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Abstract. We consider fully nonlinear uniformly elliptic cooperative systems with quadratic
growth in the gradient, such as

—F;(z,u;, Du;, Dzui) — (M;(x) Du;, Du;) = Acip(x)ug + - -+ + Aein (2)up + hi(z),

for i = 1,---,n, in a bounded C! domain Q C R with Dirichlet boundary conditions; here
n>1, A€ER, ¢j, hy € L®(Q), ¢;j > 0, M; satisfies 0 < p1 ] < M; < pol, and Fj is an uniformly
elliptic Isaacs operator.

We obtain uniform a priori bounds for systems, under a weak coupling hypothesis that seems
to be optimal. As an application, we also establish existence and multiplicity results for these
systems, including a branch of solutions which is new even in the scalar case.
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1 Introduction

In this paper we study the following system of fully nonlinear uniformly elliptic equations

—Fy(x, Dug, D*u;) — (M;(x)Du;, Du;) = )\Zcij(:z:)uj + hi(x)  in (Py)
j=1 A

up=--=u, = 0 on 0f2

where  is a bounded C*! domain in RY, A € R, n, N > 1, ¢;;,h; € L®(Q), and M; is a
bounded nondegenerate matrix. Scalar product is denoted with (:,-). We assume ¢;; > 0 in
), which means that the system is noncoercive and cooperative when A > 0. The latter is a
parameter which measures the size of the zero order matrix C = (¢;5)7;_4-

A very particular case, for which our results are new as well, is when each Fj is the Lapla-
cian; F; can also be a linear operator in nondivergence form Fj(z, Du, D?u) = tr(A;(x)D?u) +
(bi(z), Du), or it can even have a fully nonlinear structure as an Isaacs operator. We note that
nondivergence fully nonlinear equations with natural growth are particularly relevant for applica-
tions, since problems with such growth in the gradient are abundant in control and game theory,
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and more recently in mean-field problems, where Hamilton-Jacobi-Bellman and Isaacs operators
appear as infinitesimal generators of the underlying stochastic processes. We refer to Section 2
of [9] for more on applications of this type of systems.

It is notable that the two terms in the left-hand side of (Py) have the same scaling with
respect to dilations, so the second order term is not dominating when we zoom into a given
point. This type of gradient dependence is usually named “natural” in the literature, and is the
object of extensive study. Another important property of (Py) is the invariance of this class of
systems with respect to diffeomorphic changes of variable, in x or w.

We start with a brief review of the literature for scalar equations (n = 1). It is known that
the sign of \ dramatically influences the solvability and properties of the solution set of (P)). For
the so-called strictly coercive case Ac(x) << 0, existence and uniqueness when F' is in divergence
form goes back to the works [4, 5, 7, 8, 17]. However, in the case of weakly coercive equations
(say, A = 0) existence and uniqueness can be proved only under a smallness assumption on ¢ and
M, as was first observed in [14]. These works use the weak integral formulation of the equation.

The third author showed in [26] that the same type of existence and uniqueness results
can be proved for general coercive equations in nondivergence form, by using techniques based
on the maximum principle. In that paper it was also observed, for the first time and with a
rather specific example with the Laplacian, that the solution set can be very different in the
“noncoercive" case Ac > 0, and in particular more than one solution may appear. It was also
conjectured in that paper that a refined analysis should be doable in order to embrace more
general structures.

In the last few years appeared several papers which unveil the complex nature of the solution
set for noncoercive equations, in the particular case of the Laplacian — see |2, 13, 16, 29]. In all
these works the crucial a priori bounds for u in the L°-norm rely on the fact that the second
order operator is the Laplacian, or a divergence form operator.

In [21] we obtained similar results for general operators in nondivergence form, by using
different techniques adapted to such operators. In particular, the conjectures in [26] for non-
coercive equations were established through a new method of obtaining a priori bounds in the
uniform norm. The method is based on some standard estimates from regularity theory, such as
half-Harnack inequalities, and their recent boundary extensions in [25], in addition to a Vazquez
strong maximum principle; see also |28] for an extensive description of the method.

However, up to our knowledge, nothing was known about systems with natural gradient
growth. This is what this work is devoted to, complement and extend the results in [21] to
the context of systems of the form (P)). We develop a machinery to obtain the crucial a priori
bounds for the system (P,) via a nondegeneracy hypothesis on the matrix C(x) that seems
to be optimal. In combination with these estimates we also exploit a Fredholm theory for
fully nonlinear operators with unbounded weight, which turns out to be an important tool in
investigating existence and multiplicity of solutions.

It is worth noting that general systems as (Py) do not have variational characterization even
if the second order operators F; are in divergence form, such as the Laplacian; so variational
methods do not apply to such systems.

The paper is organized as follows. The next section contains the statements of our results.
In the preliminary section 3 we recall some known results that will be used throughout the text.
Section 4 is devoted to the proofs of the a priori bounds in the uniform norm for solutions of
the noncoercive problem (Py). In Section 5 we sketch the proof of our existence and multiplicity
results, which resemble to the scalar case [21] after some appropriate changes. Section 6, in turn,
consists of a multiplicity result which is new even for single equations in nondivergence form,
see Theorem 6.2. It is based on a version of the anti-maximum principle, proven in section 7
together with some tools involving eigenvalues.



2 Main Results

We assume that the matrices M; satisfy the nondegeneracy condition
prl < Mi(x) < pel ae. in (M)

for some pg, g2 > 0, and that F; in (Py) has the following structure
{Fi(x,O,X) is continuous in x € Q, (SC)

for a.e. x € Q, where b > 0 and M~, M™ are the Pucci extremal operators (see the next
section) with constants 0 < Ap < Ap. For simplicity, the reader may think that each Fjlu] =
F;(z, Du, D?u) is in one of the following forms

tr(A;(x)D?u) + (b;(z), Du)  or MfPAP(DZu) + b;(x)|Dul (2.1)

where A; are continuous matrices whose spectrum is in [Ap,Ap], and b; are bounded vector
functions. Only at the expense of trivial technicalities we can consider more general operators
as in [21], with zero order terms, and coefficients b;, ¢;;, h; belonging to LP, p > N. We prefer to
avoid such technicalities here, in order to concentrate on what is new due to the presence of a
system rather than a scalar equation.

Solutions of the Dirichlet problem (P)) are understood in the LP-viscosity sense (see Defini-
tion 3.1 below) and belong to C(Q), so are bounded. We also use the notion of strong solutions,
which are functions in Wif(Q) satisfying the equation almost everywhere. Strong solutions are
viscosity solutions, [19]. Conversely, it follows from the regularity results in [22] that, if the oper-
ator F; has property (Hz) below, then viscosity solutions are strong. Hypothesis (SC') guarantees
that the LP-viscosity solutions of (Py) have global Ch* regularity and estimates, by [22].

We denote Flu] := (Fi[ui], -+, Fplun]), w = (u1, - ,un), f=(f1,--, fn), fix p> N, and
consider the Dirichlet problem

—Flul=f(z) inQ, u=0 on . (2.2)
The model operators in (2.1) have the following properties.

For each f € LP(Q)", there exists a unique LP-viscosity solution of (2.2). (Hy)

For each f € LP(Q)", any solution u of (2.2) belongs to W2P(Q)". (Ho)

More generally, operators satisfying (SC) and convex/concave in the Hessian matrix satisfy
(H1)—(H2), by [11, 22, 30]. We stress that (Hz) above implies (H2) from [21] in the scalar case,
by the proof of the W?2P regularity in [22].

Since we want to study the way the nature of the solution set changes when we go from
negative to positive zero order term (i.e. from A < 0 to A > 0), we will naturally assume that
the problem with A = 0 has a solution.

The problem (Pp) has a strong solution ug = (uf,--- ,u0). (Hyp)

»r'n

Theorem 1(ii) of [26] ensures (Hy) for instance if poh; has small LP-norm for each i (notice
that (Pp) is a system of n uncoupled equations, hence Theorem 1 of [26] applies to each of these
equations separately). Examples showing that in general this hypothesis cannot be removed are
also found there. The function wg is the unique LP-viscosity solution of (Fy), by Theorem 1(iii)
of [26].

We use the following order in the space E := C*(Q)".
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Definition 2.1. Let u = (uy, - ,up), v = (v1,--- ,v,) € E. We denote u < v in Q to mean
w; < v in foralli=1,--- ,n. Also, we say that uw < v if, for all i € {1,...,n}, u; < v; in Q,
and for any xo € O we have either u;(zg) < vi(xo), or ui(zo) = vi(xo) and O, u;(xo) < dyvi(xo),
where U is the interior unit normal to 0S).

We also write u < C' (> C) to mean u; < C (respectively, > C) for anyi=1,--- ,n.

As in any study of systems of equations, it is essential to determine the coupling of the
system, that is, the way each of the equations influences each of the components of the vector u.
A fully coupled system is one which cannot be split into two subsystems such that one of which
does not depend on the other. In our context, (Py) would be fully coupled if the matrix C is
irreducible, in the sense that for each nonempty I,J C {1,...,n}, INJ =0, TUJ ={1,...,n}
there exist i € I, j € J, such that ¢;;(z) 2 0 in Q.

Every matrix C = (c;j);;_; can be written in the block triangular form

!

C(x) = (Cu(®)) k=1, (2.3)
where 1 < n/ < n, Cy are t;, x t; matrices, Zzl:l tr = n, Cp 18 irreducible for each k =1,...,n/,
and Cp; = 0 in Q, for all k,1 € {1,...,n'} with k& < [. This is easy to achieve by renumbering
lines and columns of C, that is, by changing the order of the equations in (P)) and renumbering
the components of . Indeed, if C is irreducible, we can take n’ = 1, C11 = C; if not, there are two
subsets I, J as in the previous paragraph, and we renumber so that I = {1,...k} with k& = |I|,
then repeat the same until reaching (2.3). See Section 4.2 below, and Section 8 in [9].

From now on we assume that C in (P)) is in the form (2.3). We will say that v < v in some
block if there exists some k € {1,...,n'} such that ¥ < ¥ in Q, where for any w € R"™ we denote
with w the vector (ws, 41, ,ws,), and sop =0, s = Zle t;.

The additional assumption that we need to impose, which extends and plays the role of
hypothesis ¢ 2 0 from the scalar case, is the following.

In (2.3), there is no 1 x 1 block with a zero coefficient, i.e. if tx = 1 then Cy # 0. (Hs)

This hypothesis seems to be optimal for our kind of systems, see Remark 4.3. To our knowledge,
this is the first time such a hypothesis appears in the study of elliptic systems.

We now state our results. The first theorem is a uniform estimate for solutions of (P)), which
is both important in itself and instrumental for the existence statements below.

Theorem 2.2. Suppose (M), (SC), (Hs) hold. Let A1,Ay with 0 < Ay < Az. Then every
LP-viscosity solution (u1,...,u,) of (Py\) salisfies

lluill o, < C, forall X\ € [A1,A9],i=1,...,n,

where C' depends onn, N, p, ju1, pi2, diam(), A1, Ag, [[b]| oo, ll€ijll o 5 1Pilloos Aps Ap, and on a lower
bound on the measure of the sets where the c;; are positive, for those i,j which determine the
irreducibility of the blocks in the form (2.3).

The next theorems describe the solution set of (Py).

Theorem 2.3. Assume (M), (SC), (Hy), (Hy), and (Hs).

1. Then, for A <0, the problem (P\) has an LP-viscosity solution uy that converges to ugy in
E as A\ — 07. Moreover, the set ¥ = { (A, u) € R x E; u solves (Py) } possesses an unbounded
component CT C [0, 4+o00] x E such that CT™ N ({0} x E) = {up}.

2. This component is such that: either it bifurcates from infinity to the right of the azis A =0

with the corresponding solutions having a positive part blowing up to infinity in C(2) as A — 0T
or its projection on the X azis is [0, +00).



Figure 1: Illustration of Theorem 2.4.

3. There exists A € (0,+00] such that, for every A € (0, \), the problem (Py) has at least two
LP-viscosity solutions, uy1 and uy 2, satisfying uy1 — ug in E; maxguyo — +00 as A — 0t;
and if A < 400, the problem (P5) has at least one LP-viscosity solution. The latter is unique if
F(z,p, X) is convez in (p, X).

4. If (Hs) holds, the solutions uy for A < 0 are unique among LP-viscosity solutions;
whereas the solutions from 3. for A > 0 are ordered in some block. If in addition the system is
Jully coupled, uy 1 < uyz2 in the sense of definition 2.1, for all A > 0.

In the next two theorems, we show that it is possible to obtain a more precise description
of the set X, provided we know the sign of wg. For this, we need to extend the hypothesis
c(x)ug #Z 0 from the scalar case to the context of the system. The following assumption is a
natural requirement in view of our weak coupling hypothesis (H3s).

(Cug); # 0 for at least one i € Sy = {sg_1 + 1,...,sx}, for all k € {1,...,n'}, (Hy)

where sg = 0, s, = Zle t;, with ¢; and n’ coming from (2.3).

Notice that hypothesis (Hy) is consistent with the results obtained for single equations in
nondivergence form in [21]. In the particular case n’ = 1, namely if the system is fully coupled,
we recover the assumption C(z)ug # 0, as a vector.

Theorem 2.4. Suppose (M), (SC), (Ho), (H1), (H2), (H3), (Hs), and ug < 0.

Then every nonpositive solution of (Py\) with X\ > 0 satisfies u < wug. Furthermore, for
every A > 0, the problem (P\) has at least two nontrivial strong solutions uy1 < uy 2, such that
Uny,1 K Un1 K up if 0 < A < Ag, and uy1 — ug in E; maxguyz — +00 as A— 0t If
F(x,p, X) is conver in (p, X) then maxg uy2 > 0 for all A > 0.

Theorem 2.5. Suppose (M), (SC), (Hy), (H1), (H2), (Hs), (Hy), and uy > 0.

Then every nonnegative solution of (Py) with A > 0 satisfies u > ug. Moreover, there exists
A1 € (0,+00) such that for every X € (0, A1), the problem (Py) has at least two nontrivial strong
solutions with uy1 < uy2, where ug < uy, 1 K Uy, if 0 < Ay < A2, up1 — up in E, and
maxguy2 — +00 as A — 0%. The problem (Py,) has at least one nonnegative strong solution,
which is unique if F is convez in (p, X); and for X > A1, the problem (Py) has no nonnegative
solulion.

Furthermore, there exists some 6 > 0 such that, if sup; pal|hi| r(q) < 0, with h 2 0, then we
have the existence of Ao > A1 such that (Py) has at least two strong solutions for X > Ao, with
ux1 < 0 Q and minguy o < 0. The problem (P;Q) has at least one nonpositive strong solution,
which is unique if F' is convez in (p, X); and for X < Aa, the problem (Py) has no nonpositive
solution.



Figure 2: Illustration of Theorem 2.5 for poh = 0 small in LP-norm.

Moreover, as in item 4 of Theorem 2.3, in theorems 2.4 and 2.5 the solutions wuy 1, uy2 are
ordered in at least one block; and uy 1 < wy 2 in the sense of definition 2.1, for all A > 0 if (Py)
is fully coupled, see Claim 5.7.

We remark that the hypotheses ug < 0, resp ug > 0, of the above theorems are implied for
instance by h < 0, resp h > 0. See Remark 6.25 of [21] for a proof.

We stress that theorems 2.2-2.5 are new even for systems involving the Laplacian operator.
Moreover, the second part in Theorem 2.5 is new even for a single equation, in the context of
nondivergence form operators.

3 Preliminaries

In this section we briefly recall some definitions and previous results which we use in the sequel.
More comments can be found in the preliminary section of [21].
Let F; (z,p,X) : Q x RY x S¥ — R be a measurable function satisfying (SC), where

MH(X) = tr(AX), M (X):= inf tr(AX
()=, Jup G(AX), MU=t e(AX)

are the Pucci’s extremal operators with constants 0 < Ap < Ap. See, for example, [10] for their
properties. Also, denote £*[u] := M*(D?u) + b|Dul, for b > 0.

Definition 3.1. Let f € L (Q)". We say that u € C(Q) is an LP-viscosity subsolution
(respectively, supersolution) of the system Flu] = f(z) in Q if, for each i € {1,--- ,n}, whenever
¢ € VVi’f(Q), e >0 and O C Q open are such that

Fi(z,ui(x), Dé(z), D*¢(x)) — filx) < —e (Fi(z,ui(z), D(x), D*¢(x)) — fi(x) > €)
for a.e. x € O, then u; — ¢ cannot have a local mazimum (minimum) in O.

If both F; and f; are continuous in x, for all i = 1,--- ,n, we can use the more usual notion
of C-viscosity sub and supersolutions — see [12].

On the other side, a strong sub or supersolution belongs to VVlif(Q) and satisfies the in-
equality at almost every point. As we already mentioned, this is intrinsically connected to the
notion of LP-viscosity solution; more precisely we have the following fact.

n



Proposition 3.2. Let F; satisfy (SC) and f; € LP(Q), p > 0. Then, u; € VVif(Q) is a strong
subsolution (supersolution) of Fjlu;] + pu|Du;|?> = fi in Q if and only if it is an LP-viscosity
subsolution (supersolution) of this equation.

See Theorem 3.1 and Proposition 9.1 in [19] for a proof. For scalar equations it is also well
known that the pointwise maximum of subsolutions, or supremum over any set (if this supremum
is locally bounded), is still a subsolution, see [18].

The next proposition follows from Theorem 4 in [26] or Proposition 9.4 in [19].

Proposition 3.3. (Stability) Let F, Fy be scalar operators satisfying (SC), p > N, f, fr €
LP(Q), up € C(2) an LP-viscosity subsolution (supersolution) of

Fy (2, ug, Dug, D*uy,) + (M (x) Dug, Dug) > (<) fr(z) in Q, for all k € N.
Suppose uy, — u in L (Q) as k — oo and, for each B CC Q and ¢ € WP(B), if we set
gk(x) = Fk(x?ukasovDQSO» - fk(‘r) ) g(‘T) = F(JJ,U,DQO, DQQO) - f(x)

we have |[(gr—9) " | ze(B) (I(9k—9) " |lLr()) = 0 as k — oo. Then u is an LP-viscosity subsolution
(supersolution) of F(x,u, Du, D*u) + (M (z)Du, Du) > (<) f(z) in Q.

The following result follows from Lemma 2.3 in [26], see also the appendix of [21].

Lemma 3.4. (Ezponential change) Let p > N and u € C(Q). For m > 0 set mv = €™ —1 and
mw =1 — e ™. Then the following inequalities hold in the LP-viscosily sense

+ D2
ME(D2) + map|Duf2 < 222P7) i (D20) 4+ mAp| Duf?,
14+ mv
+ D2
ME(D?*u) — mAp|Dul? < M < M*(D*u) — mAp|Dul?.
— mw

The following scalar estimates will play a pivotal role in our proofs. The first one is a global
variant of the Local Maximum Principle (LMP); see 23, 25] for a proof.

Theorem 3.5 (GLMP). Let u be a locally bounded LP-viscosity subsolution of

—f(z) in Q
0 on 0f)

IN IV

u

{ LT(D?u) + v(z)u

with f € LP(Q), v € LP(Q), for some p,p1 > N. Then, for each r > 0,

1/r
Sgpvfr <C <(/Q(u+)r> + Hfﬂ\m(g)) )

where C' depends only on N, p, p1, A, A, v, b, and ||V 11 ()-

We recall the following two global scalar versions of the quantitative strong maximum prin-
ciple (QSMP) and the weak Harnack inequality (WHI), which follow from theorems 1.1 and 1.2
in [25]. Denote d = d(x) = dist(x, 00).

Theorem 3.6 (GQSMP). Assume u is an LP viscosity supersolution of L™ [u]—gu < f, u >0 1in
Q, and let f,g € LP(Q), p > n. Then there exist constants £,¢,C > 0 depending on n, A\, A, b, p,

and ||g|[, such that
u 1/e
ngdec(/Q(f )E> —CHf'*'Hp.
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Theorem 3.7 (GWHI). Suppose g, f € LP, p > n. Assume u is an LP viscosity supersolution
of L7[u] — gu < f, uw >0 in Q. Then there exist constants €,c,C > 0 depending on n,\, A, b, p

and ||g|[, such that
o u U\ € 1/e N
lgfdzc</g(d)> —cllr

In [25], theorems 3.6 and 3.7 are proved for g = 0, but exactly the same proofs there work
for any g > 0. Moreover, since the function v has a sign, g"« > 0 and they are also valid for
nonproper operators. Theorem 3.7 implies, in particular, the strong maximum principle (SMP)
for single equations when f = 0, i.e. for Q € C*! and u an LP-viscosity solution of £~ [u]—gu < 0,
u > 01in Q, where g € LP(Q), we have either u = 0 in Q or v > 0 in ; in the latter case, if
u(zp) = 0 at xp € 9, then d,u(zg) > 0, by Hopf lemma. We are going to refer to these simply
as SMP and Hopf throughout the text.

4 A priori estimates for systems

This section contains the proof of Theorem 2.2, that is, we establish uniform a priori bounds for
the system (Py). We will develop ideas in [27, 28].

For simplicity, we carry over the proofs in the model case n = 2. We just refer to the
differences from the general case when needed.

4.1 Estimates from below

The first step to obtain a priori estimates, as in [21, Section 5], is to prove that any LP-viscosity
supersolution of (P)) is uniformly bounded from below.

Theorem 4.1. Suppose (SC) and let Ao > 0. Then every LP-viscosity supersolution (ui, ..., up)
of (P\) satisfies
Hu;ngCl, forall A€ [0,Aq], i=1,...,n,

where Cl depe”ds Onl?/ on n, NaP?Mla QaA27 HbHoo ) Hclj”oo ’ th_Hoo ) )\P’AP'
Proof. First we take U; = u; and we make the following exponential change

1— —mU;
wizei, i1=1,2, withm:%.
m P

By Lemma 3.4 we know that (w;,w2) satisfies

—Lf [w] < %cﬂ(:ﬁ) IIn(1 — mawy)| (1 — mw;)

+ %Cig(x) IIn(1 — mws)| (1 —mw;) +h™ (z) inQ

with w; = 0 on 99, where L] [w] = L [w] — mh~(z)w and h~ = max{hy,h; }.
Now we consider

_rtiw “(x) + 2e(z) In(1 — mw —mw) in
Lf[w] < b~ (@) + Re(x) [In(1 — mw)| (1 —mw)  in Q (4.1)
w=0 on 0f)

where ¢ = max; j{c;;}. Notice that w = max{wi,ws} satisfies (4.1). Define

w = sup A, where A := {w: w is an LP-visc. solution of (4.1); 0 < w < 1/m in Q}.
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As a supremum of subsolutions, w is a subsolution of (4.1).
Next we proceed as in |21, Proposition 5.2| to prove that w # % Indeed,

w(z) <C Hf+Hp dist(z,002) - 0 asx — 09

where
F@) = h(2) + %c(w) (1 — ma@)| (1 — md).

Assume by contradiction that there exists a sequence of supersolutions (u},u%) of (Py) with
unbounded negative parts, namely there exists a subsequence such that

()" (@) = ||@h) | = o0 e a > a0 e

oo
with z;, € Q for large k since uf > 0 on 9. One has

1 - 1
wi(ay) = —{1 - emmud) " @)y .

Take w* = max{w¥, wk} < 1/m. Then,

1
k

% —_
w” () —

and w* € A. In particular, for every € > 0 there exists ko such that

1 1
— > w(xy) > wh(xy) > — —e, forall k> ko
m m

thus
1

w(zg) > liminf w(xy) = hm w(zg) =
Tp—T0 k—o0

As a consequence, xg € 2 and w(xp) = E‘ Then we reach a contradiction as in [21, Proposition
5.2], by applying a nonlinear version of the strong maximum principle [21, Lemma 5.3].

4.2 Estimates from above

First we recall that the matrix C = (cij)zjzl is said to be irreducible — equivalently we say that
the system (Py) is fully coupled for A > 0 — if for any nonempty sets I, J C {1,--- ,n} such that
INJ=0and TUJ ={1,---,n}, there exist ig € I and jy € J for which

meas{x € Q; ¢;yj,(x) >0} > 0. (4.2)

This means that the system cannot be split into two subsystems in which one of them does not
depend on the other. For instance, if n = 2, it says that ¢12 = 0 and c2; = 0 in Q. Of course
if both c12 and c91 are identically zero, then we already know multiplicity from [21], as soon as
C11 = 0 and 22 % = 0.
For s1mph(:1ty, when (4.2) holds we write ¢;j, = 0 in 2. We can fix p > 0 such that the sets
{x € Bg; ciyj,(x) > p} have positive measures. Let w > 0 be a lower bound for these measures.
Then we recall our main result concerning a priori estimates for systems.

Theorem 4.2. Suppose (SC) holds and let A1, Ao with 0 < Ay < Ag. Assume further that
C(z) = (cij)ilj=1 is in the block triangular form (2.3), and that (Ha) holds, namely C has no
1 x 1 diagonal blocks with a zero coefficient. Then every LP-viscosity solution (ui,...,up) of
(P\) satisfies

lluill o < C, forall X € [A,Ag],i=1,...,n,

where C' depends on n, N, p, p1, g2, diam@, A1, Ag, ||b]| o, [|cijll o > |Pillsos Aps Ap, and w.
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Remark 4.3. Notice that if C(x) is in the form (2.3) and has a 1 x 1 diagonal block with a zero
coefficient, then there is no chance of getting a priori bounds for (Py), in general. Indeed, say
that block is in the ig-th line. Even if we could prove that all preceding functions uq, ..., uj,—1
are uniformly bounded, then u;, solves a scalar equation without a zero-order term. Specifically,
u;, solves an equation like (Py), but with h;, replaced by h;, + AZ;OQII CiojU;j; however, as we
recalled after (Hy) such an equation admits in general a priori bounds only if hi, is small, while
resonance phenomena may appear otherwise, see [15] and [20].

See also section 6 for a two parameter dependence in the problem (Py), obtained for a large
parameter X but a small h.

Remark 4.4. Clearly, if (Py) is fully coupled then it satisfies the hypotheses of Theorem 4.2,
just take n’ = 1. The other extreme is a diagonal matriz such that cx = 0 for any k, by
choosing n' = n, which corresponds to n independent scalar equations with positive zero-order
term coefficients, and Theorem 4.2 reduces to [21, Theorem 2.1].

Now we prove Theorem 4.2. As a first step, we assume that (Py) is fully coupled. Again, in
order to avoid cumbersome notation, we assume n = 2, and we point out how to adapt the proof
for n > 2 when necessary.

By Theorem 4.1, solutions are bounded from below by a uniform constant C;. Fix § > 0.
Notice that v; := u; + Cq1 + 4, is a nonnegative viscosity solution of

M_(Dzvi) —b|Dv;| < =Acir(x)v1 — Aczo(x)ve — iy |Dvi]2 + Bl(x) in €,
where h; = h; + Aa{ci1 + ¢i2}(C1 4 0). Thus, by Lemma 3.4, the functions

| .
= — i—1 =1,2
wj my {6 }7 ? ) <y

where my = X—;, form a nonnegative viscosity supersolution of

L [wi] < fi(x)inQ, i=1,2
with L7 [w] = M~ (D*w) —b|Dw| —myh;(z)w and f;(z) = —milcil(x)(l +miw;) In(1+mjw;) —
milcz-g(a:)(l + miw;) In(1 + myws) + hi(z). Let

. w1 . W2
I =inf —, Iy =inf —.
L= 2T

Since f;" € LP(Q) (see the proof of Theorem 5.1 in [21]), we can apply Theorem 3.6 to obtain
suitable constants such that

I > ¢ (/Q(ff)E)l/E —Co|lfi |, = CO(/Q {(n)l\lcn(x)(l + mywy) In(1 + myw;)
+ T;\lclz(x)(l + miwy) In(1 + myws) — B1($)>+}6) Ve C

. LW 1+ miw;y

> — -

_couéf ¥ (/Q(()\cn(x) p— dIn(1 4+ mqwn)

1 ~ 1 +\ e\ 1/e

wdln(l + miws) — hl(@wd) ) ) —-C
mijwi w1

> coly ( /Q { ()\cll(x)dln(l + Lymad) + Aero(z)dIn(1 + Iymid)
~ mlle(m)d>+}s)l/€ _C
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Therefore
Il{co(/ﬂde(()\cll(a:) In(1 + I1mid) + Acrza(z) In(1 4+ Iomad)
- mlﬁl(a:>)+)€)l/5 —1}<C @43)
and analogously
IQ{C()( /Q dE((A021(a:) In(1 + Iymid) + Aesa(z) In(1 + Iymyd)

_ mlﬁ2(a:))+>€)l/5 —1f<e (1

We prove in the sequel that both I1 and I3 are bounded from above. By full coupling, ¢12 = 0
and cg; = 0. Since I; > le{emui — 1} >0, (4.3) implies

/Q @ ((Aen (@) (1 + Limad) + Acra(@) n(1 + L) — mlill(x)>+)6 <.

In particular,
~ +
/ da(()\cm(x) ln(l + Izmld) — mlhl(x)> )8 <C,
Q
and analogously by (4.4),
~ +\ €
/d8(<)\021(90) In(1 + Iymyd) —mﬂm(x)) ) <c,
Q
whence I1,Is < C as in |21, p.1829|. In the general case n > 2, we just observe that by full

coupling for any fixed k = 1,...,n there exists an index j =1,...,n, j # k, such that ¢j;, = 0.
Thus, exploiting the j-th equation we get

/Qd5<()\cjk(az) In(1 + Iymid) — mlﬁj(m))—i_)a <C,

and I turns out to be bounded, forall k=1, --- ,n.
Let us now turn back to the model case n = 2. By Theorem 3.7 and I; < C we find constants
such that
1/61 1/51
. wy \ &1
(/ (w1)61) < diamQ? (/ (j) > < Co{hL + Hff“Hp} <C. (4.5)
Q Q

Similarly, using I» < C we obtain

([ ) oo (46)

1 mou; .
Zi Mo {6 }7 1 ) &y

Set

where mg = §£2. Since

2
'y

A
MT(D?2) + b|Dz| + -¢i1(2)(1 + maz;) In(1 + maz1)z

maz

+

CiQ(Z‘)(l + mgzi) ln(l + mQZQ)Zi > —h:_(w)(l + mgzi) in £,
moZz;
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with z; = 0 on 99, then z := max{z1, 22} satisfies the following problem

MFT(D?2) +b|Dz| +v(z)z > —ht(z) in Q (A7)
z = 0 on 01, ’
where 93
v(z) = mc(m)(l +maoz) In(1 + maz) + moh™ (),
2

c(z) = max; j{cij(2)}x{2>0p, and hT = max{h{, h3}. Notice that

1 ma
zi=—{(1+ mlwi)mf e—m2(C1+9) _ 1}.
ma

Moreover, for any s there exists Cy such that

v] < Cse(z) (1 +[2]°).

#, then, by Holder, given

Set ¢ = min{ey,e2}. If we take s = ¢4 P—N_ and po=

. m2 p(p+N)

1 _ 1,1 ;
o = p T pe WE obtain

lelzP M, < llellp 1211, < llell, 1211, + el [Hz2l1,,

p—N p—N
m1 \ p(p+N) m1 \ p(p+N)
=l ([ 115 ) 7 el ([ )
P\Ja P\Ja
Recall that both I; and I, are bounded from above, and both (4.5) and (4.6) are satisfied. Then

V1, < Cllell, + llel=l[l,, +mallh ™|, < C.

Thus we have, by Theorem 3.5 applied to (4.7),

_m2 _m2
my \ erm m1\ sam
supz+sc{</ mm) " (/ \z2|”m2) ) 1+Hh+Hp} <C.
Q Q Q

Hence, uf and u; are uniformly bounded in . This proves that Theorem 4.2 holds for any fully
coupled system.

Next, take a system whose matrix is in the block triangular form (2.3), with no 1 x 1 zero
diagonal blocks. Consider the first ¢; equations. They are either a fully coupled system (if
t;1 > 1), or a scalar equation with a nonvanishing zero order coefficient (if t; = 1). Hence, by
the above and [21, Theorem 5.1] we conclude that wuy,...,u; are uniformly bounded. We can
now consider these ¢; functions as being part of the h-terms in the next ¢t equations, which in
turn become a fully coupled system (if o > 1) or a scalar equation with a positive zero order
coefficient (if o = 1). The reasoning iterates, and one proves uniform bounds for uq, ..., uy.

5 Multiplicity results for systems

In this section we extend to systems the arguments in [21]. Our goal is to point out the main
differences that come from the nature of the system, and refer to [21] for further details and
references.

Throughout this section, (M (z)Du, Du) will be the shorthand notation for the vector with
entries (M;(z)Du;, Du;), i = 1,--- ,n. We set E := C'(Q)", the Banach space with the norm
|lu|| g = maxi<i<p ||Ui||cl(§)7 where u = (uy,- -+, up).

We start with some auxiliary results.
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Definition 5.1. An LP-viscosity subsolution & € E (respectively, supersolution n) of (Py) is
said to be strict if every LP-viscosity supersolution (subsolution) u € E of (Py) such that £ < u
(u <) in Q, also satisfies £ K u (u <K n) in Q.

Under hypothesis (H;), we define the operator 7 : E — E that takes u = (uy,- -, uy,) into
Tau=U = (Uy,---,Up,), the unique LP-viscosity solution of the problem

—F[U] = XC(x)u + (M(z)Du, Du) + h(z) in Q, U =0 on 09, (T
for any A\ € R, where h = (hy,--- , hy).

Theorem 5.2. Suppose (SC), and (Hy). Let £ = maxi<i<x &, 7 = mini<j<, n;, where&; , n;j €
W2P(Q)" are strong sub and supersolutions of (Py) respectively, with € < n in Q. Then (Py)
has an LP-viscosity solution satisfying & < u < n in . Furthermore,

(i) If € and n are strict in the sense of definition 5.1, then for large R > 0 we have deg(I —
Tx,S,0) = 1 where S = O N B, for O ={u € CLQ); £ < u < nin N}

(1) If (Hs) holds and X > 0, there exists a minimal and a mazimal solution, u and @, of (Py)
in the sense that every (strong) solution u of (Py) in the order interval [€,n] (i.e. such that
E(x) <wu(z) <n(x) for all x € Q) satisfies £ <u <u<u<nin .

Moreover, the conclusion is true if we replace C(x) by C(x,u) defined by (C(x,u))iju; =
cij()Ra(uj) fori,j =1,...,n, where Ry is defined as Rq(u;) = uj for u > a, Ry(uj) = a for
u; < a.

Proof. Analogously to |21, Claim 4.1|, we see that 7, is completely continuous in compact
intervals of ), by using C® regularity estimates in each equation.

Fix some A € [Aj, Ag] and consider R > max{C, ||{||, [|nllg} + 1, where C is such that
luillora@ < €5 i =1,--+,n, for every solution u of (Py) which is in the order interval [¢, 7],
and for all A € [A1, Ag]. The existence of a solution in [£, )] follows by constructing a modified
problem (Py), which corresponds to the truncation made in [21, p.1820] componentwise. Then:

(a) solutions of (P)L) are fixed points of a truncated operator Ty;

(b) the problems (Py) and (Pj) coincide in the order interval [£, n];
(¢) | Taulle < R, for all u € E, for some Ry > R, and deg(I — Ty, Bg, ,0) = 1.

Indeed, (b) follows by applying the maximum principle for each i. Moreover, if £, n are strict,
then the degree computation in S is exactly the same as in [21, p.1823].

For the existence of extremal solutions under (H3) we just need to note that, if u,v are
solutions of (Py), then 7 := min{u, v} is an LP-viscosity supersolution of (Py). Indeed, if A > 0,
then u; and v; satisfy the equation —F; [w] > Aciim + - - - + At + (M () Dui(x), Dui(z)) + hy
in the LP-viscosity sense, and so does 77; = min{u;, v; }. Once we know this, the proof of Theorem
5.2(ii) follows as in [21, Claim 4.5]. [

Now we work with an auxiliary problem (P ;) which has no solutions for large k, and such
that (Py o) reduces to (Py). Fix Ay > 0. Recall that constants are understood as vector constants
when we are dealing with the system, as in Definition 2.1. Then, Proposition 4.1 gives us an a
priori lower uniform bound Cy, depending on Ao, such that

u > —C for every LP-viscosity supersolution of (Py), for all A € [0, Aa].
Consider, thus, the system

{—F[u] = XC(z)u+ h(z) + (M(x)Du, Du) + kh(z) in  Q (Pys)

u = 0 on 0N
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for k>0, A € [0,Ay]. Also, if h~ = (h,--- ,h;), then h = (hy,--- , hy) is such that

h(x) = ha, () := h™(2) + (A+ Ay Cp) &(x); ¢ = max Z cij € L2(Q (5.1)

with A := A\1/m, m = pu1/Ap. Here, \; = A\ (L7(¢),Q) > 0 is the first eigenvalue with weight
¢ associated to the positive scalar eigenfunction ¢; € W2P(Q2) given by Proposition 7.1, namely

(L7 4+ M) [p1] =0 and ¢1 >0 in Q, ¢ =0 o0n N. (5.2)

Note that every LP-viscosity solution of (P ) is also supersolution of (P)), since kh > 0,
and so satisfies u > —Cp. From this and (5.1) we have, for all k£ > 1,

AC(z)u + h(z) + kh(z) > —AyCod(z) — h™(z) + h(z) = A&(z) 2 0 ae. in Q. (5.3)
Lemma 5.3. For each fized Ay > 0, (Py 1) has no solutions for all k > 1 and X € [0, As].

Proof. First observe that, from (5.3), every LP-viscosity solution of (P ) is positive in Q for

A € [0, As]. Let us assume by contradiction that (P j) has a solution w. Then it is also a solution
of

L7 [u] < —p1|Duf* — A¢(z) and u >0 inQ,

and from Lemma 3.4, —L [v] > Mc(x)v + Ac(x) and v > 0 in 2, using mA = A1, where
mv; = e™* — 1, for m and A from (5.1), ¢ = 1,--- ,n. Now, since each v; is a supersolution of
—L7[v] > Mie(x)v; + Ac(x), thus v := min<;<, v; satisfies

(L7 +XMc)[v]S$0 and v>0 in Q. (5.4)

Then (5.2), (5.4), and Proposition 7.2 yield v = ty; for some ¢t > 0. But this contradicts the
first line in (5.4), since (L~ + A\1¢)[tp1] = t(L™ + A0)[e1] =0 in Q. [

When we are assuming hypothesis (Hz) we just say solutions to mean strong solutions of (Py).
However, it is worth mentioning that sub and supersolutions, in general, are not strong, since
we are considering the problem in the LP-viscosity sense. In order to avoid possible confusion,
we make explicit the notion of sub/supersolution we are referring to.

The next result is important in degree arguments, bearing in mind the set S in Theorem 5.2(i).
This will play the role of the strong subsolution ¢ in that theorem.

Lemma 5.4. Suppose (SC), and (Hz). Then, for every X > 0, there exists a strong strict
subsolution &\ of (Py\) which is strong minimal, in the sense that every strong supersolution n of
(Py\) satisfies £ < n in Q.

Proof. Let K > 0 from Proposition 4.1 be such that every LP-viscosity supersolution n of
—F[n] = XC(z)n + (M(x)Dn, Dn) —h™(z) = 1in Q, 7 >0 on 00 (@x)
satisfies n > — K in ). Let & be the strong solution of the problem
L&) =AKC(x)+h (z)+1in Q, & =0 on 09, (5.5)

given, for example, by [9]. Then, as the right hand side of (5.5) is positive, by ABP, SMP and
Hopf, we have {y < 0in Q. As in |21, Claim 6.3|, we see that

every LP-viscosity supersolution n of (P)) satisfies n > &y in €. (5.6)
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Indeed, notice that n is an LP-viscosity supersolution of (@) and so satisfies n > —K. Second,
by (SC) and M > 0, n is also an LP-viscosity supersolution of

—L7[n] > XC(xz)n+ h(x) > =AKC(x) —h () —1 in Q.

Then v :=n — & is an LP-viscosity solution of £~ [v] < 0, since & is strong. Further, v > 0 on
0Q, then v > 0 in Q by ABP, which proves (5.6). Moreover, setting

(E (I,t))ij == Cij(l’) if t]’ Z —K; (6 (l‘,t))ij == —Kcij(JE)/t]’ if tj < —K,

we have 0 < (C (z,1))ij < ¢ij(x) a.e. in Q and (C (z,1));t; > —Kc¢ij(x) for all t; € R. Then,
—F[&] < —L7[] < AC (2,8)é0 + (M (x) D&, Déo) — h™ () — 1,

and so & is a strong subsolution of (Q,), where (Q,) is the problem (P,) with C, h replaced by
C = C(z,u), h = —h~ — 1. In addition, (C(z,u));ju; = cij(x)R_k(uj) for i,j = 1,...,n, with
R_k as in Theorem 5.2.

Let np be some fixed strong supersolution of (Py) (if it does not exist, the proof is finished).
Then, by (5.6), we have £ < 79 in Q. Also, in that proof we observed that ny > —K, so
C(z,mp) = C(z) a.e. z € Q, which implies that 7 is a strong supersolution of (Q,). By Theorem
5.2(iii), we obtain an LP-viscosity solution w of this problem, with & < w < ng in Q, which
is strong and can be chosen as the minimal solution in the order interval [, no], by (H2) and
A > 0. Asin |21, Claim 6.5], since A > 0, we easily see that 7 is a strict supersolution of (P)),
with 7 > w in  — we only need to pay attention in performing the same argument in the end of
the proof of Theorem 6.3 in order to have the minimum of supersolutions as a supersolution. W

Now we turn to the proof of theorems 2.3, 2.4 and 2.5.

5.1 Proof of Theorem 2.3

We start with the coercive case. Of course £ = ug — ||uo||eo and n = ug + ||ugl|so are strong sub
and supersolutions of the problem (Py), for each A < 0, with £ < ug < 7 in Q. Indeed, it is just
a question of using (SC) to obtain F[{] > F[up] > F|[n], together with Ac(z)§ > 0 > Ae(x)n.
Then Theorem 5.2 provides a solution wy € [£,n], for all A < 0.

To show |Juy — ug||[z — 0 as A — 07, we take an arbitrary sequence A\, — 0T, and obtain
— via stability, C™® regularity and compact inclusion — the existence of a limit function u such
that ux — win E, which is an LP-viscosity solution of (Pp). From the uniqueness of the solution
at A =0, u = up.

For the existence of a continuum from wug, we fix € > 0 and look at the pair £ = ugp — ¢ and
n = ug + &, which are strong sub and supersolutions for (Pp). Since ug is the unique LP-viscosity
solution of the problem (Fp), £ and 7 are strict. Then, Theorem 5.2(i) and the uniqueness of the
solution wug give us ind(I — Ty, up) = 1. Thus, by the well known degree theory results (see [3,
Theorem 3.3| for instance) there exists a continuum, whose components are unbounded in both
directions R™ x E and R~ x E. This proves item I of Theorem 2.3. Item 2, in turn, is just a
consequence of the a priori bounds obtained for every interval [A;, A2] not including the origin,
and a priori estimates from below for every interval [0, Ag].

For the multiplicity results in item 8, we notice that

(a) There exists a A\g > 0 such that deg(l — Ty,S, 0) =1, for all A € (0, \o);

(b) (Py) has two solutions when A € (0, \g/2];
are both easy consequences of the topological methods used in [21, Claim 6.7, Claim 6.9], once
we have a priori bounds and C1® estimates. Also, we exploit Lemma 5.3 in place of [21, Lemma
6.1]. This permits us to define the quantity

A:=sup{p; YA€ (0,u), (P\) has at least two solutions} € [\g/2, +00]
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and then infer that the two solutions obtained, for A € (0, ), satisfy the properties stated in
Theorem 2.3.

To finish the proof, we must show the statements in items § and 4 concerning ordering and
uniqueness. Notice that (Hz) automatically implies that wy ; and uy 2 are strong, as well as every
LP-viscosity solution of (Py). The uniqueness result in item 3 follows as in [21, p.1839] under a
convexity assumption on F', by exploiting Lemma 5.4 above. The ordering is proved in the next
claim.

Recall that the matrix C(z) is in the form (2.3).

Claim 5.5. uy; < uy2 in at least one block, for all X € (0, 5\).

Proof. Fix A € (0,)) and consider the strict strong subsolution & = & given by Lemma 5.4.
Since in particular § < u for every (strong) solution of (P)), we can choose uy ; as the minimal
strong solution such that uy; > £ in €. We first note that this choice yields

(uni)i < (up2); in @ foralli=1,--- n. (5.7)

Otherwise there exists g € Q and one index ¢ such that (uy1)i(zo) > (ux2)i(xo). Consider
uy = min{uy 1, ur2} > & in Q. Then Theorem 5.2 gives us a solution u of (Py) such that
¢ <u < uy S uy 1, which contradicts the minimality of uy 1, and implies (5.7).

Next define v = uy2 — uy in €, which is a nonnegative vector by (5.7). Then, since uy ;
and u) o are strong, v satisfies, almost everywhere in (2,

—L7[v] > =Fluyz2] + Flux1]) > AXC(z)v — 2uz|Duy 1| | Dv|. (5.8)
Hence, v is a nonnegative strong solution of
M™(D*v) —b|Dv| <0 in Q, for b=b+2us||Dux1]lso- (5.9)

Of course uy 1 # uy2, then there exists one index j such that v; 2 0 in Q. Consider the
block from where it belongs; say the first one, j € {1,...,¢1}. So, by (5.9) and SMP, v; > 0
in Q. Now look at the j-th column of this block. By (2.3) we know that there exists an index
k#j,ke{l,...,t1}, such that c;; # 0.

Finally, let us turn back to (5.8), and consider the k-th equation of it. Since cy;v; = 0, by
(5.9) and SMP we obtain that vy > 0 in 2. Using the full coupling of C(x), we can iterate this
process t1 times, by visiting all the equations. Therefore v; > 0 for all j € {1,...,¢1}. Applying
Hopf, we conclude that v > 0 in this block. |

5.2 Proof of Theorems 2.4 and 2.5

Both results are an easy extension of considerations made in [21], as long as we exploit Lemma
5.4 instead of [21, Lemma 6.2]. In particular, for Theorem 2.4 we just need to be careful when
applying the SMP, as we make explicit in the next lemma — which is the extension to a system
of [21, Lemma 6.14].

Claim 5.6. ug is a strict strong supersolution of (Py), for all A > 0.

Proof. Since XC(x)up S 0 in €, ug is a strong supersolution of (Py). To see that it is strict, we
take u € E an LP-viscosity subsolution of (P)) such that u < wug in Q, and set U := up — u.
Then, since ug is strong, U is an LP-viscosity supersolution of

—L7[U] > XC(2)U — (M(2)DU, DU) + (M (2) Dug, DU) + (M (2) Dug, DU)

>
> — 3 [DUP — 2415 | Duo| | DU,
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so L~ [w] < 0in Q in the LP-viscosity sense, where

L™ [w] := M~ (D*w) —b|Dw|, for b=b+ 2us | Duollso, (5.10)

and mw; = 1 — e ™V 'm = po/Ap, by Lemma 3.4, fori =1,--- ,n.

Assume that there exists an index j in the first block {1,...,#} such that w;(z9) = 0. Then
by SMP we have w; = 0, hence U; = 0. Let us turn back to (Py), and consider the j-th equation.
By (2.3) we know that there exists an index k # j, k € {1,...,t1}, such that ¢;;, # 0. This,
combined with U; = 0, implies Uy (z1) = 0 for some point ;. We now apply again SMP, to get
Ur = 0. As each diagonal block in C(z) is fully coupled, we can iterate ¢; times, and visit all
the equations, therefore U; = 0 for any j € {1,...,t1}. However, hypothesis (Hy) provides a
contradiction, and hence U; > 0 for all j € {1,...,¢;}. Taking into account each block separately,
and applying Hopf, we conclude U > 0. |

As for Theorem 2.5, showing that every nonnegative supersolution in E of (Py) for A > 0
satisfies u > wug follows by analogous considerations to those made in the proof of Claim 5.6
above. Everything else works as in the scalar case, up to obvious modifications. The only point
which requires some attention in our multiplicity analysis is the analog of Claim 6.20 in [21] which
is our Claim 5.7 ahead. Recall that nonexistence type results were obtained in Lemma 5.3 via
(5.3). There, the possibility of taking a large parameter k overcame the difficulty. Here we have
a different situation because we need to conclude the existence of two distinct positive solutions
without using Proposition 5.4 — note that in Theorem 2.4 it is simpler as soon as we have ug as
supersolution. Therefore we need to work with problem (Py) itself, in which nonexistence for the
system does not seem to be a consequence of the scalar framework, at least not in the general
case.

Claim 5.7. (Py) has no nonnegative LP-viscosity supersolutions for \ large.

Proof. Consider the matrix C(x) in the form (2.3).

Let A > Aj, where A\; = A (L(2),€) > 0 is the principal eigenvalue of the operator £~
defined in (5.10), but now with weight ¢(x) = 0, where
n
¢(x) = min ¢ij(z) ae. in Q, with ¢; from (2.3),

1<i<ty 4
Jj=1

Q

which is associated to the positive eigenfunction @, = ¢ (L~ (2),Q) € W2P(Q), that is,
(L~ +MC)[F1]=0and 3, >0inQ, & =0 on o9 (5.11)

Notice that if t; = 1, then ¢(z) = ¢11(x) which is nontrivial by hypothesis (Hzs).

Suppose, then, in order to obtain a contradiction, that there exists a nonnegative LP-viscosity
supersolution u of (Py) and set v = u —ug in Q. One proves v > 0 in by performing the same
SMP argument done in Claim 5.6. Now, since ug is strong, we can use it as a test function into
the definition of LP-viscosity supersolution of u, to obtain

—L7[v] > XC(x)v + AC(x)ug + (M (x)Dv, Dv) + (M (x)Dv, Dug) + (M (x)Dug, Dv)
> MC(2)v — 2p2| Dug| | D,

using C(z)up = 0. Then each v; satisfies =L [v;] 2 A ¢(z)v in Q, for i = 1,--- ¢, in the
LP-viscosity sense, where v := minj<;<¢, v;, since A, ¢;j,v; > 0. Hence,

(L~ +A¢)[v] S0 and v>0 inQ (5.12)

Thus we apply Proposition 7.2 to (5.11) and (5.12), from where v = t; for some ¢ > 0. But
this contradicts (5.12), since (£~ + A1¢) [t@1] = 0 in . [

In the next section we prove the second part of Theorem 2.5 only in the scalar case n = 1,
since the extension to systems can be established as above.
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6 Complementary multiplicity for scalar equations
Here and in the next section, E = C*(Q). Now we consider the scalar problem

—Flu] = Xe(x)u+ (M(z)Du, Du) +~vh(z) in Q
{ u = 0 ! on 09 ()

where © is a bounded C! domain in RV, A € R, v >0, N > 1, ¢,h € LP(Q), ¢ 2 0, M is a
bounded matrix, and F' is a fully nonlinear uniformly elliptic operator which satisfies (SC'), (Hy),
and (Hz). The results in this section are related to [15] and in particular extend to nondivergence
form equations [13, Corollary 1.9], where variational problems were considered.

By Theorem 1(ii) of [26], there exists I'g > 0 such that the problem (P ) has an LP-viscosity
solution, namely wg -, for each v € [0,Tg]. Note that g is strong by regularity, and so unique
by Theorem 1(iii) of [26].

Say that h 2 0, then ug, > 0, with ¢(z)uo 2 0, for all v € (0,T] (see Remark 6.25 in [21]).
Thus, there exists A1 > 0 such that (P, ) has at least two positive solutions for A € (0, A1), it
has at least one nonnegative strong solution at A = Ay, and no nonnegative LP-viscosity solutions
for A > A1.

Let A > A\, where A\[ := A] (LT (c), ) > 0 is the principal positive weighted eigenvalue of
LT associated to the negative eigenfunction ¢; = ¢; (LF(c),Q) € W?P(Q) from Proposition
7.1, that is,

(LT +A[0)[p;] =0 and ¢; <0 inQ, @] =0 on 9. (6.1)
Notice that, since £T is convex, then
A= A (£H(0),9) < A7 (£4(),9) = A7 (62)
Claim 6.1. )\ < AL

In other words, Claim 6.1 says that (Py ) does not admit nonnegative solutions for A > A7 .
To see this, we observe that if a such solution u existed, since yh = 0, then u would satisfy
—L7u] 2 Ace(x)u, so u > 0 in Q by SMP. But then this strict inequality combined with
Proposition 7.2 and (6.1) produces u = ty; for some t > 0, a contradiction.

Theorem 6.2. There exists a positive I' < I'o such that, for each v € (0,T), we have the
existence of Ao > 0 for the problem (P\)=(Pn) satisfying

(i) for X\ > Ao, (P\) has at least two solutions with uy; < 0 in Q and minguy 2 < 0;
(i) for X = X, (Py) has at least one nonpositive solution, which is unique if F is convex;
(iii) for X < o, the problem (Py) has no nonpositive solution.

Proof. Firstly we are going to prove that there exists I' > 0 such that the problem (Pj, ) has a
nonpositive supersolution 7., for all v € (0,I"), where Ag is some positive number independent
of A and ~.

Let w be some (fixed) strong solution of

(6.3)

—Ltw] = MNc@)w+1+h(x) in Q
w = 0 on 0N

for some \g € (A, A] +¢€0), €0 > 0. The existence of w is ensured by Theorem 7.4, since the
operator £V satisfies the W2 regularity hypothesis (Hz).

Then, let Cy > 0 be such that || Dw||?, < Cp, and set I' := min{T, (u2 Co)~*}.
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Claim 6.3. Up to taking a smaller g9, we have w < 0 in 2.

Assuming Claim 6.3, we define n = n, := yw, for 0 < v < T', which is a negative function.
Then we have, in the LP-viscosity sense,

—F[n] > L[] = Xoc(@)n + v+ yh(z) = Ao e(x)n + 7z Co + yh(z)
> Xoc(@)n + (M(x)Dn, Dn) + vh(z).
That is, 7 is a supersolution of (Py, ), for all v € (0,I"), with n < 0 in €.

Proof of Claim 6.3. We are going to prove a stronger result, i.e. that there exists a small g > 0
such that every solution w € E of (6.3) satisfies w < 0 in € — which in turn yields w < 0 in ,
by Hopf.

Assume the contrary, then there exists a sequence A\, — A} and wy, satisfying

—LTwr] = Mec(@)wr + f(x) in Q (6.4)
wp, = 0 on 0f), ’
but each wy is such that
max wg = wg(xg) > 0, where zy, € Q, and Du(xy) = 0, for all k. (6.5)
Q
By taking a subsequence, z;, — xo € Q. Since f # 0, of course wy, # 0, for all k.
We claim that there is a subsequence such that

[ wi[loo — 00 (6.6)

Indeed, if this was not the case, |wg|lcc < C, for some positive constant C' independent of k.
By C1@ regularity, compact inclusion and stability, this would give us some w € E, which is a
viscosity solution of

{—Eﬂw] = Nc@)w+ flz) in Q
w = 0 on ON.

Now, if w was nonnegative in €2, it should be positive by SMP; then A} < )\f by the definition
of AT. Hence A\{ = A\ by (6.2). Proposition 7.2 would imply so w = tp], for some ¢ > 0, which
contradicts f # 0. Thus, we must have w(z;) < 0 for some x; € . This yields w =tp;, t >0
by Proposition 7.2, contradiction. Thus, (6.6) holds.

Then, for the sequence in (6.6), we define vy := wi/||wk||c0, which satisfies

—Lt[or] = Mpe(@)vg + f/llwglloe in Q
v, = 0 on 0.

Since Hvk”cl»a(ﬁ) < C, then passing to a subsequence, v converges in E to some function v,
which is a solution of —L*[v] = AT c(z)v in Q, v = 0 on IQ, by stability. Note that ||v]e =
limg, [vk(yx)| = 1, for some sequence of points y € €.

If we had v(z1) < 0 for some 21 € €2, by Proposition 7.2 we would obtain v = ¢; < 0. Thus,
by (6.5), v(xg) = 0 and z¢ € 9Q. So the application of Hopf at xy contradicts (6.5).

Therefore, we must have v > 0 in , i.e. v > 0in Q by SMP. Then A\] = A[, by the definition
of AT and (6.2). Hence, Proposition 7.2 yields v = ¢} > 0 in Q. Now Hopf gives us d,v > 0 on
01). This fact and the convergence of vg to v in E imply that vy > 0 in  for large k. Therefore,
for large k, vy is a solution of

—Lt ] = M e(@)vr and v, > 0in Q, v = 0 on 9.

Thus v, = t@f, for some t > 0, by Proposition 7.2 again. The above strict inequality finally
provides the last contradiction, and proves Claim 6.3. |
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Next let us fix some v € (0,T"] and look at the problem (Py) = (P ).

Recall that (Py) has a strong strict subsolution &, for all A > 0. However, notice that our 7
constructed above, besides being a supersolution for only a fixed Ag, has no reason to be strict.
Nevertheless, we can check that a slight variation of the argument in the proof of Theorem 1.7
in [13] ensures the strictness for an arbitrary A and enables us to use Theorem 5.2. For the sake
of completeness, we give the details at the points in which the general context of LP-viscosity
solutions requests an extra care.

Note that ¢(z)n S 0 in Q. Otherwise the problem (FPp) would have a solution v such that
& < v <n <0, due to Lemma 5.4 and the first part of Theorem 5.2. Then we define

A2 = inf{\ > 0; (Py) has a strong supersolution 7 < 0 with c¢(z)ny <0} < A.

Let A > Ay, then there exists A € (Ag, \) such that (Py) has a strong supersolution n5y <0
with c(z)n; = 0. But now 75 is a strong supersolution of (Py), which is not a solution. So,
proceeding as in Theorem 2.3 in [21]| we see that 7 is strict. Then we use Theorem 5.2(i) to
obtain that deg(l — Tx,Sx,0) = 1, where

Sy = {& < u < n3} N Bg,

for some R > 0. This gives us the first solution uy; < 0. Thus, for A small, a second solution
uy2 satisfying uy o > uy 1 is also established as in the scalar case, as well as the monotonicity
of uy 1 with respect to A, see [21, Claim 6.9, Claim 6.12].

On the other hand, if A > A2, we can only have a nonpositive solution u satisfying c(z)u = 0.
In such a case, vh = 0 and an exponential change from Lemma 3.4 generates a nonpositive
solution of L¥[v] £ 0 in £, and v < 0 in © by SMP. Since A] ¢(z)v = 0, these inequalities and
(6.1), in the application of Proposition 7.2, yield a contradiction.

Observe that A cannot be zero by Remark 6.22 in [21]. Indeed, via eigenvalue arguments it
was shown there that, for small values of A, every solution must be nonnegative.

To finish, we notice that a sequence A\; — Ao produces a sequence u Ar,1 Of negative solutions
of (Py,). Then, a priori bounds on [A2, Ay + 1], C1® estimates, compact inclusion and stability
ensure the existence of an LP-viscosity solution u of (Py,), which is nonpositive by convergence,
and strong by (Hs). This completes the proof. [

Remark 6.4. If F' is convex, 1-homogeneous and possesses eigenvalues, for instance if F = LT
or a HJB operator, then the estimate can be improved. In fact, in this case in Claim 6.1 we use

M (F(e)) instead of N\{ (L™ (¢)), which gives us

5\1 < )\T(F(C)) < /\1_<F(C)) < Ag.

7 A short miscellaneous on weighted eigenvalues
We consider the more general structure

MAX =Y) =b(@)|p— 4 — d(z) w((r — 5)7) < Fa,r,p, X) - F(x,5,q,Y) (5CG)
< MIA(X ~Y)+b@)|p—q +dx)w((s—r)") ae z€Q

with F(-,0,0,0) =0, where 0 < A< A, be LE (), p > N, d € LY(2), w a Lipschitz modulus.
Here, the condition over the zero order term in (SCG) means that F' is proper/coercive, i.e.
nonincreasing in 7. On F' we also impose (H1), and 1-homogeneity such as

F(z,trtp,tX) = tF(z,r,p, X) for all t > 0. (7.1)
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Notice that solvability in LV -viscosity sense was used in [22], but this notion is equivalent to
solvability in LP-sense from (H;), once we have the data f in LP(2), see [23].

For any ¢ € LP(Q2), with ¢ 2 0 and p > N, and F satisfying the above assumptions, we can
define, as in [6, 22, 24|,

AT =T (F(e),Q) =sup {\ > 0; U*(F(c), 2, \) # 0}
where
TE(F(e), L A) = {¢ € C(Q); 1 > 01in Q, £(F[Y] + Ac(x)y) < 0in Q};

with inequalities holding in the LP-viscosity sense (equivalent to L"). Notice that, by definition,
)\I:(G(C>7 Q) = AT(F(C)) Q)a where G(I’, P, X) = _F(:’U’ -, =D, _X)

We recall the following result on existence of eigenvalues with nonnegative unbounded weight,
from [22].

Theorem 7.1. Let Q@ C RY be a bounded CY' domain, ¢ € LP(Q), ¢ = 0 for p > n, I as
above, for b, d € LY (Q). Then F has two positive weighted eigenvalues af > 0 corresponding to
normalized and signed eigenfunctions <p1i € OL2(Q) that satisfy

Flei] +afc(x)ef = 0 in Q
+of > 0 in Q (7.2)
goli = 0 on 00N

in the LP-viscosity sense, with maxq (:I:gof[) = 1. If, moreover, the operator F satisfies (Ha),
then of = A\ and the conclusion is valid also for b € LR ().

Of course, Pucci’s extremal operators £+, with b € Lﬂ(Q), are examples of F' which satisfy
(Hj). Such existence results for £F are used several times in the text.

The following proposition for unbounded ¢ is both an auxiliary result for the proof of Theorem
7.1 and an important tool for proving nonexistence results for equations in nondivergence form.

Proposition 7.2. Let u,v € C(Q) be LP-viscosity solutions of

Fluol+clzx)v < 0 in Q
{F[u]+c(m)u > 0 im Q g ()U > 0 on 90 (73)
u < 0 in Q7 - ’

v(zg) < 0 xp€Q

with F as above, ¢ € LP(Q)), p > n. Suppose one, u or v, is a strong solution. Then, u = tv for
some t > 0. The conclusion is the same if Flu] + c¢(x)u <0, Flv] 4+ c¢(xz)v > 0 in Q, with u > 0
in Q, v <0 ondQ and v(zg) > 0 for some z¢ € Q.

A consequence of the proof of our Claim 6.3 is an improved version of the anti-mazimum
principle [1]. We state it for the sake of completeness. Consider the problem

Flu] + Ae(z)u = f(z) in Q, uw =0 on . (7.4)
Recall that solutions of this problem are at least C® up to the boundary for Q € C1:1.

Corollary 7.3. Let f € LP(), with p > N and f = 0. Then then there exists eg > 0 such
that any solution u of (7.4), with X\ € (A\] (F(c),Q), ] (F(c)) + €0), satisfies u < 0 in Q. An
analogous result holds if f S 0, related to \] (F(c), Q) and positive solutions.
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We finally turn to the main result of this section, concerning existence for the Dirichlet
problem. This result is needed, for instance, to ensure existence of solutions of (6.3). We give
a proof of it in the sequel, following the ideas of [1, 15], in the context of LP-viscosity solutions,
for fully nonlinear equations with unbounded coefficients.

For ease of notation, we will be omitting the information (F'(c), Q) each time in what follows.
Consider \; := max{A\], A\ }. Then define, as in [1], the following quantity

X2(F(c), ) := inf{p > Ay such that p is an eigenvalue of F' in Q, with weight c}.
Notice that A2(F'(c), Q) = +oo is possible.

Theorem 7.4. Assume (SCG), (H1), (H2), and (7.1). Let f € LP(Q), with p > N, and let
A1 < A < Ag. Then there exists a strong solution of the Dirichlet problem (7.4).

Proof. We define F:[u] = 7F[u] 4+ (1 — 7)Au for u € E, which satisfies (SCG), (H1), (H2), and
(7.1). Then, from Theorem 7.1, we write A\J = A| (Fr(c), ), associated to ¢, = @1 (Fr(c), ),
which is such that ¢, <0 and ||¢;||e = 1, for all 7 € [0, 1].

We first claim that the function 7 — A7 is continuous in the interval [0,1]. Indeed, let
T, € [0,1], 7 — 7o. Hence it follows that the sequence A7 is bounded, by the same procedure
done in the proof of Theorem 5.2 in [22]. So, passing to a subsequence, we can say that AL, = Ao
for some \g. Then, by C1® estimates, compactness argument and stability, we obtain a solution
wo € E of (7.4) with A = Ag. Notice that ¢9 < 0 and ||¢o|lcc = 1. By the simplicity of
the eigenvalues (which is true under hypothesis (Ha), see [22]), we have \g = A, and so the
continuity follows. Analogously, 7 — A is continuous, where A} = A\ (Fr(c), Q).

On the other hand, we infer that the map 7 — A, given by A\, = X2(Fy(c),Q), is lower
semicontinuous; and therefore, for each A € (A1, A\2), we guarantee the existence a continuous
function g, in [0,1] satisfying po = A, and A\, < p, < A, for all 7 € [0,1], Here, A\, =
max (A, A1). In fact, this is accomplished by using arguments similar those in Propositions 5.5
and 5.6 of [1] — the slight differences have already appeared in the proof of Claim 6.3.

Next we define the operator A, : £ — FE which takes a function u into A,u = U, where U

is the unique LP-viscosity solution of the problem

T0’

F U] = pre(x)u+ f(x) in Q, U =0 on 0.

Of course A, is completely continuous, for all 7 € [0,1]. In particular, by C*% estimates in
[22], it follows that A, |5 < C{ lltrll o) lellzollullow + 1]l 2s + 1} < Co(1 + [[ulloc). Now the
conclusion is just a combination of topological arguments and Fredholm theory for the Laplacian
operator, cf. Lemma 5.8, Proposition 5.9 and Theorem 2.4 in [1], over the space E. |
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