INSTRUCOES DE USO:

--1: MS Windows ::--

1) Insira o CD no drive

2) Caso o programa néo inicie automaticamente dé um
duplo-clique no arquivo c¢ba2002_win.exe localizado na
raiz do CD. Exemplo: D:\cba2002 win.exe

--: Linux ::--

1) Insira e monte o CD. Exemplo: mount /mnt/cdrom
2) Entre no diretorio montado. Exemplo: cd /mnt/cdrom
3) Execute o programa assim: ./cba2002_lin.sh

--1: Outros Sistemas ::--
1) Abra em qualquer navegador Web o arquivo
index.html que se encontra na raiz do CD.
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Resumo~— Uma nova técnica nao-supervisionada de modelagem neural, chamada Memdria Associativa Tem-
poral via Quantizagdo Vetorial (MATQV) é proposta neste artigo. MATQV ¢é utilizada na identificacio de
sistermas dindmicos nio-lineares a partir das séries temporais das varidveis de entrada e saida. Usando esta
abordagem, mostra-se que a rede auto-organizdvel de Kohonen (SOM, em inglés) produz resultados similares
aos gerados por redes MLP e melhores do que us gerados por redes RBF, ambas de treinamento supervisionado.
Além disso. a rede de Kohonen € mais robusta a variagdes nos valores iniciais dos pesos que as redes MLP e RBF.
Ag trés redes sdo avaliadas por simmulagdo computacional em tarefas de modelagem direta, modelagem inversa de
um atuador hidréulico e aprendizagem de trajetérias robdticas complexas. Todas elas s&o também comparadas
com métodos usuais de identificacic linear. Sugestdes para pesquisa futura sdo fornecidas no final do artigo.

Abstract— Iu this paper we propose an unsupervised neural modelling technique, called Vector-Quantized
Temporal Associative Memory (VQTAM), to identifying dynamical nonlinear systems from time series of mea-~
sured input-output data. Using the VQTAM approach, the Kohonen’s self-organizing map (SOM) is shown to
produce modelling results equivalent to those obtained by MLP networks, and better than those produced by the
RBFT networks. both the MLP and the RBF based on supervised training. In addition, the SOM is less sensitive
to weight initialization than the MLP and RBF networks. The three networks are evaluated through simmlations
involving learning of feedforward and inverse models of a hydraulic actnator and learning of complex robot tra-
jectories. All the neural networks are also compared with the usual linear identification method. Directions for
further research are provided at the end of the paper.
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1 Introducao

Identificacio de sistemas é o campo de pesquisa in-
teressado na construgdo de modelos matemdticos
de sistermnas dindmicos a partir das séries tem-
porais das varidvels de entrada e saida medi-
das (Aguirre, 2000). Estes modelos podem ser
lineares ou néo-lineares, dependendo do tipo de
processo ou planta que se quer identificar. Mais
recentemente, técnicas de identificacdo e controle
de sistemas nao-lineares tém recebido especial
atencdo em engenharia de controle porque muitos
sistemas, tais como plantas quimicas e manipu-
ladores robéticos, exibem elevado grau de nio-
linearidade. Para tais sistemas, a utilizacdo de
modelos lineares se mostra ineficaz porque, em
geral, propriedades importantes da dindmica do
sistema nfo sdo capturadas.

Modelos de redes neurais artificiais (RNAs)
tém sido aplicados com sucesso na identificacio
e controle de sistemas ndo-lineares {Nascimento
e Yomeyama, 2000). Isto se deve em parte ao
fato de certas arquiteturas de redes neurais, tais
como redes do tipo perceptron multicamadas
(MLP) e de funcdo de base radial (RBF), am-
bas de treinamento supervisionado, podem repre-
sentar com precisdo arbitrdria qualquer mapea-
mento ndo-linear entre a entrada e a saida de um
sistema (Hunt et al., 1992). Tais redes podem
ser treinadas para descrever a dindmica néo-linear
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do processo em uma ampla faixa de operacio,
provendo assim uma representacao fiel do mesmo
sobre a qual pode-se projetar e desenvolver varios
esquemas de controle (Norgaard et al., 2000).
Por se tratar de uma técnica de identificacao
do tipo caixa-preta (black-boz), o conhecimento a
respeito das caracteristicas dindmicas do mapea-
mento é representado implicitamente nos padrdes
de conectividade e ativagfo dos neurdnios da rede.
A performance desses esquemas de controle de-
penderd da precisdo da aproximacgdo fornecida
pelo modelo neural. O uso de RNAs em identi-
ficagdo e controle é justificado também por outras
propriedades, tais como a robustez a ruido e ca-
pacidade de generalizagao.

Neste artigo propGe-se uma nova técnica
neural de modelagem (ou identificacdo) caixa-
preta que utiliza redes de treinamento ndo-
supervisionado, ao contrdrio da abordagem con-
vencional que utiliza apenas redes de treina-
mento supervisionado (MLP e RBF). Por meio
desta técnica. chamada de Memdria Associativa
Temporal via Quantizagdo Vetorial (MATQV),
mostra-se que a rede auto-organizavel proposta
por Kchonen (1997) (SOM, em inglés) pode ser
utilizada para aproximar mapeamentos entrada-
safda dindmicos e ndo-lineares. Simulacgdes de-
monstram a capacidade de aproximacao da rede
SOM usando a técnica MATQV e comparam os
resultados obtides.com-aquele-das-redes-MLP, e
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RBF e de técnicas lineares.

O restante do artigo estd organizado como
segue. A Secao 2 traz um breve resumo da rede de
Kohonen e de como tal arquitetura pode ser esten-
dida para processar séries temporais. A Sec¢do 3
introduz a técnica MATQV e suas principais ca-
racteristicas, mostrando comno ela pode ser usada
em conjunto com a rede SOM na identificagao
das dinidmicas direta e inversa de um atuador
hidraulico e na aprendizagem e reproducéo de tra-
jetérias robéticas complexas. A Secdo 4 mostra os
resultados da comparacdo da MATQV com as re-
des MLP e RBF e com uma técnica linear. A
Se¢do 5 conclui o artigo.

2 Introduzindo Dinamica na Rede SOM

A rede auto-organizével de Kohonen é um algo-
ritmo neural de treinamento ndo-supervisionado
desenvolvido para representar relagbes de proxi-
midade espacial entre os vetores-amostras de um
conjunto (Kohonen, 1997). Os neurénios desta
rede estio dispostos em uma camada de saida, A,
em arranjos (arrays) de uma, duas e até trés di-
mensdes. Cada neurdnio i € A possui um vetor de
pesos w; € R" com a mesma dimensdo do vetor
de entrada x € R™. O algoritmo de aprendizagem
pode ser resumido em dois passos principais:

1. Busca pelo neurdnio vencedor, i
7 (t) = argmin [ix(t) — wi(?)|] ey

2. Ajuste dos pesos, w;, da rede:

Aw;(t) = n(e)h (", 6 t)[xE) — wi(t)]  (2)
onde 7(t) é a taxa de aprendizagem e h(i*,1;t) é
a funcdo vizinhanca do tipo gaussiana:

h(i™,i:t) = exp (—ﬂﬂt—)}}(%-@ﬂ‘-> 3)

onde 1;(t) e r;-{t) sdo, respectivamente, as
posicdes dos neurdnios i e i* no arranjo. As
varidveis 0 < 7{t),0(t) < 1 decaem expo-
nencialmente com o passar do tempo: 7(t) =
mo(nr/m0)H ™) e a(t) = oy(or/o0)*T), onde ng e
op 80 os valores iniciais e nr e o os finais de n(¢)
e o(t), transcorridas T iteragdes de treinamento.

Uma imporrante caracteristica da rede SOM
original é que ela aprende apenas mapeamen-
tos entrada-safda esidticos (Walter e Ritter,
1996). Tais mapeamentos sao usualmente des-
critos matematicamente por y(¢) = f(u(t)), onde
u(t) € R" ey(t) € R™ denotam, respectivamente,
o vetor de entrada e o vetor de saida do sistema. O
interesse deste artigo é mostrar que, com pequenas
modificagdes, a rede SOM pode também ser uti-
lizada para aproximar mapeamentos dindmicos.
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Assume-se que tais mapeamentos podem ser des-
critos pela seguinte equacio (Hunt et al., 1992):

vt +1) =fly@t),...,yt—ny +1):
u(t),...,ult—n,+1) 4

onde n, e ny, s&o 0s tamanhos méximos (ordens)
da memodria de entrada e de saida, respectiva-
mente. De acordo com (4), a saida do sistema
no instante ¢ + 1, depende dos n, valores passa-
dos da saida e dos n., valores passados da entrada.
Esta dependéncia, definida pela funcio £(-), é em
geral nao-linear e desconhecida.

Em muitos problemas de identificacao deseja-
se também identificar a dindmica inversa da
planta:

u(t) = £ e(t+ 1), 5(8), ..., y(t — ny + 1);
u(t—1),...,u{t —n, +1)] (5)

onde, para fins de controle, o sinal y(¢t + 1)
é substituido pelo sinal de referéncia r(t + 1).
Para a rede SOM ser capaz de aprender ma-
peamentos dindmicos, ela deve possuir algum
tipo de mecanismo de memdria de curta duragdo
(MCD) (Barreto e Araijo, 2001), ou seja, ela deve
ser capaz de armazenar informacio passada sobre
os vetores de entrada e salda do sistema de in-
teresse. MCD permite que a rede SOM seja capaz
de processar dados de natureza temporal, também
chamados sequéncias ou séries temporais.

Atualmente quatro técnicas vém sendo uti-
lizadas com este propdsito. A primeira e mais
comum delas adiciona informacao temporal 3 en-
trada da rede SOM por meio de atrasadores (de-
lay lines) ou integradores (leaky integrators). A
segunda técnica adiciona informacao temporal in-
ternamente A rede SOM, nas regras de ativagio
e/ou aprendizagem. A terceira técnica combina
a primeira e segunda técnicas em diversas redes
SOM dispostas em camadas, tentando aprender
relacbes temporais por meio de sucessivos refi-
namentos da informagdo de entrada. A quarta
técnica usa lagos de realimentagfo para inserir
informacdo temporal na rede SOM. Na préxima
secdo mostra-se como a rede SOM, gragas a
mecanismos de MCD, pode aprender mapeamen-
tos entrada-saida dinamicos. Para simplificar a
exposicdo, serdo usados apenas atrasadores para
armazenar informacio temporal.

3 Memédria Associativa Temporal

Deseja-se utilizar a rede SOM para obter uma
aproximagao da funcao f ou de sua inversa £~ de
posse apenas das séries temporais das varidveis de
entrada e saida, {u(t),y(#)}, ¢ =1,...,N. Para
tanto, modifica-se o vetor de entrada da rede SOM
para que ele passe a ter duas partes. A primeira
parte, representada por X™(t), corresponde 4 in-
formacao de entrada do mapeamento que se quer
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aproximar. A segunda, representada por x°“ (%),
corresponde a informacdo de sajda desse mesmo
mapeamento. Como consegliéncia, 0s vetores de
pesos dos neurdnios 7 tém também suas dimensoes
aumentadas. Matematicamente, tem-se que:

<= () e win=(000) ©

E importante notar a diferenca desta estratégia
em relagdo aquela usada no treinamento de re-
des supervisionadas (MLP ou RBF). Nestas re-
des o vetor x*"(#) é utilizado na entrada da rede,
enquanto o vetor x°*'(¢) é utilizado na salda.
Quando se usa a rede SOM com as defini¢Bes
dadas em (6) o vetor x°¥!(t) é apresentado na en-
trada da rede juntarente com o vetor x:"(f).
Dependendo da escolha das varidveis que
compdem os vetores X' (t) e x°*(t) pode-se uti-
lizar a rede SOM para aprender tanto a dinfmica
direta quanto a inversa de uma planta nio-linear.
Por exemplo, para o caso de se querer aproximar
a dindmica direta, representada em (4), define-se:

Xt = [y(t),...,y(t —n, +1);
u(t),...;ult —n.+1)] (7)

X)) = y(t+1) (8)

Ja para o caso da dindmica inversa tem-se as
seguintes definicoes:

x4 (t) = u(?) (10)
Durante o treinamento, 0s neurdnios vencedores
sd3o encontrados usando apenas a porgao corres-
pondente a x' (f):

i*(t) = arg r;féig{llxi”(t) -wi} (1)

AT

Na atualizagio dos pesos, ambos x™"(t) e x°%(¢)
sdo utilizados:

n(ORGE )X () — wit()]  (12)
AW (t) = n(L)h(i™. 4 O (1) — wi(1)] (13)

3 K3

AW (t)

7

Com o transcorrer do treinamento, a rede SOM
aprende a associar os sinais de saida do mapea-
mento com os sinais de entrada correspondentes,
a0 mesmo tempo que realiza a quantizacdo veto-
rial dos espacos de entrada e salda. Por isso, esta
técnica serd chamada de Memdria Associativa
Temporal via Quantizacdo Vetorial (MATQV).
Apéds o treinamento, a rede SOM é utilizada para
obter estimativas dos valores de saida dos ma-
peamentos, a partir do vetor de pesos wi*(¢) do
neurdnio vencedor. Assim, para o caso da apro-
ximacdo da dindmica direta, tem-se que:

Gt +1) = wirt () (14)
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E para o caso de aproximacio da dindmica inversa,
tem-se:

a(t) = wg(t) (15)

onde em ambos 0s casos o neurdnio vencedor i*(¢)
é determinado segundo (11). O processo de es-
timacao é repetido por M passos até se obter uma
nova série temporal totalmente formada por valo-
res estimados.

3.1  Aprendizagem de Trajetdrias Roboticas

Usando a técnica MATQV ¢é possivel utilizar
a rede SOM na aprendizagem e reproducio de
trajetérias robéticas complexas (Aradjo e Bar-
reto, 2002). O objetivo é fazer com que a
rede aprenda a estimar a prdxima posi¢cdo an-
gular do brago do robé PUMA 560 durante
a execucdo de uma trajetdria contendo esta-
dos repetidos. Assumindo aqui, como varidveis
de entrada, as posicdes cartesianas do efe-
tuador do robd, x(t)=(z1(t),z2(t),z3(t)), e
como varidveis de saida os angulos das jun-
tas, 6(t)=(01(t),....06(t)), entdo pode-se escre-
ver uma versdo de (4), adaptada ao problema de
aprendizagem de trajetdrias robdticas:

6(t+1) = f[6(1),...,0(t —ng + 1);

x(t),....x(t —ns +1)] (16)
Para este caso, os vetores x™(t) e x°“*(t) s&0 os
seguintes:

x"(t) = [8(t),...,0(t —ng + 1);

X7 () = Ot + 1)

onde a determinac¢do do neurdnio vencedor obe-
dece (11) e o ajuste dos pesos segue (12) e (13).
A estimativa gerada, (t + 1) = wo(t), é usada
para fins de controle do manipulador. Na préxima
seqdo sdo mostradas simulagdes com a rede SOM
na identificacio inversa e direta de um atua-
dor hidrdulico e na aprendizagem de trajetérias
réboticas.

4 Simulag¢ces Computacionais

As redes SOM, MLP e RBF sio aplicadas na
identificacdo de um atuador hidraulico, utilizado
por Sjdberg et al. (1995). Para esta planta, pressio
do dleo é controlada pela abertura da vélvula
através da qual o Sleo flui para dentro do atua-
dor. Assim, a posicdo do atuador é uma funcao
da pressdo do dleo. Na Figura 1 estdo mostrados
os valores medidos da abertura da vélvula, u € R,
e da pressdo do dleo, y € R, que fazem o papel de
sinais de entrada e saida respectivamente. Nota-se
um comportamento oscilante da varidvel de saida,
causado por ressondncias mecanicas presentes no
atuador. Na tarefa de identificagdo da dinamica
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Figura 1. Valores medidos da pressao do 6leo (superior) e
da posicdo da vélvula (inferior).

direta do atuador hidraulico, as trés redes neu-
rais sdo também comparadas com o modelo linear
usual conhecido como Modelo Autoregressivo com
Entradas Exdgenas (ARX, em inglés): gt +1) =
St ay(t - i) + Sru i bju(t — §), onde a; e
b; sdo os coeficientes do modelo ARX e §(t + 1)
é o valor estiinado para a saida para o instante
t+ 1. Os coeficientes sdo calculados pelo método
dos minimos quadrados (Aguirre, 2000). A pre-
cisdo da aproximacdo medida pelo raiz do erro
médio quadritico (RMSE. em inglés):

M -1

RMSE = \ \i[ D (olt) — w2 (19)
. t=0

onde o(t) = y(t + 1) (se identificacio direta) ou
o(t) = u(t) (se identificac@o inversa), e M é o
tamanho da série estimada. Os dados sdo proces-
sados pelos quatro modelos sem nenhum tipo de
normalizagio prévia, ou seja, na mesma escala em
que foram medidos. De um total de N = 1024
amostras para cada uma das séries de entrada e
saida, as 512 primeiras sio utilizadas para ajuste
dos pesos das redes neurais e para cilculo dos coe-
ficientes do modelo ARX. As 512 1iltimas amostras
sao usadas para validacdo dos quatro modelos.
Para todas as simulac¢Ges adotou-se n, = 3 e
Ny = 2. Outros valores para n, e n, resultam
em erros de aproximacio levemente mailores que
os apresentados a seguir. O resultado obtido pelo
modelo ARX estd mostrado na Figura 2. onde se
nota que os valores preditos ndo foram muito pre-
cisos (RMSE = 1,0133).

A rede MLP possui 53 unidades de entrada.
uma camada escondida com dez neurbnios e um
neurdnio de saida. Os neurdnios da camada escon-
dida tém funcio de transferéncia do tipo tangente
hiperbdlica e a do neurénio de saida é linear. O al-
goritmo de treinamento foi o de retropopagacio do
erro com fator de momento. Os valores da taxa de
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tempo

Figura 2. Modelo ARX: Sinal simulado (linha sélida) e
valor real da pressdo do dleo (linha tracejada).

aprendizagem e do fator de momento foram, res-
pectivamente, iguais a 0.2 e 0,9. O treinamento
¢ finalizado se RMSE < 10™* ou se o nimero
maximo de 600 épocas de treinamento ¢é atingido.
Cada época corresponde a apresentacdo de um
total de 512 — ny, = 509 amostras extraidas da
primeira parte da série.

A rede RBF possui 5 unidades de en-
trada, uma camada intermedidria com neurdnios
de funcdo de base do tipo gaussiana e um
neurdnio de saida. Seguindo o esquema proposto
por Specht (1991), especifico para problemas de
regressao nao-linear, o numero de neurdnios da
camada intermedidria é igual ao ndmero de ve-
tores de treinamento, sendo que os centros destes
neurdnios sdo as préprias vetores de treinamento.
Assim, um total de 509 neurdnios foram usados
na camada intermedidria. N&o hd treinamento
para este tipo de rede RBF, j4 que as amostras
de treinamento s3o copiadas diretamente para os
centros. Aos pesos da camada intermedidria para
a de saida sio simplesmente atribuidos os valo-
res desegjados para a salda. O tdnico pardmetro
ajustdvel nesta rede é o que regula a abertura da
funcao de base gaussiana. Este pardmetro foi vari-
ado de 0,1 a 1,0 para se avaliar seu efeito na pre-
cisao da aproximacao.

Uma rede SOM com 500 neurénios (dispostos
em uma dimensio) é utilizada nas tarefas de iden-
tificacdo das dindmicas direta e inversa do atuador
hidrdulico. Os pesos sindpticos destes neurdnios
recebem valores aleatérios entre 0 e 1 no inicio do
treinamento. O ajuste dos pesos é executado por
600 épocas e os pardmetros de treinamento sao:
o = 0,9, n7 = 1075, og = 250 e op = 1073,
Os resultados obtidos para as trés redes na iden-
tificacdo das dindmicas direta e inversa do atu-
ador hidrdulico, usando os dados de validacéo,
estio mostrados na Tabela 1. Para as redes SOM
e MLP foram executadas 10 rodadas de treina-
mento, cada uma com diferentes valores iniciais
para os pesos. Como nfo hé treinamento para a
rede RBF, o parimetro que regula a abertura da
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Figura 3. Resultado obtido pela rede SOM na identificagéo

da dindmica direta usando MATQV.

fungio de base gaussiana foi variado de 0,1 a 1,0
em incrementos de 0, 1.

Tabela 1. Comparagdo entre as redes SOM, MLP ¢ RBF
na identificacdo da dindmica direta e inversa .

Tdentificacdo Direta
RMSE | Min | Maz | Média | \Jvar
MLP | 0,1162 | 0,2493 | 0.1554 | 0,0457
SOM | 0,2051 | 0,2665 | 0,2259 | 0,0215
RBF | 0,2067 | 0,4103 | 0,2994 | 0,0774
Identificagao Inversa
RMSE | Min | Max | Média | \/var
MLP | 0,0566 | 0,4789 | 0.1446 | 0,1259
SOM | 0,1189 | 0,1255 | 0,1207 | 0,0021
RBF | 0.1398 | 0,2841 | 0.2032 | 0,0551

Nota-se que a rede MLP produz em geral
os methores resultados. A rede SOM, por sua
vez, produz melhores resultados que uma rede
RBF com aproximadamente o mesmo mimero de
neurdnios. A Figura 3 mostra o melhor resultado
obtido pela rede SOM na identificagdo direta. Um
resultado interessante estd no fato de a rede SOM
ser menos sensivel a variacdes dos valores inici-
ais dos pesos que a rede MLP, conforme pode ser
visto na quinta coluna da Tabela 1. Esta sen-
sibilidade é medida pelo desvio-padrdo dos erros
obtidos para as 10 rodadas de treinamento. Ape-
sar de treinadas para um ndimero fixo de épocas,
observou-se tarbém que a rede SOM converge
muitas vezes mais rapidamente que a rede MLP.

Outra dificuldade encontrada com a rede
MLP estd na ocorréucia de owverfitting durante
o treinamento (fortemente relacionado com a es-
colha do ntmero de neurdnios da camada escon-
dida), resultando algumas vezes numa baixa per-
formance (RMSE alto) durante a validagio do
modelo. A rede SOM néo padece desse problema
por se tratar de mu algoritmo de quantizagio ve-
torial, ou seja, quanto mais neurdnios melhor serd
a aproximagdo. O efeito da variagio de alguns
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pardmetros da rede SOM, tais como o ndmero
de neurtnios e o nimero de épocas usadas para
treinamento (ambos variados de 1 a 500}, na qua-
lidade do resultado da identificacdo estd mostrado
na Figura 4. Note que em ambos os casos o erro
tende a um valor em torno de RMSFE = 0, 20.

RMSE

58 = =3 60 255 300 T 456 so0

ntimero de épocas @ de neuronios

Figura 4. Efeito da variagdo do ndmero de neurdnios
(circulos) e do mntimero de épocas de treinamento
(triangulos) da rede SOM na identificacio direta.

O resultado obtido pelas redes SOM, RBF e
MLP na aproximacao da dindmica inversa estao
mostrados na Figura 5. Para este caso especifico
os erros de estimacfo foram RMSE(SOM) =
0,1189, RMSE(RBF) = 0,1398 e RM SE(MLP)
= 0,0566. Note que a aproximacio da dindmica
inversa pelas redes SOM e RBF apresentam erros
elevado em alguns trechos que a da dindmica di-
reta. A prépria rede MLP, que produz o melhor
resultado entre as trés estudadas, apresenta al-
guns trechos em que o erro de estimacio também
¢ alto. Isto se deve ao fato que alguns sistemas nao
possuem um Unico mapeamento inverso, mas sim
varios, dificultando o processo de aproximacao.

Para avaliar a rede SOM no problema
de aprendizagem e reproducio de trajetérias
robdticas treinou-se uma rede com 75 neurdnios,
cujos pesos receberam valores iniciais aleatdrios
entre 0 e 1. Esta rede foi treinada durante 600
épocas de treinamento usando uma seqiiéncia de
97 estados que fazem o efetuador do robd descre-
ver uma trajetdéria em forma de oito no espago
euclideano. Ao término do treinamento, testou-
se a capacidade de generaliza¢do da rede SOM
apresentando uma outra seqiiéncia de 49 pontos
que descreve a mesma trajetéria em forma, de oito.
A Figura 6 mostra a trajetdria angular estimada
pela rede SOM para a terceira junta (cotovelo) do
robd PUMA. Para este caso, o erro de estimacéo
foi RMSE = 1,5453. E interessante comparar a
rede SOM com a rede neural auto-organizavel pro-
posta por Aradjo e Barreto (2002), chamada de
rede Competitiva e Hebbiana Temporal (CHT),
especificamente projetada para aprender e repro-
duzir trajetérias robdticas. A rede CHT exige 97
neurdnios para aprender a mesma trajetdria usada
para treinar a rede SOM, enquanto a rede SOM
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Figura 5. Resultado obtido pelas redes SOM (grafico supe-
rior), RBF (grafico intermedidrio) e MLP (gréfico inferior)
na identificagdo da dindmica inversa do atnador hidraulico.

treinada via MATQV usa apenas 75 neurdnios.
Além disso, a rede CHT 56 é capaz de reproduzir
a trajetdria que foi armazenada, ndo sendo capaz
de generalizar (interpolar) como a rede SOM.

5 Conclusao

As simulagbes mostradas neste artigo sao pre-
liminares, mas ilustram o potencial da técnica
MATQV. Testes adicionais necessitam ser exe-
cutados, tais como andlise dos residuos do erro
de estimacdo, tolerdncia ao ruido, para demons-
trar efetivamente a viabilidade de se utilizar a
rede SOM em tarefas de identificagfo e controle
de sistemas dindmicos ndo-lineares. A pesquisa
em andamento envolve o projeto de um contro-
lador preditive ndo-linear usando MATQV e na
demonstracdo tedrica de que a rede SOM, usando
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Figura 6. Valor produzido pela rede SOM (linha sélida) e
valor real (linha tracejada) da trajetdria do dngulo da 3a.
junta do robé PUMA 560 para trajetdria em oito.

MATQV, pode ser usada como aproximador uni-
versal de fun¢oes entrada-saida.
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