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Abstract. We consider fully nonlinear uniformly elliptic cooperative systems with quadratic
growth in the gradient, such as

−Fi(x, ui, Dui, D2ui)− 〈Mi(x)Dui, Dui〉 = λci1(x)u1 + · · ·+ λcin(x)un + hi(x),

for i = 1, · · · , n, in a bounded C1,1 domain Ω ⊂ RN with Dirichlet boundary conditions; here
n ≥ 1, λ ∈ R, cij , hi ∈ L∞(Ω), cij ≥ 0, Mi satis�es 0 < µ1I ≤Mi ≤ µ2I, and Fi is an uniformly
elliptic Isaacs operator.

We obtain uniform a priori bounds for systems, under a weak coupling hypothesis that seems
to be optimal. As an application, we also establish existence and multiplicity results for these
systems, including a branch of solutions which is new even in the scalar case.
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1 Introduction

In this paper we study the following system of fully nonlinear uniformly elliptic equations −Fi(x,Dui, D
2ui)− 〈Mi(x)Dui, Dui〉 = λ

n∑
j=1

cij(x)uj + hi(x) in Ω

u1 = · · · = un = 0 on ∂Ω

(Pλ)

where Ω is a bounded C1,1 domain in RN , λ ∈ R, n,N ≥ 1, cij , hi ∈ L∞(Ω), and Mi is a
bounded nondegenerate matrix. Scalar product is denoted with 〈·, ·〉. We assume cij ≥ 0 in
Ω, which means that the system is noncoercive and cooperative when λ > 0. The latter is a
parameter which measures the size of the zero order matrix C = (cij)

n
i,j=1.

A very particular case, for which our results are new as well, is when each Fi is the Lapla-
cian; Fi can also be a linear operator in nondivergence form Fi(x,Du,D

2u) = tr(Ai(x)D2u) +
〈bi(x), Du〉, or it can even have a fully nonlinear structure as an Isaacs operator. We note that
nondivergence fully nonlinear equations with natural growth are particularly relevant for applica-
tions, since problems with such growth in the gradient are abundant in control and game theory,
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and more recently in mean-�eld problems, where Hamilton-Jacobi-Bellman and Isaacs operators
appear as in�nitesimal generators of the underlying stochastic processes. We refer to Section 2
of [9] for more on applications of this type of systems.

It is notable that the two terms in the left-hand side of (Pλ) have the same scaling with
respect to dilations, so the second order term is not dominating when we zoom into a given
point. This type of gradient dependence is usually named �natural� in the literature, and is the
object of extensive study. Another important property of (Pλ) is the invariance of this class of
systems with respect to di�eomorphic changes of variable, in x or u.

We start with a brief review of the literature for scalar equations (n = 1). It is known that
the sign of λ dramatically in�uences the solvability and properties of the solution set of (Pλ). For
the so-called strictly coercive case λc(x) << 0, existence and uniqueness when F is in divergence
form goes back to the works [4, 5, 7, 8, 17]. However, in the case of weakly coercive equations
(say, λ = 0) existence and uniqueness can be proved only under a smallness assumption on c and
M , as was �rst observed in [14]. These works use the weak integral formulation of the equation.

The third author showed in [26] that the same type of existence and uniqueness results
can be proved for general coercive equations in nondivergence form, by using techniques based
on the maximum principle. In that paper it was also observed, for the �rst time and with a
rather speci�c example with the Laplacian, that the solution set can be very di�erent in the
�noncoercive" case λc > 0, and in particular more than one solution may appear. It was also
conjectured in that paper that a re�ned analysis should be doable in order to embrace more
general structures.

In the last few years appeared several papers which unveil the complex nature of the solution
set for noncoercive equations, in the particular case of the Laplacian � see [2, 13, 16, 29]. In all
these works the crucial a priori bounds for u in the L∞-norm rely on the fact that the second
order operator is the Laplacian, or a divergence form operator.

In [21] we obtained similar results for general operators in nondivergence form, by using
di�erent techniques adapted to such operators. In particular, the conjectures in [26] for non-
coercive equations were established through a new method of obtaining a priori bounds in the
uniform norm. The method is based on some standard estimates from regularity theory, such as
half-Harnack inequalities, and their recent boundary extensions in [25], in addition to a Vázquez
strong maximum principle; see also [28] for an extensive description of the method.

However, up to our knowledge, nothing was known about systems with natural gradient
growth. This is what this work is devoted to, complement and extend the results in [21] to
the context of systems of the form (Pλ). We develop a machinery to obtain the crucial a priori
bounds for the system (Pλ) via a nondegeneracy hypothesis on the matrix C(x) that seems
to be optimal. In combination with these estimates we also exploit a Fredholm theory for
fully nonlinear operators with unbounded weight, which turns out to be an important tool in
investigating existence and multiplicity of solutions.

It is worth noting that general systems as (Pλ) do not have variational characterization even
if the second order operators Fi are in divergence form, such as the Laplacian; so variational
methods do not apply to such systems.

The paper is organized as follows. The next section contains the statements of our results.
In the preliminary section 3 we recall some known results that will be used throughout the text.
Section 4 is devoted to the proofs of the a priori bounds in the uniform norm for solutions of
the noncoercive problem (Pλ). In Section 5 we sketch the proof of our existence and multiplicity
results, which resemble to the scalar case [21] after some appropriate changes. Section 6, in turn,
consists of a multiplicity result which is new even for single equations in nondivergence form,
see Theorem 6.2. It is based on a version of the anti-maximum principle, proven in section 7
together with some tools involving eigenvalues.

2



2 Main Results

We assume that the matrices Mi satisfy the nondegeneracy condition

µ1I ≤Mi(x) ≤ µ2I a.e. in Ω (M)

for some µ1, µ2 > 0, and that Fi in (Pλ) has the following structure{
Fi(x, 0, X) is continuous in x ∈ Ω,

M−(X − Y )− b|~p− ~q| ≤ Fi(x, ~p,X)− Fi(x, ~q, Y ) ≤M+(X − Y ) + b|~p− ~q|
(SC)

for a.e. x ∈ Ω, where b ≥ 0 and M−, M+ are the Pucci extremal operators (see the next
section) with constants 0 < λP ≤ ΛP . For simplicity, the reader may think that each Fi[u] =
Fi(x,Du,D

2u) is in one of the following forms

tr(Ai(x)D2u) + 〈bi(x), Du〉 or M±λP ,ΛP (D2u)± bi(x)|Du| (2.1)

where Ai are continuous matrices whose spectrum is in [λP ,ΛP ], and bi are bounded vector
functions. Only at the expense of trivial technicalities we can consider more general operators
as in [21], with zero order terms, and coe�cients bi, cij , hi belonging to Lp, p > N . We prefer to
avoid such technicalities here, in order to concentrate on what is new due to the presence of a
system rather than a scalar equation.

Solutions of the Dirichlet problem (Pλ) are understood in the Lp-viscosity sense (see De�ni-
tion 3.1 below) and belong to C(Ω), so are bounded. We also use the notion of strong solutions,
which are functions in W 2,p

loc (Ω) satisfying the equation almost everywhere. Strong solutions are
viscosity solutions, [19]. Conversely, it follows from the regularity results in [22] that, if the oper-
ator Fi has property (H2) below, then viscosity solutions are strong. Hypothesis (SC) guarantees
that the Lp-viscosity solutions of (Pλ) have global C1,α regularity and estimates, by [22].

We denote F [u] := (F1[u1], · · · , Fn[un] ), u = (u1, · · · , un), f = (f1, · · · , fn), �x p > N , and
consider the Dirichlet problem

−F [u] = f(x) in Ω, u = 0 on ∂Ω. (2.2)

The model operators in (2.1) have the following properties.

For each f ∈ Lp(Ω)n, there exists a unique Lp-viscosity solution of (2.2). (H1)

For each f ∈ Lp(Ω)n, any solution u of (2.2) belongs to W 2,p(Ω)n. (H2)

More generally, operators satisfying (SC) and convex/concave in the Hessian matrix satisfy
(H1)�(H2), by [11, 22, 30]. We stress that (H2) above implies (H2) from [21] in the scalar case,
by the proof of the W 2,p regularity in [22].

Since we want to study the way the nature of the solution set changes when we go from
negative to positive zero order term (i.e. from λ < 0 to λ > 0), we will naturally assume that
the problem with λ = 0 has a solution.

The problem (P0) has a strong solution u0 = (u0
1, · · · , u0

n). (H0)

Theorem 1(ii) of [26] ensures (H0) for instance if µ2hi has small Lp-norm for each i (notice
that (P0) is a system of n uncoupled equations, hence Theorem 1 of [26] applies to each of these
equations separately). Examples showing that in general this hypothesis cannot be removed are
also found there. The function u0 is the unique Lp-viscosity solution of (P0), by Theorem 1(iii)
of [26].

We use the following order in the space E := C1(Ω)n.
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De�nition 2.1. Let u = (u1, · · · , un), v = (v1, · · · , vn) ∈ E. We denote u ≤ v in Ω to mean
ui ≤ vi in Ω for all i = 1, · · · , n. Also, we say that u� v if, for all i ∈ {1, . . . , n}, ui < vi in Ω,
and for any x0 ∈ ∂Ω we have either ui(x0) < vi(x0), or ui(x0) = vi(x0) and ∂νui(x0) < ∂νvi(x0),
where ~ν is the interior unit normal to ∂Ω.

We also write u ≤ C (≥ C) to mean ui ≤ C (respectively, ≥ C) for any i = 1, · · · , n.

As in any study of systems of equations, it is essential to determine the coupling of the
system, that is, the way each of the equations in�uences each of the components of the vector u.
A fully coupled system is one which cannot be split into two subsystems such that one of which
does not depend on the other. In our context, (Pλ) would be fully coupled if the matrix C is
irreducible, in the sense that for each nonempty I, J ⊂ {1, . . . , n}, I ∩ J = ∅, I ∪ J = {1, . . . , n}
there exist i ∈ I, j ∈ J , such that cij(x) 	 0 in Ω.

Every matrix C = (cij)
n
i,j=1 can be written in the block triangular form

C(x) = (Ckl(x))n
′
k,l=1, (2.3)

where 1 ≤ n′ ≤ n, Ckl are tk × tl matrices,
∑n′

k=1 tk = n, Ckk is irreducible for each k = 1, . . . , n′,
and Ckl ≡ 0 in Ω, for all k, l ∈ {1, . . . , n′} with k < l. This is easy to achieve by renumbering
lines and columns of C, that is, by changing the order of the equations in (Pλ) and renumbering
the components of u. Indeed, if C is irreducible, we can take n′ = 1, C11 = C; if not, there are two
subsets I, J as in the previous paragraph, and we renumber so that I = {1, . . . k} with k = |I|,
then repeat the same until reaching (2.3). See Section 4.2 below, and Section 8 in [9].

From now on we assume that C in (Pλ) is in the form (2.3). We will say that u� v in some
block if there exists some k ∈ {1, . . . , n′} such that ũ� ṽ in Ω, where for any w ∈ Rn we denote
with w̃ the vector (wsk−1+1, · · · , wsk), and s0 = 0, sk =

∑k
i=1 ti.

The additional assumption that we need to impose, which extends and plays the role of
hypothesis c 	 0 from the scalar case, is the following.

In (2.3), there is no 1× 1 block with a zero coe�cient, i.e. if tk = 1 then Ckk 6≡ 0. (H3)

This hypothesis seems to be optimal for our kind of systems, see Remark 4.3. To our knowledge,
this is the �rst time such a hypothesis appears in the study of elliptic systems.

We now state our results. The �rst theorem is a uniform estimate for solutions of (Pλ), which
is both important in itself and instrumental for the existence statements below.

Theorem 2.2. Suppose (M), (SC), (H3) hold. Let Λ1,Λ2 with 0 < Λ1 < Λ2. Then every
Lp-viscosity solution (u1, . . . , un) of (Pλ) satis�es

‖ui‖∞ ≤ C, for all λ ∈ [Λ1,Λ2], i = 1, . . . , n,

where C depends on n,N, p, µ1, µ2, diam(Ω),Λ1,Λ2, ‖b‖∞ , ‖cij‖∞ , ‖hi‖∞, λp,Λp, and on a lower
bound on the measure of the sets where the cij are positive, for those i, j which determine the
irreducibility of the blocks in the form (2.3).

The next theorems describe the solution set of (Pλ).

Theorem 2.3. Assume (M), (SC), (H0), (H1), and (H3).
1. Then, for λ ≤ 0, the problem (Pλ) has an Lp-viscosity solution uλ that converges to u0 in

E as λ → 0−. Moreover, the set Σ = { (λ, u) ∈ R× E ; u solves (Pλ) } possesses an unbounded
component C+ ⊂ [0,+∞]× E such that C+ ∩ ({0} × E) = {u0}.

2. This component is such that: either it bifurcates from in�nity to the right of the axis λ = 0
with the corresponding solutions having a positive part blowing up to in�nity in C(Ω) as λ→ 0+;
or its projection on the λ axis is [0,+∞).
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Figure 1: Illustration of Theorem 2.4.

3. There exists λ̄ ∈ (0,+∞] such that, for every λ ∈ (0, λ̄), the problem (Pλ) has at least two
Lp-viscosity solutions, uλ,1 and uλ,2 , satisfying uλ,1 → u0 in E; maxΩ uλ,2 → +∞ as λ → 0+;
and if λ̄ < +∞, the problem (Pλ̄) has at least one Lp-viscosity solution. The latter is unique if
F (x, ~p,X) is convex in (~p,X).

4. If (H2) holds, the solutions uλ for λ ≤ 0 are unique among Lp-viscosity solutions;
whereas the solutions from 3. for λ > 0 are ordered in some block. If in addition the system is
fully coupled, uλ,1 � uλ,2 in the sense of de�nition 2.1, for all λ > 0.

In the next two theorems, we show that it is possible to obtain a more precise description
of the set Σ, provided we know the sign of u0. For this, we need to extend the hypothesis
c(x)u0 6≡ 0 from the scalar case to the context of the system. The following assumption is a
natural requirement in view of our weak coupling hypothesis (H3).

(Cu0)i 6≡ 0 for at least one i ∈ Sk = {sk−1 + 1, . . . , sk}, for all k ∈ {1, . . . , n′}, (H4)

where s0 = 0, sk =
∑k

i=1 ti, with ti and n
′ coming from (2.3).

Notice that hypothesis (H4) is consistent with the results obtained for single equations in
nondivergence form in [21]. In the particular case n′ = 1, namely if the system is fully coupled,
we recover the assumption C(x)u0 6≡ 0, as a vector.

Theorem 2.4. Suppose (M), (SC), (H0), (H1), (H2), (H3), (H4), and u0 ≤ 0.
Then every nonpositive solution of (Pλ) with λ > 0 satis�es u � u0. Furthermore, for

every λ > 0, the problem (Pλ) has at least two nontrivial strong solutions uλ,1 ≤ uλ,2 , such that
uλ2,1 � uλ1,1 � u0 if 0 < λ1 < λ2 , and uλ,1 → u0 in E; maxΩ uλ,2 → +∞ as λ→ 0+. If
F (x, ~p,X) is convex in (~p,X) then maxΩ uλ,2 > 0 for all λ > 0.

Theorem 2.5. Suppose (M), (SC), (H0), (H1), (H2), (H3), (H4), and u0 ≥ 0.

Then every nonnegative solution of (Pλ) with λ > 0 satis�es u� u0. Moreover, there exists
λ̄1 ∈ (0,+∞) such that for every λ ∈ (0, λ̄1), the problem (Pλ) has at least two nontrivial strong
solutions with uλ,1 ≤ uλ,2 , where u0 � uλ1,1 � uλ2,1 if 0 < λ1 < λ2 , uλ,1 → u0 in E, and
maxΩ uλ,2 → +∞ as λ→ 0+. The problem (Pλ̄1) has at least one nonnegative strong solution,
which is unique if F is convex in (~p,X); and for λ > λ̄1, the problem (Pλ) has no nonnegative
solution.

Furthermore, there exists some δ > 0 such that, if supi µ2‖hi‖Lp(Ω) ≤ δ, with h 	 0, then we
have the existence of λ̄2 > λ̄1 such that (Pλ) has at least two strong solutions for λ > λ̄2, with
uλ,1 � 0 in Ω and minΩ uλ,2 < 0. The problem (Pλ̄2) has at least one nonpositive strong solution,
which is unique if F is convex in (~p,X); and for λ < λ̄2, the problem (Pλ) has no nonpositive
solution.
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Figure 2: Illustration of Theorem 2.5 for µ2h 	 0 small in Lp-norm.

Moreover, as in item 4 of Theorem 2.3, in theorems 2.4 and 2.5 the solutions uλ,1, uλ,2 are
ordered in at least one block; and uλ,1 � uλ,2 in the sense of de�nition 2.1, for all λ > 0 if (Pλ)
is fully coupled, see Claim 5.7.

We remark that the hypotheses u0 ≤ 0, resp u0 ≥ 0, of the above theorems are implied for
instance by h ≤ 0, resp h ≥ 0. See Remark 6.25 of [21] for a proof.

We stress that theorems 2.2�2.5 are new even for systems involving the Laplacian operator.
Moreover, the second part in Theorem 2.5 is new even for a single equation, in the context of
nondivergence form operators.

3 Preliminaries

In this section we brie�y recall some de�nitions and previous results which we use in the sequel.
More comments can be found in the preliminary section of [21].

Let Fi (x, ~p,X) : Ω× RN × SN → R be a measurable function satisfying (SC), where

M+(X) := sup
λP I≤A≤ΛP I

tr(AX) , M−(X) := inf
λP I≤A≤ΛP I

tr(AX)

are the Pucci's extremal operators with constants 0 < λP ≤ ΛP . See, for example, [10] for their
properties. Also, denote L±[u] :=M±(D2u)± b|Du|, for b ≥ 0.

De�nition 3.1. Let f ∈ Lp
loc

(Ω)n. We say that u ∈ C(Ω) is an Lp-viscosity subsolution
(respectively, supersolution) of the system F [u] = f(x) in Ω if, for each i ∈ {1, · · · , n}, whenever
φ ∈W 2,p

loc (Ω), ε > 0 and O ⊂ Ω open are such that

Fi(x, ui(x), Dφ(x), D2φ(x))− fi(x) ≤ −ε (Fi(x, ui(x), Dφ(x), D2φ(x))− fi(x) ≥ ε)

for a.e. x ∈ O, then ui − φ cannot have a local maximum (minimum) in O.

If both Fi and fi are continuous in x, for all i = 1, · · · , n, we can use the more usual notion
of C-viscosity sub and supersolutions � see [12].

On the other side, a strong sub or supersolution belongs to W 2,p
loc (Ω)n and satis�es the in-

equality at almost every point. As we already mentioned, this is intrinsically connected to the
notion of Lp-viscosity solution; more precisely we have the following fact.
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Proposition 3.2. Let Fi satisfy (SC) and fi ∈ Lp(Ω), µ ≥ 0. Then, ui ∈ W 2,p
loc (Ω) is a strong

subsolution (supersolution) of Fi[ui] + µ|Dui|2 = fi in Ω if and only if it is an Lp-viscosity
subsolution (supersolution) of this equation.

See Theorem 3.1 and Proposition 9.1 in [19] for a proof. For scalar equations it is also well
known that the pointwise maximum of subsolutions, or supremum over any set (if this supremum
is locally bounded), is still a subsolution, see [18].

The next proposition follows from Theorem 4 in [26] or Proposition 9.4 in [19].

Proposition 3.3. (Stability) Let F , Fk be scalar operators satisfying (SC), p > N , f, fk ∈
Lp(Ω), uk ∈ C(Ω) an Lp-viscosity subsolution (supersolution) of

Fk(x, uk, Duk, D
2uk) + 〈M(x)Duk, Duk〉 ≥ (≤)fk(x) in Ω , for all k ∈ N.

Suppose uk → u in L∞loc(Ω) as k →∞ and, for each B ⊂⊂ Ω and ϕ ∈W 2,p(B), if we set

gk(x) := Fk(x, uk, Dϕ,D
2ϕ)〉 − fk(x) , g(x) := F (x, u,Dϕ,D2ϕ)− f(x)

we have ‖(gk−g)+‖Lp(B) (‖(gk−g)−‖Lp(B))→ 0 as k →∞. Then u is an Lp-viscosity subsolution
(supersolution) of F (x, u,Du,D2u) + 〈M(x)Du,Du〉 ≥ (≤)f(x) in Ω .

The following result follows from Lemma 2.3 in [26], see also the appendix of [21].

Lemma 3.4. (Exponential change) Let p > N and u ∈ C(Ω). For m > 0 set mv = emu− 1 and
mw = 1− e−mu. Then the following inequalities hold in the Lp-viscosity sense

M±(D2u) +mλP |Du|2 ≤
M±(D2v)

1 +mv
≤M±(D2u) +mΛP |Du|2,

M±(D2u)−mΛP |Du|2 ≤
M±(D2w)

1−mw
≤M±(D2u)−mλP |Du|2.

The following scalar estimates will play a pivotal role in our proofs. The �rst one is a global
variant of the Local Maximum Principle (LMP); see [23, 25] for a proof.

Theorem 3.5 (GLMP). Let u be a locally bounded Lp-viscosity subsolution of{
L+(D2u) + ν(x)u ≥ −f(x) in Ω

u ≤ 0 on ∂Ω

with f ∈ Lp(Ω), ν ∈ Lp1(Ω), for some p, p1 > N . Then, for each r > 0,

sup
Ω
u+ ≤ C

((∫
Ω

(u+)r
)1/r

+ ‖f+‖Lp(Ω)

)
,

where C depends only on N, p, p1, λ, Λ, r, b, and ‖ν‖Lp1 (Ω).

We recall the following two global scalar versions of the quantitative strong maximum prin-
ciple (QSMP) and the weak Harnack inequality (WHI), which follow from theorems 1.1 and 1.2
in [25]. Denote d = d(x) = dist(x, ∂Ω).

Theorem 3.6 (GQSMP). Assume u is an Lp viscosity supersolution of L−[u]−gu ≤ f , u ≥ 0 in
Ω, and let f, g ∈ Lp(Ω), p > n. Then there exist constants ε, c, C > 0 depending on n, λ,Λ, b, p,
and ‖g‖p such that

inf
Ω

u

d
≥ c

(∫
Ω

(f−)ε
)1/ε

− C
∥∥f+

∥∥
p
.
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Theorem 3.7 (GWHI). Suppose g, f ∈ Lp, p > n. Assume u is an Lp viscosity supersolution
of L−[u] − gu ≤ f , u ≥ 0 in Ω. Then there exist constants ε, c, C > 0 depending on n, λ,Λ, b, p
and ‖g‖p such that

inf
Ω

u

d
≥ c

(∫
Ω

(u
d

)ε)1/ε

− C
∥∥f+

∥∥
p
.

In [25], theorems 3.6 and 3.7 are proved for g ≡ 0, but exactly the same proofs there work
for any g ≥ 0. Moreover, since the function u has a sign, g−u ≥ 0 and they are also valid for
nonproper operators. Theorem 3.7 implies, in particular, the strong maximum principle (SMP)
for single equations when f = 0, i.e. for Ω ∈ C1,1 and u an Lp-viscosity solution of L−[u]−gu ≤ 0,
u ≥ 0 in Ω, where g ∈ Lp(Ω), we have either u ≡ 0 in Ω or u > 0 in Ω; in the latter case, if
u(x0) = 0 at x0 ∈ ∂Ω, then ∂νu(x0) > 0, by Hopf lemma. We are going to refer to these simply
as SMP and Hopf throughout the text.

4 A priori estimates for systems

This section contains the proof of Theorem 2.2, that is, we establish uniform a priori bounds for
the system (Pλ). We will develop ideas in [27, 28].

For simplicity, we carry over the proofs in the model case n = 2. We just refer to the
di�erences from the general case when needed.

4.1 Estimates from below

The �rst step to obtain a priori estimates, as in [21, Section 5], is to prove that any Lp-viscosity
supersolution of (Pλ) is uniformly bounded from below.

Theorem 4.1. Suppose (SC) and let Λ2 > 0. Then every Lp-viscosity supersolution (u1, . . . , un)
of (Pλ) satis�es ∥∥u−i ∥∥∞ ≤ C1, for all λ ∈ [0,Λ2], i = 1, . . . , n,

where C1 depends only on n,N, p, µ1,Ω,Λ2, ‖b‖∞ , ‖cij‖∞ ,
∥∥h−i ∥∥∞ , λp,Λp.

Proof. First we take Ui = u−i and we make the following exponential change

wi =
1− e−mUi

m
, i = 1, 2, with m =

µ1

Λp
.

By Lemma 3.4 we know that (w1, w2) satis�es

−L+
1 [wi] ≤

λ

m
ci1(x) |ln(1−mw1)| (1−mwi)

+
λ

m
ci2(x) |ln(1−mw2)| (1−mwi) + h−(x) in Ω

with wi = 0 on ∂Ω, where L+
1 [w] = L+[w]−mh−(x)w and h− = max{h−1 , h

−
2 }.

Now we consider−L
+
1 [w] ≤ h−(x) + 2λ

m c(x) |ln(1−mw)| (1−mw) in Ω

w = 0 on ∂Ω
(4.1)

where c = maxi,j{cij}. Notice that w = max{w1, w2} satis�es (4.1). De�ne

w̄ = supA, where A := {w : w is an Lp-visc. solution of (4.1); 0 ≤ w < 1/m in Ω}.
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As a supremum of subsolutions, w̄ is a subsolution of (4.1).
Next we proceed as in [21, Proposition 5.2] to prove that w̄ 6= 1

m . Indeed,

w̄(x) ≤ C
∥∥f+

∥∥
p
dist(x, ∂Ω)→ 0 as x→ ∂Ω

where

f(x) = h−(x) +
λ

m
c(x) |ln(1−mw̄)| (1−mw̄).

Assume by contradiction that there exists a sequence of supersolutions (uk1, u
k
2) of (Pλ) with

unbounded negative parts, namely there exists a subsequence such that

(uk1)−(xk) =
∥∥∥(uk1)−

∥∥∥
∞
→∞, xk ∈ Ω̄, xk → x0 ∈ Ω̄

with xk ∈ Ω for large k since uk1 ≥ 0 on ∂Ω. One has

wk1(xk) =
1

m
{1− e−m(uk1)−(xk)} → 1

m
.

Take wk = max{wk1 , wk2} < 1/m. Then,

wk(xk)→
1

m

and wk ∈ A. In particular, for every ε > 0 there exists k0 such that

1

m
≥ w̄(xk) ≥ wk(xk) ≥

1

m
− ε, for all k ≥ k0

thus

w̄(x0) ≥ lim inf
xk→x0

w̄(xk) = lim
k→∞

w̄(xk) =
1

m
.

As a consequence, x0 ∈ Ω and w̄(x0) = 1
m . Then we reach a contradiction as in [21, Proposition

5.2], by applying a nonlinear version of the strong maximum principle [21, Lemma 5.3].

4.2 Estimates from above

First we recall that the matrix C = (cij)
n
i,j=1 is said to be irreducible � equivalently we say that

the system (Pλ) is fully coupled for λ > 0 � if for any nonempty sets I, J ⊂ {1, · · · , n} such that
I ∩ J = ∅ and I ∪ J = {1, · · · , n}, there exist i0 ∈ I and j0 ∈ J for which

meas{x ∈ Ω; ci0j0(x) > 0} > 0. (4.2)

This means that the system cannot be split into two subsystems in which one of them does not
depend on the other. For instance, if n = 2, it says that c12 	 0 and c21 	 0 in Ω. Of course
if both c12 and c21 are identically zero, then we already know multiplicity from [21], as soon as
c11 	 0 and c22 	 0.

For simplicity, when (4.2) holds we write ci0j0 	 0 in Ω. We can �x ρ > 0 such that the sets
{x ∈ BR; ci0j0(x) ≥ ρ} have positive measures. Let ω > 0 be a lower bound for these measures.

Then we recall our main result concerning a priori estimates for systems.

Theorem 4.2. Suppose (SC) holds and let Λ1,Λ2 with 0 < Λ1 < Λ2. Assume further that
C(x) = (cij)

n
i,j=1 is in the block triangular form (2.3), and that (H4) holds, namely C has no

1 × 1 diagonal blocks with a zero coe�cient. Then every Lp-viscosity solution (u1, . . . , un) of
(Pλ) satis�es

‖ui‖∞ ≤ C, for all λ ∈ [Λ1,Λ2], i = 1, . . . , n,

where C depends on n,N, p, µ1, µ2, diamΩ,Λ1,Λ2, ‖b‖∞ , ‖cij‖∞ , ‖hi‖∞, λp,Λp, and ω.
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Remark 4.3. Notice that if C(x) is in the form (2.3) and has a 1× 1 diagonal block with a zero
coe�cient, then there is no chance of getting a priori bounds for (Pλ), in general. Indeed, say
that block is in the i0-th line. Even if we could prove that all preceding functions u1, . . . , ui0−1

are uniformly bounded, then ui0 solves a scalar equation without a zero-order term. Speci�cally,
ui0 solves an equation like (P0), but with hi0 replaced by hi0 + λ

∑i0−1
j=1 ci0juj; however, as we

recalled after (H0) such an equation admits in general a priori bounds only if hi0 is small, while
resonance phenomena may appear otherwise, see [15] and [26].

See also section 6 for a two parameter dependence in the problem (Pλ), obtained for a large
parameter λ but a small h.

Remark 4.4. Clearly, if (Pλ) is fully coupled then it satis�es the hypotheses of Theorem 4.2,
just take n′ = 1. The other extreme is a diagonal matrix such that ckk 	 0 for any k, by
choosing n′ = n, which corresponds to n independent scalar equations with positive zero-order
term coe�cients, and Theorem 4.2 reduces to [21, Theorem 2.1].

Now we prove Theorem 4.2. As a �rst step, we assume that (Pλ) is fully coupled. Again, in
order to avoid cumbersome notation, we assume n = 2, and we point out how to adapt the proof
for n ≥ 2 when necessary.

By Theorem 4.1, solutions are bounded from below by a uniform constant C1. Fix δ > 0.
Notice that vi := ui + C1 + δ, is a nonnegative viscosity solution of

M−(D2vi)− b |Dvi| ≤ −λci1(x)v1 − λci2(x)v2 − µ1 |Dvi|2 + h̃i(x) in Ω,

where h̃i = h−i + Λ2{ci1 + ci2}(C1 + δ). Thus, by Lemma 3.4, the functions

wi :=
1

m1
{em1vi − 1}, i = 1, 2,

where m1 = µ1
Λp
, form a nonnegative viscosity supersolution of

L−i [wi] ≤ fi(x) in Ω, i = 1, 2

with L−i [w] =M−(D2w)− b |Dw|−m1h̃i(x)w and fi(x) = − λ
m1
ci1(x)(1+m1wi) ln(1+m1w1)−

λ
m1
ci2(x)(1 +m1wi) ln(1 +m1w2) + h̃i(x). Let

I1 = inf
Ω

w1

d
, I2 = inf

Ω

w2

d
.

Since f+
i ∈ Lp(Ω) (see the proof of Theorem 5.1 in [21]), we can apply Theorem 3.6 to obtain

suitable constants such that

I1 ≥ c0

(∫
Ω

(f−1 )ε
)1/ε

− C0

∥∥f+
1

∥∥
Lp

= c0

(∫
Ω

{( λ

m1
c11(x)(1 +m1w1) ln(1 +m1w1)

+
λ

m1
c12(x)(1 +m1w1) ln(1 +m1w2)− h̃1(x)

)+}ε)1/ε
− C

≥ c0 inf
Ω

w1

d

(∫
Ω

((
λc11(x)

1 +m1w1

m1w1
d ln(1 +m1w1)

+ λc12(x)
1 +m1w1

m1w1
d ln(1 +m1w2)− h̃1(x)

1 +m1w1

w1
d
)+)ε)1/ε

− C

≥ c0I1

(∫
Ω

{(
λc11(x)d ln(1 + I1m1d) + λc12(x)d ln(1 + I2m1d)

−m1h̃1(x)d
)+}ε)1/ε

− C

10



Therefore

I1

{
c0

(∫
Ω
dε
((
λc11(x) ln(1 + I1m1d) + λc12(x) ln(1 + I2m1d)

−m1h̃1(x)
)+)ε)1/ε

− 1
}
≤ C (4.3)

and analogously

I2

{
c0

(∫
Ω
dε
((
λc21(x) ln(1 + I1m1d) + λc22(x) ln(1 + I2m1d)

−m1h̃2(x)
)+)ε)1/ε

− 1
}
≤ C. (4.4)

We prove in the sequel that both I1 and I2 are bounded from above. By full coupling, c12 	 0
and c21 	 0. Since I1 ≥ 1

m1
{em1δ − 1} > 0, (4.3) implies∫

Ω
dε
((
λc11(x) ln(1 + I1m1d) + λc12(x) ln(1 + I2m1d)−m1h̃1(x)

)+)ε
≤ C.

In particular, ∫
Ω
dε
((
λc12(x) ln(1 + I2m1d)−m1h̃1(x)

)+)ε
≤ C,

and analogously by (4.4),∫
Ω
dε
((
λc21(x) ln(1 + I1m1d)−m1h̃2(x)

)+)ε
≤ C,

whence I1, I2 ≤ C as in [21, p.1829]. In the general case n ≥ 2, we just observe that by full
coupling for any �xed k = 1, . . . , n there exists an index j = 1, . . . , n, j 6= k, such that cjk 	 0.
Thus, exploiting the j-th equation we get∫

Ω
dε
((
λcjk(x) ln(1 + Ikm1d)−m1h̃j(x)

)+)ε
≤ C,

and Ik turns out to be bounded, for all k = 1, · · · , n.
Let us now turn back to the model case n = 2. By Theorem 3.7 and I1 ≤ C we �nd constants

such that (∫
Ω

(w1)ε1
)1/ε1

≤ diamΩ

(∫
Ω

(w1

d

)ε1)1/ε1

≤ C0 {I1 +
∥∥f+

1

∥∥
p
} ≤ C. (4.5)

Similarly, using I2 ≤ C we obtain (∫
Ω

(w2)ε2
)1/ε2

≤ C. (4.6)

Set

zi =
1

m2
{em2ui − 1}, i = 1, 2,

where m2 = µ2
λp
. Since

M+(D2zi) + b |Dzi|+
λ

m2zi
ci1(x)(1 +m2zi) ln(1 +m2z1)zi

+
λ

m2zi
ci2(x)(1 +m2zi) ln(1 +m2z2)zi ≥ −h+

i (x)(1 +m2zi) in Ω,
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with zi = 0 on ∂Ω, then z := max{z1, z2} satis�es the following problem{
M+(D2z) + b |Dz|+ ν(x)z ≥ −h+(x) in Ω

z = 0 on ∂Ω,
(4.7)

where

ν(x) =
2λ

m2z
c(x)(1 +m2z) ln(1 +m2z) +m2h

+(x),

c(x) = maxi,j{cij(x)}χ{z>0}, and h
+ = max{h+

1 , h
+
2 }. Notice that

zi =
1

m2
{(1 +m1wi)

m2
m1 e−m2(C1+δ) − 1}.

Moreover, for any s there exists Cs such that

|ν| ≤ Csc(x)(1 + |z|s).

Set ε = min{ε1, ε2}. If we take s = εm1
m2

p−N
p(p+N) and p1 = p+N

2 , then, by Hölder, given
1
p1

= 1
p + 1

p2
, we obtain

‖c |z|s‖p1 ≤ ‖c‖p ‖|z|
s‖p2 ≤ ‖c‖p ‖|z1|s‖p2 + ‖c‖p ‖|z2|s‖p2

= ‖c‖p
(∫

Ω
|z1|

ε
m1
m2

) p−N
p(p+N)

+ ‖c‖p
(∫

Ω
|z2|

ε
m1
m2

) p−N
p(p+N)

.

Recall that both I1 and I2 are bounded from above, and both (4.5) and (4.6) are satis�ed. Then

‖ν‖p1 ≤ C ‖c‖p + ‖c |z|s‖p1 +m2‖h+‖p ≤ C.

Thus we have, by Theorem 3.5 applied to (4.7),

sup
Ω
z+ ≤ C

{(∫
Ω
|z1|

ε1
m1
m2

) m2
ε1m1

+

(∫
Ω
|z2|

ε2
m1
m2

) m2
ε2m1

+
∥∥h+

∥∥
p

}
≤ C.

Hence, u+
1 and u+

2 are uniformly bounded in Ω. This proves that Theorem 4.2 holds for any fully
coupled system.

Next, take a system whose matrix is in the block triangular form (2.3), with no 1 × 1 zero
diagonal blocks. Consider the �rst t1 equations. They are either a fully coupled system (if
t1 > 1), or a scalar equation with a nonvanishing zero order coe�cient (if t1 = 1). Hence, by
the above and [21, Theorem 5.1] we conclude that u1, . . . , ut1 are uniformly bounded. We can
now consider these t1 functions as being part of the h-terms in the next t2 equations, which in
turn become a fully coupled system (if t2 > 1) or a scalar equation with a positive zero order
coe�cient (if t2 = 1). The reasoning iterates, and one proves uniform bounds for u1, . . . , un.

5 Multiplicity results for systems

In this section we extend to systems the arguments in [21]. Our goal is to point out the main
di�erences that come from the nature of the system, and refer to [21] for further details and
references.

Throughout this section, 〈M(x)Du,Du〉 will be the shorthand notation for the vector with
entries 〈Mi(x)Dui, Dui〉, i = 1, · · · , n. We set E := C1(Ω)n, the Banach space with the norm
‖u‖E = max1≤i≤n ‖ui‖C1(Ω), where u = (u1, · · · , un).

We start with some auxiliary results.
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De�nition 5.1. An Lp-viscosity subsolution ξ ∈ E (respectively, supersolution η) of (Pλ) is
said to be strict if every Lp-viscosity supersolution (subsolution) u ∈ E of (Pλ) such that ξ ≤ u
(u ≤ η) in Ω, also satis�es ξ � u (u� η) in Ω.

Under hypothesis (H1), we de�ne the operator Tλ : E → E that takes u = (u1, · · · , un) into
Tλu = U = (U1, · · · , Un) , the unique Lp-viscosity solution of the problem

−F [U ] = λC(x)u+ 〈M(x)Du,Du〉+ h(x) in Ω, U = 0 on ∂Ω, (T uλ )

for any λ ∈ R, where h = (h1, · · · , hn).

Theorem 5.2. Suppose (SC), and (H1). Let ξ = max1≤i≤κ ξi , η = min1≤j≤ι ηj , where ξi , ηj ∈
W 2,p(Ω)n are strong sub and supersolutions of (Pλ) respectively, with ξ ≤ η in Ω. Then (Pλ)
has an Lp-viscosity solution satisfying ξ ≤ u ≤ η in Ω. Furthermore,

(i) If ξ and η are strict in the sense of de�nition 5.1, then for large R > 0 we have deg(I −
Tλ,S, 0) = 1 where S = O ∩ BR, for O = {u ∈ C1

0 (Ω); ξ � u� η in Ω}.

(ii) If (H2) holds and λ ≥ 0, there exists a minimal and a maximal solution, u and u, of (Pλ)
in the sense that every (strong) solution u of (Pλ) in the order interval [ξ, η] (i.e. such that
ξ(x) ≤ u(x) ≤ η(x) for all x ∈ Ω) satis�es ξ ≤ u ≤ u ≤ u ≤ η in Ω.

Moreover, the conclusion is true if we replace C(x) by C(x, u) de�ned by (C(x, u))ijuj =
cij(x)Ra(uj) for i, j = 1, . . . , n, where Ra is de�ned as Ra(uj) = uj for u ≥ a, Ra(uj) = a for
uj < a.

Proof. Analogously to [21, Claim 4.1], we see that Tλ is completely continuous in compact
intervals of λ, by using C1,α regularity estimates in each equation.

Fix some λ ∈ [Λ1,Λ2] and consider R ≥ max{C, ‖ξ‖E , ‖η‖E} + 1, where C is such that
‖ui‖C1,α(Ω) ≤ C, i = 1, · · · , n, for every solution u of (Pλ) which is in the order interval [ξ, η],
and for all λ ∈ [Λ1,Λ2]. The existence of a solution in [ξ, η] follows by constructing a modi�ed
problem (P̃λ), which corresponds to the truncation made in [21, p.1820] componentwise. Then:

(a) solutions of (P̃λ) are �xed points of a truncated operator T̃λ;
(b) the problems (P̃λ) and (Pλ) coincide in the order interval [ξ, η];
(c) ‖T̃λu‖E < R0, for all u ∈ E, for some R0 > R, and deg(I − T̃λ,BR0 , 0) = 1.

Indeed, (b) follows by applying the maximum principle for each i. Moreover, if ξ, η are strict,
then the degree computation in S is exactly the same as in [21, p.1823].

For the existence of extremal solutions under (H2) we just need to note that, if u, v are
solutions of (Pλ), then η̃ := min{u, v} is an Lp-viscosity supersolution of (Pλ). Indeed, if λ ≥ 0,
then ui and vi satisfy the equation −Fi [w] ≥ λci1η̃1 + · · ·+λcinη̃n + 〈Mi(x)Dui(x), Dui(x)〉+hi
in the Lp-viscosity sense, and so does η̃i = min{ui, vi}. Once we know this, the proof of Theorem
5.2(ii) follows as in [21, Claim 4.5]. �

Now we work with an auxiliary problem (Pλ,k) which has no solutions for large k, and such
that (Pλ,0) reduces to (Pλ). Fix Λ2 > 0. Recall that constants are understood as vector constants
when we are dealing with the system, as in De�nition 2.1. Then, Proposition 4.1 gives us an a
priori lower uniform bound C0, depending on Λ2, such that

u ≥ −C0 for every Lp-viscosity supersolution of (Pλ), for all λ ∈ [0,Λ2].

Consider, thus, the system{
−F [u] = λC(x)u+ h(x) + 〈M(x)Du,Du〉+ k h̃(x) in Ω

u = 0 on ∂Ω
(Pλ,k)
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for k ≥ 0, λ ∈ [0,Λ2]. Also, if h− = (h−1 , · · · , h−n ), then h̃ = (h̃1, · · · , h̃n) is such that

h̃(x) = h̃Λ2(x) := h−(x) + (A+ Λ2C0) c̃(x); c̃ = max
1≤i≤n

n∑
j=1

cij ∈ L∞+ (Ω), (5.1)

with A := λ1/m , m = µ1/ΛP . Here, λ1 = λ+
1 (L−(c̃),Ω) > 0 is the �rst eigenvalue with weight

c̃ associated to the positive scalar eigenfunction ϕ1 ∈W 2,p(Ω) given by Proposition 7.1, namely

(L− + λ1c̃ ) [ϕ1] = 0 and ϕ1 > 0 in Ω, ϕ1 = 0 on ∂Ω. (5.2)

Note that every Lp-viscosity solution of (Pλ,k) is also supersolution of (Pλ), since kh̃ ≥ 0,
and so satis�es u ≥ −C0. From this and (5.1) we have, for all k ≥ 1,

λC(x)u+ h(x) + k h̃(x) ≥ −Λ2C0 c̃(x)− h−(x) + h̃(x) = Ac̃(x) 	 0 a.e. in Ω. (5.3)

Lemma 5.3. For each �xed Λ2 > 0, (Pλ,k) has no solutions for all k ≥ 1 and λ ∈ [0,Λ2].

Proof. First observe that, from (5.3), every Lp-viscosity solution of (Pλ,k) is positive in Ω for
λ ∈ [0,Λ2]. Let us assume by contradiction that (Pλ,k) has a solution u. Then it is also a solution
of

L−[u] ≤ −µ1|Du|2 −Ac̃(x) and u > 0 in Ω,

and from Lemma 3.4, −L−[v] ≥ λ1c̃(x)v + Ac̃(x) and v > 0 in Ω, using mA = λ1 , where
mvi = emui − 1, for m and A from (5.1), i = 1, · · · , n. Now, since each vi is a supersolution of
−L−[vi] ≥ λ1c̃(x)vi +Ac̃(x), thus v := min1≤i≤n vi satis�es

(L− + λ1c̃ )[ v ] � 0 and v > 0 in Ω. (5.4)

Then (5.2), (5.4), and Proposition 7.2 yield v = tϕ1 for some t > 0. But this contradicts the
�rst line in (5.4), since (L− + λ1c̃)[ tϕ1] = t(L− + λ1c̃)[ϕ1] = 0 in Ω. �

When we are assuming hypothesis (H2) we just say solutions to mean strong solutions of (Pλ).
However, it is worth mentioning that sub and supersolutions, in general, are not strong, since
we are considering the problem in the Lp-viscosity sense. In order to avoid possible confusion,
we make explicit the notion of sub/supersolution we are referring to.

The next result is important in degree arguments, bearing in mind the set S in Theorem 5.2(i).
This will play the role of the strong subsolution ξ in that theorem.

Lemma 5.4. Suppose (SC), and (H2). Then, for every λ ≥ 0, there exists a strong strict
subsolution ξλ of (Pλ) which is strong minimal, in the sense that every strong supersolution η of
(Pλ) satis�es ξλ ≤ η in Ω.

Proof. Let K > 0 from Proposition 4.1 be such that every Lp-viscosity supersolution η of

−F [η] ≥ λC(x)η + 〈M(x)Dη,Dη〉 − h−(x)− 1 in Ω, η ≥ 0 on ∂Ω (Qλ)

satis�es η ≥ −K in Ω. Let ξ0 be the strong solution of the problem

L−[ξ0] = λKC(x) + h−(x) + 1 in Ω, ξ0 = 0 on ∂Ω, (5.5)

given, for example, by [9]. Then, as the right hand side of (5.5) is positive, by ABP, SMP and
Hopf, we have ξ0 � 0 in Ω. As in [21, Claim 6.3], we see that

every Lp-viscosity supersolution η of (Pλ) satis�es η ≥ ξ0 in Ω. (5.6)
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Indeed, notice that η is an Lp-viscosity supersolution of (Qλ) and so satis�es η ≥ −K. Second,
by (SC) and M ≥ 0, η is also an Lp-viscosity supersolution of

−L−[η] ≥ λC(x)η + h(x) ≥ −λKC(x)− h−(x)− 1 in Ω.

Then v := η − ξ0 is an Lp-viscosity solution of L−[v] ≤ 0, since ξ0 is strong. Further, v ≥ 0 on
∂Ω, then v ≥ 0 in Ω by ABP, which proves (5.6). Moreover, setting

(C (x, t))ij = cij(x) if tj ≥ −K; (C (x, t))ij = −K cij(x)/tj if tj < −K,

we have 0 ≤ (C (x, t))ij ≤ cij(x) a.e. in Ω and (C (x, t))ijtj ≥ −Kcij(x) for all tj ∈ R. Then,

−F [ξ0] ≤ −L−[ξ0] ≤ λ C (x, ξ0)ξ0 + 〈M(x)Dξ0, Dξ0〉 − h−(x)− 1,

and so ξ0 is a strong subsolution of (Qλ), where (Qλ) is the problem (Pλ) with C, h replaced by
C = C(x, u), h = −h− − 1. In addition, (C(x, u))ijuj = cij(x)R−K(uj) for i, j = 1, . . . , n, with
R−K as in Theorem 5.2.

Let η0 be some �xed strong supersolution of (Pλ) (if it does not exist, the proof is �nished).
Then, by (5.6), we have ξ0 ≤ η0 in Ω. Also, in that proof we observed that η0 ≥ −K, so
C (x, η0) ≡ C(x) a.e. x ∈ Ω, which implies that η0 is a strong supersolution of (Qλ). By Theorem
5.2(iii), we obtain an Lp-viscosity solution w of this problem, with ξ0 ≤ w ≤ η0 in Ω, which
is strong and can be chosen as the minimal solution in the order interval [ξ0, η0], by (H2) and
λ ≥ 0. As in [21, Claim 6.5], since λ ≥ 0, we easily see that η is a strict supersolution of (Pλ),
with η ≥ w in Ω � we only need to pay attention in performing the same argument in the end of
the proof of Theorem 6.3 in order to have the minimum of supersolutions as a supersolution. �

Now we turn to the proof of theorems 2.3, 2.4 and 2.5.

5.1 Proof of Theorem 2.3

We start with the coercive case. Of course ξ = u0 − ‖u0‖∞ and η = u0 + ‖u0‖∞ are strong sub
and supersolutions of the problem (Pλ), for each λ < 0, with ξ ≤ u0 ≤ η in Ω. Indeed, it is just
a question of using (SC) to obtain F [ξ] ≥ F [u0] ≥ F [η], together with λc(x)ξ ≥ 0 ≥ λc(x)η.
Then Theorem 5.2 provides a solution uλ ∈ [ξ, η], for all λ < 0.

To show ‖uλ − u0‖E → 0 as λ → 0+, we take an arbitrary sequence λk → 0+, and obtain
� via stability, C1,α regularity and compact inclusion � the existence of a limit function u such
that uk → u in E, which is an Lp-viscosity solution of (P0). From the uniqueness of the solution
at λ = 0, u = u0.

For the existence of a continuum from u0, we �x ε > 0 and look at the pair ξ = u0 − ε and
η = u0 + ε, which are strong sub and supersolutions for (P0). Since u0 is the unique Lp-viscosity
solution of the problem (P0), ξ and η are strict. Then, Theorem 5.2(i) and the uniqueness of the
solution u0 give us ind(I − T0 , u0) = 1. Thus, by the well known degree theory results (see [3,
Theorem 3.3] for instance) there exists a continuum, whose components are unbounded in both
directions R+ × E and R− × E. This proves item 1 of Theorem 2.3. Item 2, in turn, is just a
consequence of the a priori bounds obtained for every interval [Λ1,Λ2] not including the origin,
and a priori estimates from below for every interval [0,Λ2].

For the multiplicity results in item 3, we notice that
(a) There exists a λ0 > 0 such that deg(I − Tλ ,S, 0) = 1 , for all λ ∈ (0, λ0);
(b) (Pλ) has two solutions when λ ∈ (0, λ0/2];

are both easy consequences of the topological methods used in [21, Claim 6.7, Claim 6.9], once
we have a priori bounds and C1,α estimates. Also, we exploit Lemma 5.3 in place of [21, Lemma
6.1]. This permits us to de�ne the quantity

λ̄ := sup{µ ; ∀λ ∈ (0, µ), (Pλ) has at least two solutions} ∈ [λ0/2,+∞]
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and then infer that the two solutions obtained, for λ ∈ (0, λ̄), satisfy the properties stated in
Theorem 2.3.

To �nish the proof, we must show the statements in items 3 and 4 concerning ordering and
uniqueness. Notice that (H2) automatically implies that uλ,1 and uλ,2 are strong, as well as every
Lp-viscosity solution of (Pλ). The uniqueness result in item 3 follows as in [21, p.1839] under a
convexity assumption on F , by exploiting Lemma 5.4 above. The ordering is proved in the next
claim.

Recall that the matrix C(x) is in the form (2.3).

Claim 5.5. uλ,1 � uλ,2 in at least one block, for all λ ∈ (0, λ̄).

Proof. Fix λ ∈ (0, λ̄) and consider the strict strong subsolution ξ = ξλ given by Lemma 5.4.
Since in particular ξ ≤ u for every (strong) solution of (Pλ), we can choose uλ,1 as the minimal
strong solution such that uλ,1 ≥ ξ in Ω. We �rst note that this choice yields

(uλ,1)i ≤ (uλ,2)i in Ω for all i = 1, · · · , n. (5.7)

Otherwise there exists x0 ∈ Ω and one index i such that (uλ,1)i(x0) > (uλ,2)i(x0). Consider
uλ := min{uλ,1, uλ,2} ≥ ξ in Ω. Then Theorem 5.2 gives us a solution u of (Pλ) such that
ξ ≤ u ≤ uλ � uλ,1, which contradicts the minimality of uλ,1, and implies (5.7).

Next de�ne v = uλ,2 − uλ,1 in Ω, which is a nonnegative vector by (5.7). Then, since uλ,1
and uλ,2 are strong, v satis�es, almost everywhere in Ω,

−L−[v] ≥ −F [uλ,2] + F [uλ,1] ≥ λC(x)v − 2µ2|Duλ,1| |Dv|. (5.8)

Hence, v is a nonnegative strong solution of

M−(D2v)− b̃ |Dv| ≤ 0 in Ω, for b̃ = b+ 2µ2‖Duλ,1‖∞. (5.9)

Of course uλ,1 6= uλ,2, then there exists one index j such that vj 	 0 in Ω. Consider the
block from where it belongs; say the �rst one, j ∈ {1, . . . , t1}. So, by (5.9) and SMP, vj > 0
in Ω. Now look at the j-th column of this block. By (2.3) we know that there exists an index
k 6= j, k ∈ {1, . . . , t1}, such that ckj 6= 0.

Finally, let us turn back to (5.8), and consider the k-th equation of it. Since ckjvj 	 0, by
(5.9) and SMP we obtain that vk > 0 in Ω. Using the full coupling of C(x), we can iterate this
process t1 times, by visiting all the equations. Therefore vj > 0 for all j ∈ {1, . . . , t1}. Applying
Hopf, we conclude that v � 0 in this block. �

5.2 Proof of Theorems 2.4 and 2.5

Both results are an easy extension of considerations made in [21], as long as we exploit Lemma
5.4 instead of [21, Lemma 6.2]. In particular, for Theorem 2.4 we just need to be careful when
applying the SMP, as we make explicit in the next lemma � which is the extension to a system
of [21, Lemma 6.14].

Claim 5.6. u0 is a strict strong supersolution of (Pλ), for all λ > 0.

Proof. Since λC(x)u0 � 0 in Ω, u0 is a strong supersolution of (Pλ). To see that it is strict, we
take u ∈ E an Lp-viscosity subsolution of (Pλ) such that u ≤ u0 in Ω, and set U := u0 − u.
Then, since u0 is strong, U is an Lp-viscosity supersolution of

−L−[U ] ≥ λC(x)U − 〈M(x)DU,DU〉+ 〈M(x)Du0, DU〉+ 〈M(x)Du0, DU〉
≥ −µ2 |DU |2 − 2µ2 |Du0| |DU |,
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so L̂−[w] ≤ 0 in Ω in the Lp-viscosity sense, where

L̂−[w] :=M−(D2w)− b̂ |Dw|, for b̂ = b+ 2µ2 ‖Du0‖∞, (5.10)

and mwi = 1− e−mUi , m = µ2/λP , by Lemma 3.4, for i = 1, · · · , n.
Assume that there exists an index j in the �rst block {1, . . . , t1} such that wj(x0) = 0. Then

by SMP we have wj ≡ 0, hence Uj ≡ 0. Let us turn back to (Pλ), and consider the j-th equation.
By (2.3) we know that there exists an index k 6= j, k ∈ {1, . . . , t1}, such that cjk 6= 0. This,
combined with Uj ≡ 0, implies Uk(x1) = 0 for some point x1. We now apply again SMP, to get
Uk ≡ 0. As each diagonal block in C(x) is fully coupled, we can iterate t1 times, and visit all
the equations, therefore Uj ≡ 0 for any j ∈ {1, . . . , t1}. However, hypothesis (H4) provides a
contradiction, and hence Uj > 0 for all j ∈ {1, . . . , t1}. Taking into account each block separately,
and applying Hopf, we conclude U � 0. �

As for Theorem 2.5, showing that every nonnegative supersolution in E of (Pλ) for λ > 0
satis�es u � u0 follows by analogous considerations to those made in the proof of Claim 5.6
above. Everything else works as in the scalar case, up to obvious modi�cations. The only point
which requires some attention in our multiplicity analysis is the analog of Claim 6.20 in [21] which
is our Claim 5.7 ahead. Recall that nonexistence type results were obtained in Lemma 5.3 via
(5.3). There, the possibility of taking a large parameter k overcame the di�culty. Here we have
a di�erent situation because we need to conclude the existence of two distinct positive solutions
without using Proposition 5.4 � note that in Theorem 2.4 it is simpler as soon as we have u0 as
supersolution. Therefore we need to work with problem (Pλ) itself, in which nonexistence for the
system does not seem to be a consequence of the scalar framework, at least not in the general
case.

Claim 5.7. (Pλ) has no nonnegative Lp-viscosity supersolutions for λ large.

Proof. Consider the matrix C(x) in the form (2.3).

Let λ ≥ λ̂1, where λ̂1 = λ+
1 (L̂−(ĉ ),Ω) > 0 is the principal eigenvalue of the operator L̂−

de�ned in (5.10), but now with weight ĉ(x) 	 0, where

ĉ(x) = min
1≤i≤t1

n∑
j=1

cij(x) a.e. in Ω, with t1 from (2.3),

which is associated to the positive eigenfunction ϕ̂1 = ϕ+
1 (L̂−(ĉ ),Ω) ∈W 2,p(Ω), that is,

(L̂− + λ̂1 ĉ ) [ ϕ̂1] = 0 and ϕ̂1 > 0 in Ω, ϕ̂1 = 0 on ∂Ω. (5.11)

Notice that if t1 = 1, then ĉ(x) = c11(x) which is nontrivial by hypothesis (H3).
Suppose, then, in order to obtain a contradiction, that there exists a nonnegative Lp-viscosity

supersolution u of (Pλ) and set v = u−u0 in Ω. One proves v � 0 in Ω by performing the same
SMP argument done in Claim 5.6. Now, since u0 is strong, we can use it as a test function into
the de�nition of Lp-viscosity supersolution of u, to obtain

−L−[v] ≥ λC(x)v + λC(x)u0 + 〈M(x)Dv,Dv〉+ 〈M(x)Dv,Du0〉+ 〈M(x)Du0, Dv〉

	 λ̂1C(x)v − 2µ2|Du0| |Dv|,

using C(x)u0 	 0. Then each vi satis�es −L̂−[vi] 	 λ̂1 ĉ(x) v in Ω, for i = 1, · · · , t1, in the
Lp-viscosity sense, where v := min1≤i≤t1 vi, since λ, cij , vi ≥ 0. Hence,

(L̂− + λ̂1 ĉ ) [ v ] � 0 and v > 0 in Ω (5.12)

Thus we apply Proposition 7.2 to (5.11) and (5.12), from where v = tϕ̂1 for some t > 0. But
this contradicts (5.12), since (L̂− + λ̂1 ĉ ) [ tϕ̂1] = 0 in Ω. �

In the next section we prove the second part of Theorem 2.5 only in the scalar case n = 1,
since the extension to systems can be established as above.
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6 Complementary multiplicity for scalar equations

Here and in the next section, E = C1(Ω). Now we consider the scalar problem{
−F [u] = λc(x)u+ 〈M(x)Du,Du〉+ γh(x) in Ω

u = 0 on ∂Ω
(Pλ,γ)

where Ω is a bounded C1,1 domain in RN , λ ∈ R, γ > 0, N ≥ 1, c, h ∈ Lp(Ω), c 	 0, M is a
bounded matrix, and F is a fully nonlinear uniformly elliptic operator which satis�es (SC), (H1),
and (H2). The results in this section are related to [15] and in particular extend to nondivergence
form equations [13, Corollary 1.9], where variational problems were considered.

By Theorem 1(ii) of [26], there exists Γ0 > 0 such that the problem (P0,γ) has an Lp-viscosity
solution, namely u0,γ , for each γ ∈ [0,Γ0]. Note that u0,γ is strong by regularity, and so unique
by Theorem 1(iii) of [26].

Say that h 	 0, then u0,γ ≥ 0, with c(x)u0,γ 	 0, for all γ ∈ (0,Γ0] (see Remark 6.25 in [21]).
Thus, there exists λ1 > 0 such that (Pλ,γ) has at least two positive solutions for λ ∈ (0, λ̄1), it
has at least one nonnegative strong solution at λ = λ̄1, and no nonnegative Lp-viscosity solutions
for λ > λ̄1.

Let λ ≥ λ−1 , where λ
−
1 := λ−1 (L+(c),Ω) > 0 is the principal positive weighted eigenvalue of

L+ associated to the negative eigenfunction ϕ−1 := ϕ−1 (L+(c),Ω) ∈ W 2,p(Ω) from Proposition
7.1, that is,

(L+ + λ−1 c)[ϕ
−
1 ] = 0 and ϕ−1 < 0 in Ω, ϕ−1 = 0 on ∂Ω. (6.1)

Notice that, since L+ is convex, then

λ+
1 := λ+

1 (L+(c),Ω) ≤ λ−1 (L+(c),Ω) = λ−1 . (6.2)

Claim 6.1. λ̄1 < λ−1 .

In other words, Claim 6.1 says that (Pλ,γ) does not admit nonnegative solutions for λ ≥ λ−1 .
To see this, we observe that if a such solution u existed, since γh 	 0, then u would satisfy
−L−[u] 	 λ−1 c(x)u, so u > 0 in Ω by SMP. But then this strict inequality combined with
Proposition 7.2 and (6.1) produces u = tϕ−1 for some t > 0, a contradiction.

Theorem 6.2. There exists a positive Γ ≤ Γ0 such that, for each γ ∈ (0,Γ), we have the
existence of λ̄2 > 0 for the problem (Pλ)=(Pλ,γ) satisfying

(i) for λ > λ̄2, (Pλ) has at least two solutions with uλ,1 � 0 in Ω and minΩ uλ,2 < 0;

(ii) for λ = λ̄2, (Pλ) has at least one nonpositive solution, which is unique if F is convex;

(iii) for λ < λ̄2, the problem (Pλ) has no nonpositive solution.

Proof. Firstly we are going to prove that there exists Γ > 0 such that the problem (Pλ0,γ) has a
nonpositive supersolution ηγ , for all γ ∈ (0,Γ), where λ0 is some positive number independent
of λ and γ.

Let w be some (�xed) strong solution of{
−L+[w] = λ0 c(x)w + 1 + h(x) in Ω

w = 0 on ∂Ω
(6.3)

for some λ0 ∈ (λ−1 , λ
−
1 + ε0), ε0 > 0. The existence of w is ensured by Theorem 7.4, since the

operator L+ satis�es the W 2,p regularity hypothesis (H2).

Then, let C0 > 0 be such that ‖Dw‖2∞ ≤ C0, and set Γ := min{Γ0, (µ2C0)−1}.
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Claim 6.3. Up to taking a smaller ε0, we have w � 0 in Ω.

Assuming Claim 6.3, we de�ne η = ηγ := γw, for 0 < γ ≤ Γ, which is a negative function.
Then we have, in the Lp-viscosity sense,

−F [η] ≥ −L+[η] = λ0 c(x)η + γ + γh(x) ≥ λ0 c(x)η + γ2µ2C0 + γh(x)

≥ λ0 c(x)η + 〈M(x)Dη,Dη〉+ γh(x).

That is, η is a supersolution of (Pλ0,γ), for all γ ∈ (0,Γ), with η � 0 in Ω.

Proof of Claim 6.3. We are going to prove a stronger result, i.e. that there exists a small ε0 > 0
such that every solution w ∈ E of (6.3) satis�es w < 0 in Ω � which in turn yields w � 0 in Ω,
by Hopf.

Assume the contrary, then there exists a sequence λk → λ−1 and wk satisfying{
−L+[wk] = λk c(x)wk + f(x) in Ω

wk = 0 on ∂Ω,
(6.4)

but each wk is such that

max
Ω

wk = wk(xk) ≥ 0, where xk ∈ Ω, and Du(xk) = 0, for all k. (6.5)

By taking a subsequence, xk → x0 ∈ Ω. Since f 6≡ 0, of course wk 6≡ 0, for all k.
We claim that there is a subsequence such that

‖wk‖∞ →∞. (6.6)

Indeed, if this was not the case, ‖wk‖∞ ≤ C, for some positive constant C independent of k.
By C1,α regularity, compact inclusion and stability, this would give us some w ∈ E, which is a
viscosity solution of {

−L+[w] = λ−1 c(x)w + f(x) in Ω
w = 0 on ∂Ω.

Now, if w was nonnegative in Ω, it should be positive by SMP; then λ−1 ≤ λ+
1 by the de�nition

of λ+
1 . Hence λ

−
1 = λ+

1 by (6.2). Proposition 7.2 would imply so w = tϕ+
1 , for some t > 0, which

contradicts f 6= 0. Thus, we must have w(x1) < 0 for some x1 ∈ Ω. This yields w = tϕ−1 , t > 0
by Proposition 7.2, contradiction. Thus, (6.6) holds.

Then, for the sequence in (6.6), we de�ne vk := wk/‖wk‖∞, which satis�es{
−L+[vk] = λk c(x)vk + f/‖wk‖∞ in Ω

vk = 0 on ∂Ω.

Since ‖vk‖C1,α(Ω) ≤ C, then passing to a subsequence, vk converges in E to some function v,

which is a solution of −L+[v] = λ−1 c(x)v in Ω, v = 0 on ∂Ω, by stability. Note that ‖v‖∞ =
limk |vk(yk)| = 1, for some sequence of points yk ∈ Ω.

If we had v(x1) < 0 for some x1 ∈ Ω, by Proposition 7.2 we would obtain v = ϕ−1 < 0. Thus,
by (6.5), v(x0) = 0 and x0 ∈ ∂Ω. So the application of Hopf at x0 contradicts (6.5).

Therefore, we must have v ≥ 0 in Ω, i.e. v > 0 in Ω by SMP. Then λ−1 = λ+
1 , by the de�nition

of λ+
1 and (6.2). Hence, Proposition 7.2 yields v = ϕ+

1 > 0 in Ω. Now Hopf gives us ∂νv > 0 on
∂Ω. This fact and the convergence of vk to v in E imply that vk > 0 in Ω for large k. Therefore,
for large k, vk is a solution of

−L+[vk] 	 λ+
1 c(x)vk and vk > 0 in Ω, vk = 0 on ∂Ω.

Thus vk = tϕ+
1 , for some t > 0, by Proposition 7.2 again. The above strict inequality �nally

provides the last contradiction, and proves Claim 6.3. �
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Next let us �x some γ ∈ (0,Γ] and look at the problem (Pλ) = (Pλ,γ).
Recall that (Pλ) has a strong strict subsolution ξλ for all λ ≥ 0. However, notice that our η

constructed above, besides being a supersolution for only a �xed λ0, has no reason to be strict.
Nevertheless, we can check that a slight variation of the argument in the proof of Theorem 1.7
in [13] ensures the strictness for an arbitrary λ and enables us to use Theorem 5.2. For the sake
of completeness, we give the details at the points in which the general context of Lp-viscosity
solutions requests an extra care.

Note that c(x)η � 0 in Ω. Otherwise the problem (P0) would have a solution v such that
ξ0 ≤ v ≤ η < 0, due to Lemma 5.4 and the �rst part of Theorem 5.2. Then we de�ne

λ̄2 := inf{λ ≥ 0; (Pλ) has a strong supersolution ηλ ≤ 0 with c(x)ηλ � 0 } ≤ λ0.

Let λ > λ̄2, then there exists λ̃ ∈ (λ̄2, λ) such that (Pλ) has a strong supersolution ηλ̃ ≤ 0
with c(x)ηλ̃ � 0. But now ηλ̃ is a strong supersolution of (Pλ), which is not a solution. So,
proceeding as in Theorem 2.3 in [21] we see that η is strict. Then we use Theorem 5.2(i) to
obtain that deg(I − Tλ,Sλ, 0) = 1, where

Sλ = {ξη � u� ηλ̃} ∩ BR,

for some R > 0. This gives us the �rst solution uλ,1 � 0. Thus, for λ small, a second solution
uλ,2 satisfying uλ,2 � uλ,1 is also established as in the scalar case, as well as the monotonicity
of uλ,1 with respect to λ, see [21, Claim 6.9, Claim 6.12].

On the other hand, if λ > λ̄2, we can only have a nonpositive solution u satisfying c(x)u ≡ 0.
In such a case, γh 	 0 and an exponential change from Lemma 3.4 generates a nonpositive
solution of L+[v] � 0 in Ω, and v < 0 in Ω by SMP. Since λ−1 c(x)v ≡ 0, these inequalities and
(6.1), in the application of Proposition 7.2, yield a contradiction.

Observe that λ̄2 cannot be zero by Remark 6.22 in [21]. Indeed, via eigenvalue arguments it
was shown there that, for small values of λ, every solution must be nonnegative.

To �nish, we notice that a sequence λk → λ̄2 produces a sequence uλk,1 of negative solutions
of (Pλk). Then, a priori bounds on [λ̄2, λ̄2 + 1], C1,α estimates, compact inclusion and stability
ensure the existence of an Lp-viscosity solution u of (Pλ̄2), which is nonpositive by convergence,
and strong by (H2). This completes the proof. �

Remark 6.4. If F is convex, 1-homogeneous and possesses eigenvalues, for instance if F = L+

or a HJB operator, then the estimate can be improved. In fact, in this case in Claim 6.1 we use
λ+

1 (F (c)) instead of λ+
1 (L−(c)), which gives us

λ̄1 < λ+
1 (F (c)) ≤ λ−1 (F (c)) < λ̄2.

7 A short miscellaneous on weighted eigenvalues

We consider the more general structure

M−λ,Λ(X − Y )− b(x)|~p− ~q| − d(x)ω((r − s)+) ≤ F (x, r, ~p,X)− F (x, s, ~q, Y ) (SCG)

≤M+
λ,Λ(X − Y ) + b(x)|~p− ~q|+ d(x)ω((s− r)+) a.e. x ∈ Ω

with F (·, 0, 0, 0) ≡ 0, where 0 < λ ≤ Λ, b ∈ Lp+(Ω), p > N , d ∈ L∞+ (Ω), ω a Lipschitz modulus.
Here, the condition over the zero order term in (SCG) means that F is proper/coercive, i.e.
nonincreasing in r. On F we also impose (H1), and 1-homogeneity such as

F (x, tr, t~p, tX) = tF (x, r, ~p,X) for all t ≥ 0. (7.1)
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Notice that solvability in LN -viscosity sense was used in [22], but this notion is equivalent to
solvability in Lp-sense from (H1), once we have the data f in Lp(Ω), see [23].

For any c ∈ Lp(Ω), with c 	 0 and p > N , and F satisfying the above assumptions, we can
de�ne, as in [6, 22, 24],

λ±1 = λ±1 (F (c),Ω) = sup
{
λ > 0; Ψ±(F (c),Ω, λ) 6= ∅

}
where

Ψ±(F (c),Ω, λ) :=
{
ψ ∈ C(Ω); ±ψ > 0 in Ω, ±(F [ψ] + λc(x)ψ) ≤ 0 in Ω

}
;

with inequalities holding in the Lp-viscosity sense (equivalent to LN ). Notice that, by de�nition,
λ±1 (G(c),Ω) = λ∓1 (F (c),Ω), where G(x, r, p,X) := −F (x,−r,−p,−X).

We recall the following result on existence of eigenvalues with nonnegative unbounded weight,
from [22].

Theorem 7.1. Let Ω ⊂ RN be a bounded C1,1 domain, c ∈ Lp(Ω), c 	 0 for p > n, F as
above, for b, d ∈ L∞+ (Ω). Then F has two positive weighted eigenvalues α±1 > 0 corresponding to
normalized and signed eigenfunctions ϕ±1 ∈ C1,α(Ω) that satisfy

F [ϕ±1 ] + α±1 c(x)ϕ±1 = 0 in Ω
±ϕ±1 > 0 in Ω
ϕ±1 = 0 on ∂Ω

(7.2)

in the Lp-viscosity sense, with maxΩ (±ϕ±1 ) = 1. If, moreover, the operator F satis�es (H2),
then α±1 = λ±1 and the conclusion is valid also for b ∈ Lp+(Ω).

Of course, Pucci's extremal operators L±, with b ∈ Lp+(Ω), are examples of F which satisfy
(H2). Such existence results for L± are used several times in the text.

The following proposition for unbounded c is both an auxiliary result for the proof of Theorem
7.1 and an important tool for proving nonexistence results for equations in nondivergence form.

Proposition 7.2. Let u, v ∈ C(Ω) be Lp-viscosity solutions of

{
F [u] + c(x)u ≥ 0 in Ω

u < 0 in Ω
,


F [v] + c(x)v ≤ 0 in Ω

v ≥ 0 on ∂Ω
v(x0) < 0 x0 ∈ Ω

(7.3)

with F as above, c ∈ Lp(Ω), p > n. Suppose one, u or v, is a strong solution. Then, u = tv for
some t > 0. The conclusion is the same if F [u] + c(x)u ≤ 0, F [v] + c(x)v ≥ 0 in Ω, with u > 0
in Ω, v ≤ 0 on ∂Ω and v(x0) > 0 for some x0 ∈ Ω.

A consequence of the proof of our Claim 6.3 is an improved version of the anti-maximum
principle [1]. We state it for the sake of completeness. Consider the problem

F [u] + λc(x)u = f(x) in Ω, u = 0 on ∂Ω. (7.4)

Recall that solutions of this problem are at least C1,α up to the boundary for Ω ∈ C1,1.

Corollary 7.3. Let f ∈ Lp(Ω), with p > N and f 	 0. Then then there exists ε0 > 0 such
that any solution u of (7.4), with λ ∈ (λ−1 (F (c),Ω), λ−1 (F (c)) + ε0), satis�es u < 0 in Ω. An
analogous result holds if f � 0, related to λ+

1 (F (c),Ω) and positive solutions.
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We �nally turn to the main result of this section, concerning existence for the Dirichlet
problem. This result is needed, for instance, to ensure existence of solutions of (6.3). We give
a proof of it in the sequel, following the ideas of [1, 15], in the context of Lp-viscosity solutions,
for fully nonlinear equations with unbounded coe�cients.

For ease of notation, we will be omitting the information (F (c),Ω) each time in what follows.
Consider λ1 := max{λ+

1 , λ
−
1 }. Then de�ne, as in [1], the following quantity

λ2(F (c),Ω) := inf{ρ > λ1 such that ρ is an eigenvalue of F in Ω, with weight c}.

Notice that λ2(F (c),Ω) = +∞ is possible.

Theorem 7.4. Assume (SCG), (H1), (H2), and (7.1). Let f ∈ Lp(Ω), with p > N , and let
λ1 < λ < λ2. Then there exists a strong solution of the Dirichlet problem (7.4).

Proof. We de�ne Fτ [u] = τF [u] + (1− τ)∆u for u ∈ E, which satis�es (SCG), (H1), (H2), and
(7.1). Then, from Theorem 7.1, we write λ−τ = λ−1 (Fτ (c),Ω), associated to ϕτ = ϕ−1 (Fτ (c),Ω),
which is such that ϕτ ≤ 0 and ‖ϕτ‖∞ = 1, for all τ ∈ [0, 1].

We �rst claim that the function τ 7→ λ−τ is continuous in the interval [0, 1]. Indeed, let
τk ∈ [0, 1], τk → τ0. Hence it follows that the sequence λ−τk is bounded, by the same procedure
done in the proof of Theorem 5.2 in [22]. So, passing to a subsequence, we can say that λ−τk → λ0

for some λ0. Then, by C1,α estimates, compactness argument and stability, we obtain a solution
ϕ0 ∈ E of (7.4) with λ = λ0. Notice that ϕ0 ≤ 0 and ‖ϕ0‖∞ = 1. By the simplicity of
the eigenvalues (which is true under hypothesis (H2), see [22]), we have λ0 = λ−τ0 , and so the
continuity follows. Analogously, τ 7→ λ+

τ is continuous, where λ+
τ = λ+

1 (Fτ (c),Ω).
On the other hand, we infer that the map τ 7→ λ̄τ , given by λ̄τ = λ2(Fτ (c),Ω), is lower

semicontinuous; and therefore, for each λ ∈ (λ1, λ2), we guarantee the existence a continuous
function µτ in [0, 1] satisfying µ0 = λ, and λτ ≤ µτ ≤ λ̄τ , for all τ ∈ [0, 1], Here, λτ =
max (λ−τ , λ

+
τ ). In fact, this is accomplished by using arguments similar those in Propositions 5.5

and 5.6 of [1] � the slight di�erences have already appeared in the proof of Claim 6.3.
Next we de�ne the operator Aτ : E → E which takes a function u into Aτu = U , where U

is the unique Lp-viscosity solution of the problem

Fτ [U ] = µτ c(x)u+ f(x) in Ω, U = 0 on ∂Ω.

Of course Aτ is completely continuous, for all τ ∈ [0, 1]. In particular, by C1,α estimates in
[22], it follows that ‖Aτ‖E ≤ C{ ‖µτ‖L∞[0,1] ‖c‖Lp‖u‖∞ + ‖f‖Lp + 1 } ≤ C0(1 + ‖u‖∞). Now the
conclusion is just a combination of topological arguments and Fredholm theory for the Laplacian
operator, cf. Lemma 5.8, Proposition 5.9 and Theorem 2.4 in [1], over the space E. �
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