig. 1 (i) We plot the Rényi Divergence of the target distribution P,
from the source distribution Q as a function of the number of features.
Both distributions are normal with the same covariance matrix but

located V' dA? units apart from each other, i.e., the divergence also
depends on |/|; (ii) We plot the ESS*(P,, Q) as a function of d and

reduction or feature selection’s randomness; that is, the
transformation can depend on data in some specific ways.

To arrive at our main results, we first show the inter-
mediate result given by Lemma 1. In the following result,
A represents a constant dimensionality reduction matrix
and the vector b represents a translation in data before
dimensionality reduction, which is common when per-
forming principal components analysis (PCA) [28], for
example. When there is no need for considering a trans-
lation, we just can adopt b = 0. Also, A can represent a
feature selector, as we explain in the coming paragraphs.

Lemma 1 Consider (i) two absolutely continuous random
vectors X ~ Qyx and x' ~ Py of size d > 2, D,(Px||0x) <0,
(it) a nonrandom constant vector b € R, and (iii) a non-
random constant matrix A € RY*? with rank d' (and
d <d). Suppose Qx and Px measure events in X C R4,
d>?2, and have probability density functions gx and px,
such that support(px) C support(gx). Also, assume A(Xx —
b) ~ QA(xfb) and A(X’ — b) ~ PA(xfb)~ Then,

D> (Px||Qx) > D2(Pa(x—b)||Qa(x-b))
And, consequently,

ESS™ (P (x—b)> Qa(x—b)) = ESS" (Px, Ox)

(18)

(19)

The proof can be found in the “Appendix”. Like The-
orem 3, this result can be seen as a particular case of the
Data Processing Inequality [26].

Although Lemma 1 gives us a way out in cases which
the dimensionality reduction is not random, this case is not
realistic. We know that, in practice, A and b are obtained
using data.

In the next results, linear dimensionality reduction and
feature selection are represented by the random matrix A.
If we assume in advance that A is absolutely continuous,
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Dimensions (d)

also varying 1. As expected, ESS*(P;, Q) exponentially decays in d as
long as the divergence is linearly related with d; (iii) in 50 simulations
for each pair (4,d), we observe how decision trees’ performances
deteriorate as the divergence between domains grows and the ESS
decreases

then it represents an ordinary dimensionality reduction
matrix. On the other hand, if A is composed of zeros except
for a single entry in each of its columns, which is given by
one, then it represents a feature selector. Also, we can
consider a random data translator b instead of the deter-
ministic b.

Theorem 4 (Linear dimensionality reduction) Firstly,
consider the training random samples of absolutely con-
tinuous vectors {X;}?_, Y Ox and an absolutely continuous
random vector from target domain x' ~ Py. Assume Qy and
Py measure events in X C IRd, d > 2, and have probability
density  functions  gx and  px, that
support(py) C support(gy). Also, that
D, (Px||Qx) <o0. Secondly, consider an absolutely contin-

such
assume

uous random vector b € R? and an absolutely continuous
random matrix A € R¥*?, rank(A) = d', jointly distributed
according to the p.d.f. pya, such that (b,A),x;, and X' are
pairwise independent, for every i € [n]. Assume that d' <d.
Suppose A(X; —b) ~ Oax_n) and A(X' —b) ~Px_p), for
every i € [n], then

D> (Px||Qx) > D2 (Pa(x-—b)||Qax-1)) (20)
And, consequently,
ESS” (PA(be)7 QA(xfb)) > ESS” (Px; Qx) (21)

The proof can be found in the “Appendix”.

Theorem 4 tells us that a dimensionality reduction
procedure before performing covariate shift adaptation
increases the population effective sample size. It is
important to state that Theorem 4 also holds when dis-
considering b and the proof’s adaptation is straightforward.
In that case, we would have that D,(Px||Ox)
> DZ(PAX”QAX) and ESS*(PAX) QAX) > ESS*(PX7 Qx)
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Next, in Theorem 5, we state a result regarding feature
selection.

Theorem 5 (Feature selection)Firstly, consider the
training random samples of absolutely continuous vectors

{x:}, % 0y and an absolutely continuous random vector
from target domain X' ~ Py. Assume Qy and Py measure
events in X C [Rd, d>?2, and have probability density
functions gx and py, such that support(py) C support(gy).
Also, assume that D, (Px||Qx) <oo. Secondly, consider a
discrete random matrix A € R**?, that represents a fea-
ture selector with rank(A) = d', distributed according to
the probability mass function (p.m.f.) pa, such that A,x;,
and X' are pairwise independent, for every i € [n]. Assume
that d' <d. Suppose Ax;~ Qax and AX' ~ Pax, for every
i € [n], then

DZ(PXHQX) ZDZ(PAX”QAX) (22)
And, consequently,

ESS* (PAX7 QAX) Z ESS* (PX) QX) (23)

The proof can be found in the “Appendix”.

Theorems 4 and 5 hold when the data used to obtain A
and b do not depend on training data that will be used to
train the supervised models or data points that represent the
target domain we want to make generalizations for. That
does not mean we cannot use some portion of the dataset to
obtain A and b, but it only means the results are not valid
for those specific used data points, being from source or
target domains.

Before closing this section, it is worth mentioning three
points. Firstly, at the same time dimensionality reduction/
feature selection solve the problem of low effective sample
sizes, it might impose other problems. For example, when
performing principal components analysis (PCA) [28] for
dimensionality reduction, it is not guaranteed the method
will not discard useful information for the supervised task.
Also, it is not even possible to ensure the covariate shift
main assumption, that the conditional distribution of the
labels are the same in source and target domains, still
holds. In this direction, [18] offers a clever solution to
overcome these specific problems, applying sufficient
dimension reduction (SDR), which is a supervised method,
to reduce dimensions. Secondly, given that A and b are
random quantities®, {A(x; —b)}"_, or {Ax;}!_, may not
form independent samples, when
x; L (A,b),Vi € [n], and {x;}\_, %0y I samples are not
independent, then the results presented in Sect. 3 might not
hold. Finally, it is true that the results presented in this

cven

S This is not true when A and b are fixed.

section can be extended to include more general dimen-
sionality reduction transformations, i.e., nonlinear trans-
formations, and the validity of other transformations might
be proven using the Data Processing Inequality [26].
Unfortunately, exploring the two last points is beyond the
scope of the present paper and might be treated in future
work.

6 Numerical experiments with real data

In this section, we present regression and classification
experiments in which we perform feature selection before
covariate shift adaptation. When designing the experi-
ments, we choose to work with the least possible number of
assumptions, searching for evidence that the theoretical
results presented so far can be extended to more general
cases, which will be treated in future work. Namely, we did
not assume (i) the true importance function is always
known, (ii) that training data are independent of the feature
selector, and (iii) that training data are formed with inde-
pendent data points after the feature selection procedure.
For the following experiments, 10 regression datasets
with no missing values were selected’. Each experiment
consisted of (i) introducing covariate shift®, (ii) estimating
the weights, (iii) correcting the shift by the importance
weighting method, and finally (iv) assessing the perfor-
mance of the predictors and the effective sample size. We
also studied the classification case by binarizing the target
variables using their medians as a threshold. We use the
same datasets for both regression and -classification
experiments to make comparisons easier. For each one of
the 10 datasets, we repeated the following preprocessing
steps: (i) we kept up to 8000 data points per dataset’, (ii)
generated new features using independent standard Gaus-
sian noise and (iii) standardized each column in every
dataset. By augmenting the dataset to 32 features using
noise, we can explore a scenario in which performance
deterioration is mainly due to small effective sample sizes.
We give more details on this point in the next paragraph.
The following procedure is used to create divergent
training and test sets after the preprocessing steps. For each
of the datasets, we sampled a sequence of vectors uni-

formly from [—1,1]?. We projected the data points onto the

subspace generated by each vector, resulting in only one

feature xlg ) per sample i for each subspace/simulation j. For

7 From www.dcc.fc.up.pt/ ~ Itorgo/Regression/DataSets.html  and
https://archive.ics.uci.edu/ml/datasets.php.

8 Similarly to previous research, e.g., [9, 12, 16, 18].

% The datasets “Abalone,” “Delta Ailerons,” and “Wine Quality”
had 4177, 7129, and 6497 data points, respectively. All the others
were undersampled to have 8000 data points.
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each in>, we
sij = O([x¥ — median(xV))]/g;), which is the probability
that the data point i from simulation j is in the training set.
According to that score, we randomly allocated each data
point in either the training or test set in simulation j. The
constant ¢; was adjusted until the empirical effective
sample size, as defined in Sect. 3, is less than 0.01. Fol-
lowing this procedure, the training and test sets are
approximately of the same sizes in each simulation j. Then,
we fit two decision trees for each of the training/test sets:
one in the training set and one in a subset of the test set.
Then, we tested both decision trees in the unused portion of
the test set and compared their performance according to
the mean squared error for regression and classification
error (1 - accuracy) for classification. We selected the 75
simulations'® in which decision trees trained in the test sets
did best, relatively to the training set trees. We chose
decisiontrees because they are fast to train and robust
against irrelevant features. Thus, the noisy features added
in the datasets are not likely to directly affect predictive
power but only by making the effective sample size
smaller. It is important to state that, during the whole
experimenting phase, decisions trees were twofold cross-
validated in order to choose the minimum number of
samples per leaf'".

For the feature selection step, we were inspired by [18]
and the idea of Sufficient Dimension Reduction [29], which
is a supervised approach to dimensionality reduction and
feature selection, contrasting to Principal Component
Analysis, for example. Supervised approaches to dimen-
sionality reduction and feature selection are preferable
since we are able to keep important information for a
supervised task performed afterwards. Using training data,
we apply a combination of the methods described by
[30, 31] and the Forward Selection algorithm [32]. The
approach uses gaussian mixture models (GMMs) to esti-
mate, using the whole training set, the mutual information
between a subset of features and the target variable. In this
case, the number of GMMSs’ components are chosen evenly
splitting the training data and performing a simple holdout
set hyperparameter tuning phase'”. After training the
GMMs, the procedure follows these steps: we start by
choosing the feature that has the largest estimated mutual
information with the target variable, and, at each subse-
quent step, we select the feature that marginally maximizes
the estimated mutual information of target variable and
selected features. We repeat the process until we reach a

calculated the score

1% From the total of 7200 simulations.

"' More details on hyperparameter tuning can be found in the
“Appendix”.

'2 More details on hyperparameter tuning can be found in the
“Appendix”.
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stop criteria. Our stopping criteria is that we should stop
selecting features when the marginal improvement in the
empirical mutual information is less than 1% relative to the
last level or when we select the first 15 features. An
implementation of the feature selection method is available
in the Python package InfoSelect".

To estimate the weighting function for covariate shift
adaptation, we use the probabilistic classification approach
[8, 33] with a logistic regression model combined with a
quadratic polynomial expansion of the original features.
We choose to work with this approach since it is simple
and fast to implement, besides being promising for high-
dimensional settings. Others approaches are possible
though [8]. In order to prepare the data for training the
logistic regression model, we first append the whole
training set and randomly select rows (80%) from the test
set, and create the artificial labels for both groups. Then,
we randomly/evenly split that dataset in order to choose the
best value for the /1 regularization hyperparameter of the
logistic regression, using the simple holdout validation
approach'®. After getting the optimal values for the
hyperparameter, we train a final model using the whole
appended dataset.

In the experiments, we work with four training scenar-
10s. In the first one, we use the whole set of features and no
weighting method. In the second one, we use the entire set
of features and importance weighting combined with the
“true” weights (1 — s;)/s;. In the third, we use the whole
set of features and estimated weights using the probabilistic
classification approach. In the fourth scenario, we use only
selected features and estimated weights using the proba-
bilistic classification approach. Comparing the four sce-
narios enables us to see how importance weighting may fail
in high-dimensional settings due to low ESS, even when
we know the “true” weighting function.

Table 1 shows, for each one of the employed datasets,
(i) the original number of features, (ii) the augmented
number of features, (iii) the average number (£ standard
deviation) of selected features for the regression and (iv)
classification experiments.

In Fig. 2, one can see the distribution of effective
sample sizes in all the weighted approaches, calculated in
the entire set of experiments. It is possible to notice how
small the ESSs can be by adopting the pure weighting
strategy. The feature selection step allows bigger ESSs.

In Table 2, we see the average test errors (% standard
deviation). To compute the errors, we use the test set
portion (20%) not used to train the importance function.

13 See https://github.com/felipemaiapolo/infoselect or https:/pypi.
org/project/infoselect/.

' More details on hyperparameter tuning can be found in the
“Appendix”
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Table 1 Average Numbers of

features (& standard deviation) - Dataset Original Augmented Selected (Reg.) Selected (Class.)

in this table we compare the Abalone 7 32 4194126 9.87 + 5.64

numbers of original, augmented .

and selected features for Ailerons 40 40 5.16 £0.54 3.79 £ 0.64

regression (reg.) and Bank32nh 32 32 10.00 £ 1.82 13.91 £0.61

classification (class.) tasks Cal housing 8 32 5.29+1.29 7.45 +£4.92
CPU act 21 32 9.88 +1.20 2.56 £0.72
Delta ailerons 5 32 3.16 +£0.49 3.75+0.63
Elevators 18 32 797 £ 1.11 13.08 £2.16
Fried delve 10 32 4.45 +0.50 5.00 £+ 0.00
Puma32H 32 32 1.88 £0.32 14.00 & 0.00
Wine quality 11 32 9.60 £ 1.02 14.00 £ 0.00

It is possible to note that, on average, we select small subsets of features, even smaller than the original sets

Iy
o
|

o
©
)

o
o
|

o
>
L

o
N
)

Effective Sample Size (%)

= 1

Estimated weights
(All features)

0.0. ———————

Estimated weights
(Selected features)

True weights
(All features)

Fig. 2 Effective Sample Size distributions across all experiments.
Notice higher ESSs can be achieved by a prior feature selection stage

The errors reported are the mean squared error and clas-
sification error relative to the first scenario. From Table 2,
it is noticeable that our feature selection approach and
posterior weighting systematically outperforms all the
other benchmarks, especially the pure weighting method
when the whole set of features is used. Even the bench-
marks that used true weights are often beaten by large
margins. That suggests that poor models’ perfor-
mances are mainly due to small effective sample sizes
instead of difficulties estimating the weighting function.

Through our experiments, we were able to verify that
the feature selection stage tends to increase the effective
sample size, consequently allowing better performance of
supervised methods.

7 Conclusion
In this paper, we have made two main contributions. The

first is that we explicitly and formally connected three key
concepts in the context of covariate shift adaptation:

(i) effective sample size, (ii) dimensionality of data, and
(iii) generalization of a supervised model. Since, to the best
of our knowledge, there is no unified and rigorous view on
how the three key concepts connect to each other, we
consider this to be the first contribution of the paper. The
second contribution of the paper is that we show dimen-
sionality reduction or feature selection, even considering
data dependent mappings, corrects small effective sample
sizes by making the source and target distributions less
divergent. This suggests that it is a good practice to per-
form dimensionality reduction or feature selection before
covariate adaptation. We also present numerical experi-
ments using real and artificial data to complement our
theoretical results.

Regarding possible future research paths and improve-
ments, we point to Sects. 3 and 5. Concerning Sect. 3,
perhaps the three most relevant points to be considered for
future research relate to the following assumptions: the first
one is assuming the importance function is known up to a
constant, the second is assuming the sample ESS is close to
its population version, and the third is assuming indepen-
dent samples. While the first hardly applies in practice, the
second may hold in many situations, and the third could be
relaxed to include dependent samples, thus solving one of
the problems discussed in Sect. 5. Considering Sect. 5, we
think there is one main point to be explored in future work,
which is extending the theorems to include more general
transformations, i.e., nonlinear or training data dependent
transformations. Said that, future work and improvements
could focus on relaxing assumptions.

8 Computing infrastructure
All the experiments were carried out using a Google Cloud

Platform’s (GCP) Virtual Machine with 96 vCPUs and 86.4
GB of memory. All the experiments took around 4 h to run.
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Table 2 Average Test Errors (£
std. deviation) - here we

All features

Selected features

compared the predictive Dataset Unweighted  True weights  Estimated weights  Estimated weights
performance of decision trees in
the test set of 75 different Regression Abalone 1.00 1.42+0.24 1.25+0.19 0.92 +0.07
lsllmulic‘tlonz for each d%tﬂset(;)we Ailerons 1.00 1014013 0.99+0.11 0.87 +0.11
ave four basic scenarios: (i
whole set of features and no Bank32nh 1.00 1.29+0.14 1.20+0.11 0.98 +0.06
weighting method; (ii) whole set Cal housing 1.00 1.50 £ 0.24 1.354+0.20 0.84 +0.09
of features and use of “true® CPU act 1.00 0.52 £ 0.55 0.55 £ 0.59 0.15+0.21
weights; (iii) whole set of Delta ailerons  1.00 1394018 125+0.12 0.92 +0.06
features and estimated weights;
(iv) selected features and Elevators 1.00 1.10 £ 0.15 1.05+0.13 0.85+0.15
estimated weights Fried delve 1.00 1.60 +0.22 1.40 £ 0.15 0.90 +0.11
Puma32H 1.00 224+ 1.18 1.454+0.22 1.77+£2.42
Wine quality 1.00 1.31+0.12 1.24 +0.11 0.97 +0.04
Classification ~ Abalone 1.00 1.29 +£0.19 1.22+0.16 1.05 £0.15
Ailerons 1.00 1.03 £0.27 1.01 £0.20 0.86 £ 0.13
Bank32nh 1.00 1.25+0.13 1.20+£0.13 1.00 +0.09
Cal housing 1.00 143 +£0.23 1.36 £ 0.19 0.87 + 0.14
CPU act 1.00 1.09 £ 0.16 1.06 £ 0.16 0.99 +0.15
Delta ailerons  1.00 1.38 £ 0.40 1.254+0.31 0.84 +0.12
Elevators 1.00 1.07 £0.15 1.04 +£0.14 0.89 +0.13
Fried delve 1.00 1.34 +£0.22 1.224+0.18 0.85+0.09
Puma32H 1.00 1.73 £0.59 1.22+£0.18 1.10+0.42
Wine quality  1.00 1.20£0.13 1.13£0.10 1.07 £0.10

The numbers reported are the mean squared error and classification error averages and their std. deviations.
All the results were normalized w.r.t. the first scenario

Appendix
Proofs and derivations

Proof of Theorem 1

Proof Assume the hypothesis stated are valid. Being ¢ # 0 a real
constant, see we can re-wright the ESS as follows:

2

n 17X(xi)

. o w) [She b
ESSn(vaQx) - nznl ) = 2
=1 n Z?:l |:C ' I;Ei’)}

<

v px)]?
|:;Zi:l gx(x;

B 1N | px(xi

P )

Then, by the Strong Law of Large Numbers and almost-
sure convergence properties [34], we verify that

f
—_

[ M
8]
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px(x)

2
IEXNQX |: i|
a.s. gx(x)
Ox)———57

[

px(x)

the proof, we state the following

[Ex’\’Qx |:

x<x)] 2
gx(x)

1

-7 whenn — oo. To complete
9x(x) :|

1

[Ex~Qx{(

x(x)

= ESS*(Px, Ox)

Proof of Theorem 3

Proof Assume the hypothesis are valid and let d(Py, x,|

qx(x)

exp[D2(Px, x,||Ox, x,)]- See that:

mﬂ | )

QX|>X2) =
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_ pxl,xz(xlax2)
d2(Px, %, |0x ) = Ep, , {m]

—Ep [le (Xl) Ep [szxl (X2|X1)”
E XZ‘XI qu‘X] (X2|Xl)

' dZ(sz\xl ||QX2\X1 ):|

: |:le (X]):| — d2
' gx (Xl )
The inequality is obtained by the fact that the exponential

of the Rényi Divergence must be greater or equal to one.
To complete the proof, see that ESS*(Py, x,,Oxx,) =

d2(le.,XzHQx|,Xz)7
ESS* (le ) Qx]) Z ESS* (le,xzv Qxl,xz)

(PX1HQX1)

I Therefore,

Proof of Lemma 1

Proof If d = d’, the result is direct, considering the arguments used
by Qiao and Minematsu [35] to prove their Theorem 1, because A
represents an invertible linear (and differentiable) transformation.

2} € R4 where

B e R4 Given that C is full rank, it represents an invertible
linear (and differentiable) transformation. If C(x—b)=
!

{gg _ Ib)ﬂ ~Qc(x-p) and C(x' — b) = [gE:I _ Il;” ~ Pc(x—p), then
by the arguments used by Qiao and Minematsu [35] to prove'” their
Theorem 1 we have that D;(Py||Qx) = D2(Pcx—p)||Qc(x—p))- Dis-
carding B(x — b) and B(x' —b) from random vectors C(x — b) and
C(x' — b), by Theorem 3, we have that

Dy (Px||Ox) > D2(Pa(x—5)||Qa(x-5))

Therefore,

Otherwise, consider a full rank matrix C = [

ESS* (Pa(x—b), Qa(x—b)) = exp|[—D2(Pax—t)||Qax-p))]
> eXP[—Dz(PxHQx)] = ESS"(Px, Ox)

Proof of Theorem 4

Proof Firstly, we define v:=A(Xx;—b)~Qy=Qxxp and
u:=A(X' —b) ~ Py = Pax_n), for an arbitrary i € [n]. Let gy and
pu be probability density functions associated with distributions Qy

'S Even though D, is not an f-divergence, the thoughts presented by
Qiao and Minematsu [35] in their proof can readily be applied in this
case. Furthermore, we can write D, (Px||Qx) = log(*(Px||Ox) + 1),
where »? is a f-divergence [36]. This is an another reason on why this
is valid.

and P,. From Lemma 1, we know that D (Pyb_pa—a||Ovib—ba—a)

<Dy (Py||Ox), Vb € RY, VA € R¥*? such that rank(4) = d’. That
statement implies the following:

D5 (Pyjb—p a=4]|Ovp=b a—a) < D2 (Px||Ox)
= exp D2 (Pyp—b.a-al|Ovp—sa—sa) < expDy(Px||Ox)
= Ep,, [exp D2 (Pupal|Qvpa)] < exp D2 (Py||Ox)

Pupa(ulb,A
:>/Pb,A(b7A)/Pu|b,A(u|b7A) s (ulb A)

—— " ~dudbdA
Gyp.a(ulb,A)
< expDZ(PxHQx)

= /Pu|b,A (u|b7A)pb’A(b’A)Z::igz:z:i; Elb) j;
dudbdA < exp D, (Px||Ox)

= D;(Pupal|Ovba) < Da(Px||Ox)

= D (Pax—b)||Qax-1)) = D2(Py||Ov)

< D> (PupallQvpa) <Da(Px||Ox)

The last step is due to Theorem 3 (extending to random
matrices). To complete the proof, we state the following:

ESS* (Pa(x—b)s Qa(x—b)) = exp[—D2(Pax—1)||Qax-))]
> exp[—Dz(PxHQx)} = ESS*(Py, Ox)

Proof of Theorem 5

Proof Firstly, we define v :i= Ax; ~ Qy = Oax and
u:= AX ~ P, = Pay, for an arbitrary i € [n]. Let gy and p, be
probability density functions associated with distributions Qy and Py,.
From Lemma 1, we know that D, (PU‘A:AHQV‘A:A) < D,(Px||0Ox),

VA € R¥*? such that rank(4) = d'.
following:
D5 (Pyja—al|Ova—a) < Da(Px||0x)
= exp D2 (Pyja—al|Qvia—a) < exp D2 (Py||Ox)
= [EpA [eXPDz (Pu\AHQV\A)] < CXPD2(PxHQx)

> Yo [ puA(uA)%du < exp Da(Py]104)

Puja(u|A) pa(A)
= 3 [ pastutipn) T
< exp Dy (Px||Qx) = D2 (Pual|Ovia) < Da2(Px||Ox)
= Dy(Pax||Qax) = D2(Pul|Qy) <Dy (P A)
SDZ(PXHQX)

That statement implies the

Given the matrix A represents a feature selector, it can only
assume a finite number of values. Thus, the sum is given
over a finite number of values of A. The last step is due to
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the Theorem 3 (extending to random matrices). To com-
plete the proof, we state the following:

ESS*(PAm QAX) = exp[_D2(PAx||QAx)]
Z exp[fDZ(PxHQx)} = ESS*(ny Qx)

Experiments

In the experiments section, we tune three hyperparameters:
(1) 11 regularization parameter used to train the logistic
regression model when estimating w, (ii) the minimum
number of samples per leaf in each regression/classification
tree, and (iii) number of GMM components. We use the
Scikit-Learn [37] implementations to train the logistic
regressions, regression/classification trees and GMMs.
Firstly, we choose the /1 logistic regression regularization
parameter C from values in [107%, 5], in order to minimize
the log loss in a holdout dataset. Secondly, we choose the
minimum number of samples per leaf in each regres-
sion/classification tree from values in the list
(5, 15, 25, 40, 50), in order to minimize the mean squared
error or classification error within a twofold cross-valida-
tion procedure. Finally, we maximize the log-likelihood in
a holdout dataset to choose the number of GMM compo-
nents, varying the possible number of components within
the list (1, 3, 5, 7, 9, 11, 13, 15).
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