

1 Novel insights into the early stages of ratoon stunting disease of sugarcane
2 inferred from transcript and protein analysis

3
4 Mariana Cicarelli Cia^{*1}; Giselle de Carvalho^{*1}; Ricardo Antunes Azevedo¹; Claudia
5 Barros Monteiro-Vitorello¹; Glaucia Mendes Souza²; Milton Yutaka Nishiyama-
6 Junior³; Carolina Gimiliani Lembke²; Raphael Severo da Cunha Antunes de Faria¹;
7 João Paulo Rodrigues Marques¹; Maeli Melotto⁴; Luis Eduardo Aranha Camargo¹

8
9 ¹Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av.
10 Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.

11 ²Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748,
12 05508-900, São Paulo, SP, Brazil.

13 ³Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil,
14 1500, 05503-900, São Paulo, SP, Brazil.

15 ⁴Department of Plant Sciences, University of California, 95616, Davis, CA, USA.

16
17 * These authors contributed equally to this work

18
19 Corresponding author: Luis E. A. Camargo, e-mail: leacamar@usp.br

20
21 **ABSTRACT**

22 Despite of the importance of ratoon stunting disease, little is known on the
23 responses of sugarcane to its causal agent, the vascular bacterial endophyte
24 *Leifsonia xyli* subsp. *xyli*. The transcriptome and proteome of young plants of a
25 susceptible cultivar with no symptoms of stunting but with relative low and high
26 bacterial titers were compared at 30 and 60 days after inoculation. Increased
27 bacterial titers were associated with alterations in the expression of 267 cDNAs
28 and in the abundance of 150 proteins involved in plant growth, hormone
29 metabolism, signal transduction and defense responses. Some alterations are
30 predicted to benefit the pathogen, such as the up-regulation of genes involved in
31 the synthesis of methionine. Also, genes and proteins of the cell division cycle

32 were all down-regulated in plants with higher titers at both times. It is hypothesized
33 that the negative effects on cell division related to increased bacterial titers is
34 cumulative over time and its modulation by other host and environmental factors
35 results in the stunting symptom.

36

37 *Additional keywords:* *Leifsonia xyli* subsp. *xyli*; plant-pathogen interaction,
38 microarray, 2D-DIGE

39

40

41 INTRODUCTION

42 Ratoon stunting disease (RSD) of sugarcane occurs worldwide (Young
43 2016) and because of stunting it can cause a substantial impact on biomass
44 production. Annual losses were estimated at US\$ 11 million in Australia (Fegan et
45 al. 1998) and US\$ 36 million in Florida (Dean and Davis 1990). In Brazil, a recent
46 study reported an annual loss of US\$ 1 million considering only the incidence of
47 RSD in the most planted variety grown in 29% of the cultivated area (Urashima et
48 al. 2017). RSD, caused by the gram-positive Actinobacteria *Leifsonia xyli* subsp.
49 *xyli* (Lxx), is regarded as one of the least tractable diseases of sugarcane because
50 its external symptoms, characterized by reduction in height and in stalk diameter,
51 can be easily mistaken by the effects of other factors that affect plant growth.

52 The main control method of RSD relies on using healthy cuttings (setts)
53 taken from *in vitro* cultured or heat-treated canes raised in nurseries as planting
54 material. Immersion of setts in hot water (50-52°C) for 30-120 minutes is the most
55 used heat treatment but its efficiency in eradicating the bacterium is variable
56 (Damann Jr and Benda 1983; Carvalho et al. 2016), which contributes to the high
57 incidence of Lxx-infected plants reported in commercial fields (Rago et al. 2004;
58 Ponte et al. 2010; Urashima and Marchetti 2013; Li et al. 2014). Since sugarcane
59 varieties differ in their resistance to Lxx multiplication (Davis et al. 1988; Comstock
60 et al. 1996), breeding and selection for Lxx-restrictive varieties represents a
61 promising control strategy. However, although the disease was first described

62 more than 70 years ago, there is little information on the molecular and
63 physiological mechanisms of sugarcane involved in the interaction with Lxx.

64 Stunting is attributed to the plugging of the xylem vessels and resulting
65 water stress by the association of bacterial cells and a matrix of uncertain origin
66 and composition observed in basal internodes of mature stalks (Kao and Damann
67 Jr. 1978) and resistance has been associated to the anatomy of the vessels which
68 are more branched in resistant genotypes thus presumably restricting colonization
69 (Teakle et al. 1978). At the physiological level, aside from impairing the activity of
70 acid invertase in buds (Madan et al. 1986), modulating the activity of antioxidative
71 enzymes and negatively interfering in photosynthetic parameters (Zhang et al.
72 2016a), it has also been reported that infection with Lxx induces changes in the
73 production of auxin (IAA), gibberellic acid (GA3) and abscisic acid (ABA) (Zhang et
74 al. 2016b). At the gene expression level, a study based on hybridizations of cDNA
75 arrays containing 3,575 expressed sequenced tags (EST) identified 49 genes
76 mostly related to signal transduction with altered expression in response to
77 inoculation with Lxx (Ferro et al. 2007). Due to the poor understanding of RSD and
78 to the lack of cost-effective and high-throughput screening methods to select
79 resistant genotypes at the seedling stage, selection for resistance to this disease
80 has not been the focus of breeding programs (Dal-Bianco et al. 2012). Thus,
81 knowledge on the mechanisms involved in the early stages of the disease may
82 reveal candidate genes that could be used as markers to identify resistant
83 genotypes.

84 *Leifsonia xyli* subsp. *xyli* is a peculiar plant pathogen in many aspects. So
85 far, its only described natural host is sugarcane (Mills et al. 2001; Zavaglia et al.
86 2016), where it systemically colonizes the xylem vessels, the mesophyll and the
87 bundle sheath cells (Bailey 1977; Quecine et al. 2015). Its genome has an
88 unusually high number of pseudogenes, indicating that it has undergone a process
89 of genome decay that could account both for this restricted host range and for its
90 slow and fastidious growing habit (Monteiro-Vitorello et al. 2004). Also, there is a
91 remarkable low level of genetic variability among isolates, suggesting that it
92 comprises a clonal population (Young et al. 2006; Zhang et al. 2016). A recent

93 review on the origin of RSD proposes that the progenitor species of modern
94 sugarcane cultivars, *Saccharum officinarum* is not the natural host of Lxx but rather
95 that the bacterium was acquired as an endophyte from *S. spontaneum* after
96 artificial interspecific hybridization carried out at the beginning of the last century
97 (Young 2016). As the damage caused by Lxx is directly correlated to its
98 concentration in plant tissues (Bailey 1977; Davis et al. 1988; McFarlane 2002;
99 Zekarias et al. 2012) and it can be detected in plants with no stunting or internal
100 symptoms, this bacterium can be considered an endophyte whose pathogenicity
101 depends on biotic and abiotic factors that control its multiplication in the host.

102 The objectives of this study were to compare changes in the transcriptome
103 and in the proteome of a susceptible sugarcane variety in response to variations in
104 the concentration of the pathogen within its tissues at the beginning of disease
105 development before the appearance of the stunting symptom. For this, infected
106 plants with low bacterial titers were either mock-inoculated or inoculated with Lxx in
107 this case to create plants with increased bacterial titers, and changes in the
108 abundance of approximately 2,500 proteins and in the expression of 14,522
109 sugarcane expressed sequenced tags (SAS) were compared at two times after
110 inoculation.

111

112

113 MATERIALS AND METHODS

114

115 **Plant material and inoculation:** Three-bud setts of the susceptible variety SP80-
116 3280 were harvested from Lxx-infected first ratoon plants which are kept in a
117 greenhouse as a source of inoculum for experimental purposes and thermally
118 treated by water immersion at 50.5°C for 2 hours to reduce the population levels of
119 Lxx (Carvalho et al. 2016). The material was cut into one-bud setts using a
120 disinfected cane knife, immersed in a fungicide solution (90 g of 70% thiophanate-
121 methyl L⁻¹ water) and planted in 0.5-L pots containing Basaplant substrate (Base).
122 Thirty days after planting, plants were transferred to 22.5-L pots (3 plants/pot)
123 containing a 2:1 mixture of steam-sterilized topsoil and substrate supplemented
124 with 2 g L⁻¹ of 15-8-12 Basacote (3M) slow release fertilizer and were inoculated 7

125 days after transplanting by cutting off the shoots 2 cm above the soil with sterile
126 scalpel blades, perforating the remaining stub with sterile needles (three
127 perforations/stub), and by placing 50 μ L of a liquid culture ($OD_{600} = 0.8$) of Lxx
128 strain CTCB07 grown in M-SC medium (Teakle and Ryan 1992, Monteiro-Vitorello
129 et al. 2004) on the surface of the stub. The experiment consisted of four
130 treatments: two inoculation conditions (inoculated with Lxx or mock-inoculated with
131 sterile culture medium; LxxI or MI treatments, respectively) x two evaluation times
132 (30 and 60 days after inoculation – DAI). The evaluation times were chosen based
133 on previous data which indicated that 30 DAI was the minimum time required to
134 detect increases in bacterial titers after inoculation and at 60 DAI these increases
135 were more pronounced (G. de Carvalho, unpublished data). Each treatment was
136 represented by three replicates arranged in a randomized block design and each
137 replicate was composed of a pot with three plants. For Lxx quantification and RNA
138 and protein extraction, 1g of leaf whorl tissue including the shoot apex, was
139 collected from each plant of a replicate and pooled. Lxx was quantified by real time
140 PCR (Carvalho et al. 2016).

141

142 **RNA extraction, microarray hybridization and data analysis**

143 Total RNA was extracted from 100 mg of plant tissue with Trizol (Thermo Fisher
144 Scientific, Waltham, MA, U.S.A.), treated with DNase I Amplification Grade
145 enzyme (Thermo Fisher Scientific) and purified with RNeasy Mini Kit (Qiagen,
146 Hilden, Germany). The concentration of RNA was determined in a NanoDrop
147 (Thermo Scientific, Waltham, MA, U.S.A) and its quality was evaluated on 1%
148 agarose/formaldehyde gel. Two of the biological replicates were used for
149 microarray hybridizations. An aliquot of the RNA was used as template in a PCR
150 reaction to assess the possibility of DNA contamination. Hybridizations were
151 performed on the customized sugarcane CaneRegNet 4x44K chip (Agilent
152 Technologies, Santa Clara, CA, U.S.A.) consisting of 43,802 probes corresponding
153 to 14,522 Sugarcane Assemble Sequences (SAS) released by the SUCEST -
154 Sugarcane EST project (Vettore et al. 2003; Lembke et al. 2012). Sample
155 preparation, hybridizations and data analysis were performed according to Lembke

156 et al. (2012). Comparisons were made between Lxxl and MI plants within each
157 time after inoculation. Dye swaps were used for each time point analyzed. The
158 normalization was composed of two steps using a non-linear LOWESS
159 normalization and a modified HTself method (Vêncio and Koide 2005; Lembke et
160 al. 2012). A gene was considered as differentially expressed if 95% of confidence
161 was obtained using the modified HTself method. The data are available in the GEO
162 (Gene Expression Omnibus) of the National Center for Biotechnology Information
163 (NCBI) <http://www.ncbi.nlm.nih.gov/geo/> under the accession number GSE87826.

164

165 **Validation of differentially expressed genes by real time quantitative PCR**
166 **(qPCR)**

167 Differentially expressed genes were selected from each time point for validation by
168 qPCR. Primers for these genes were designed using the software Primer3Plus
169 (Untergasser et al. 2007). The specificity of the primers was checked *in silico*
170 against the SUCEST database (www.sucest-fun.org) using the BlastN tool and by
171 checking for the presence of a unique peak in the melting curve of the qPCR.
172 Primer efficiency was evaluated using the software LinReg PCR (Ramakers et al.
173 2003). cDNA was synthesized using the SuperScript III First-Strand Synthesis
174 Super Mix (Thermo Fisher Scientific). PCR amplifications were done using
175 Platinum Sybr Green qPCR supermix UDG kit (Thermo Fisher Scientific). The
176 analysis of differentially expressed genes was performed with the REST software
177 (Pfaffl et al. 2002). All qPCR reactions were run in duplicates. The polyubiquitin
178 and 14-3-3 (accession IDs SCCCST2001G02.g and SCCCLR1048F12.g) genes
179 were used as normalizers (Papini-Terzi et al. 2005). The three biological replicates
180 were used for validation. The R software was used to calculate the Pearson's
181 correlation coefficient between the microarray and the qPCR data.

182

183 **Extraction and precipitation of leaf proteins:** proteins were extracted from 0.5 g
184 of plant tissue macerated in 10 mL of extraction buffer (10% w/v trichloroacetic acid
185 and 0.7% v/v 2-mercaptoethanol in acetone) and precipitated for 2 hours at -20°C.
186 The tubes were centrifuged for 15 minutes at 12,000 rpm and -20°C, the

187 supernatant was discarded, and the pellet was washed twice with 0.7% 2-
188 mercaptoethanol in acetone, dried at 4°C and resuspended in a solubilizing buffer
189 (33 mg of pellet/1 mL of buffer) containing 7 M urea, 2 M thiourea, 4% CHAPS, 2%
190 Pharmalyte (immobilized pH gradient buffer - IPG) and 0.3% of DTT (Amalraj et al.
191 2010). An aliquot was used for total protein quantification by the Bradford assay
192 using bovine serum albumin as a standard. The proteins were precipitated in a
193 methanol solution with 0.1 M ammonium acetate at -20°C for 12 hours. A ratio of
194 1,200 µL of precipitant solution to 300 µL of protein sample was used. The tubes
195 were centrifuged at 12,000 rpm for 30 minutes at 4°C and the supernatant was
196 discarded. Then, 80% methanol was added to the pellet and these were kept at -
197 20°C for 1 hour. The tubes were centrifuged at 12,000 rpm for 30 minutes at 4°C
198 and the supernatant was discarded. Acetone (80%) was added to the pellet and
199 this was kept at -20°C for 1 hour and centrifuged again at 12,000 rpm for 30
200 minutes at 4°C. The supernatant was discarded, and the final pellet was dried at
201 4°C in a desiccator for 1 day and stored in 100 µL of ethanol.

202

203 **2D-DIGE analysis:** analyses were performed at Applied Bioscience (Hayward, CA,
204 USA) according to standardized procedures. Briefly, proteins were solubilized in
205 buffer (30 mM Tris-HCl, pH 8.8, containing 7 M urea, 2 M thiourea, and 4%
206 CHAPS) for analysis in 2D gels, and quantified with the Bio-Rad Protein Assay kit
207 (BioRad, Hercules, CA, USA). Proteins of the MI treatments were labeled with Cy3-
208 red and those from the LxxL treatment were labeled with Cy5-blue. Proteins of an
209 internal standard (IS) comprising an equimolar mixture of all samples were labeled
210 with Cy2-yellow. Labeled samples were subjected to isoelectric focusing performed
211 in IPG strips at pH 3–10 (GE Healthcare, Chalfont St. Giles, U.K.) and were
212 separated by size in SDS-PAGE. Twenty-five micrograms of protein per
213 sample/run were used.

214 Gel images were generated in a Typhoon Trio imager (GE Healthcare) and
215 analyzed using the ImageQuant software (v.6.0, GE Healthcare). The
216 standardization and statistical analysis of protein volumes were carried out using
217 the biological variation analysis (BVA) module of the DeCyder software (v.6.5, GE

218 Healthcare). Comparisons of normalized protein abundances were made within
219 each time between the LxxI30 vs MI30 and the LxxI60 vs MI60 treatments as in the
220 transcriptome experiment as well as between times for Lxx-inoculated (LxxI60 vs
221 LxxI30) and mock-inoculated (MI60 vs MI30) treatments using Student's *t* test.
222 Proteins with significant variations in abundance ($P < 0.05$) and mean fold changes
223 (r) lower than -1.3 or greater than 1.3 were considered as differentially
224 accumulated and chosen for MS analysis.

225

226 **Protein sequencing:** selected proteins were excised from the gel using an Ettan
227 Spot Picker device (GE Healthcare), dried, hydrated, and digested with trypsin in
228 digestion buffer (Trypsin Gold, Promega, Madison, WI, USA) at 37°C. Peptides
229 were extracted from the gel in TFA buffer under agitation, desalinated using C-18
230 Zip-Tips (Millipore, Billerica, MA, USA) columns, mixed with CHCA matrix (alpha-
231 cyano-4-hydroxycinnamic acid), and analyzed by MALDI-TOF-MS and TOF/TOF
232 tandem MS/MS in an AB SCIEX TOF/TOFTM 5800 system (AB SCIEX,
233 Framingham, MA, USA). Approximately 10–20 of the most abundant peptides in
234 each sample (excluding autolytic trypsin peptides and other known background
235 ions) were subjected to fragmentation and tandem mass spectrometry analysis.

236 Peptide spectra were used in searches against the NCBI non-redundant
237 protein database using the GPS Explorer and MASCOT software
238 (www.matrixscience.com) to identify proteins with similar spectra. Searches were
239 performed with no constraints to protein molecular weight or isoelectric point, with
240 variable carbamidomethylation of cysteine and oxidation of methionine residues
241 and allowing one missed cleavage in the parameters. Only hits with confidence
242 intervals $> 95\%$ for protein or total ion scores were considered significant and
243 among these the hit with the highest score was reported.

244

245 **Bioinformatic analyses and data mining:** Differentially expressed genes and
246 proteins were assigned to functional categories based on the classification of the
247 SUCEST database (Vettore et al. 2003).

248

249 **RESULTS**

250 **Quantification of bacterial titers and plant growth:** Lxx titers differed ($P < 0.05$)
251 between MI and Lxx plants at both times, indicating that the inoculation method
252 was successful in establishing treatments with different bacterial densities (Figure
253 1). Moreover, the endophytic levels of Lxx increased five-fold in the mock
254 inoculated plants in the lapse of 30 days (7 and 34 Lxx cells/100 ng of plant DNA at
255 30 and 60 DAI, respectively; $P < 0.05$), whereas in the inoculated plants, bacterial
256 titers increased ten-fold (27 and 263 Lxx cells/100 ng of plant DNA at 30 and 60
257 DAI, respectively; $P < 0.05$). These titers are in the same order of magnitude as
258 those reported for 8 months-old first-ratoon plants of the same variety (Carvalho et
259 al. 2016). Notwithstanding the contrasting bacterial titers, Lxx and MI plants
260 presented no visual differences in growth at both times. Also, no symptoms of
261 water stress such as leaf rolling or senescence were observed in any treatment.
262 The mean temperature and relative air humidity registered during the experiment
263 was 25.5°C and 58%, respectively.

264

265 **Microarray:** A total of 267 differentially expressed genes ($P < 0.05$) were identified
266 between the Lxx and the MI treatments (Supplementary Table S1). There were
267 noticeable differences between the two times of analysis since only fourteen genes
268 (5% of total) were differentially expressed at both times (Figure 2). Most genes
269 exclusively detected at 30 DAI were down-regulated (82 down-regulated and 22
270 up-regulated) whereas most at 60 DAI were up-regulated (110 up-regulated and 39
271 down-regulated) (Figure 2). Moreover, differences were also found related to gene
272 functional categories, as genes encoding proteins related to cytoskeleton functions
273 were down-regulated only at 30 DAI whereas most of those related to hormone
274 metabolism (ethylene, abscisic acid and IAA), were up-regulated only at 60 DAI
275 except for a lipoxygenase that also was up-regulated at 30 DAI. Another interesting
276 difference relates to the regulation of genes involved in signal transduction, the
277 majority of which were down-regulated at 30 DAI but up-regulated at 60 DAI.
278 Notwithstanding these differences, a strikingly similar response was found between
279 30 and 60 DAI regarding the expression of genes related to the control of the cell

280 division cycle, the largest represented category, where most were down-regulated
281 (Figure 3).

282

283 **Validation of microarray data by real time PCR quantification of gene**
284 **expression (qPCR):** Twenty-nine differentially expressed genes were chosen for
285 validation (Supplementary Table S2), being thirteen exclusives of each DAI and
286 three common to both times. In all cases there was an agreement between the
287 qPCR and the microarray results (Figure 4). The Pearson's correlation coefficient
288 between the microarray and the qPCR data was 0.82, indicating a good
289 correlation.

290

291 **2D-DIGE:** 2D-DIGE protein analysis provided a satisfactory resolution of
292 approximately 2,500 proteins (Supplementary Figure S1). After image processing
293 and statistical calculations based on standardized volumes of each protein spot,
294 155 proteins were detected with significant changes in abundance for the
295 comparisons studied ($P<0.05$). Abundance ratios ranged from -4.88 to +2.56.

296

297 **Variation in protein abundance as a function of variation in bacterial titers**
298 **and of variation in bacterial titers and time:** The effect of different bacterial titers
299 on the abundance of proteins was studied by comparing LxxI and MI plants at each
300 DAI (LxxI 30 vs MI30 and LxxI60 vs MI60). A second type of comparison was
301 made between DAIs for the LxxI and MI (LxxI60 vs LxxI30 and MI60 vs MI30) to
302 identify variations related both to differences in bacterial titers and to time. A total
303 of 150 proteins from diverse functional classes were identified in these
304 comparisons (Supplementary Table S3), being 7 in the first, 148 in the second and
305 5 in both. In the first type of comparison, three were exclusive of each DAI and one
306 (calreticulin 2) common to both (Figure 2), whereas in the second type, 13 were
307 identified exclusively in the mock-inoculated contrast (MI60 vs MI30), 66 were
308 identified exclusively in the inoculated (LxxI60 vs LxxI30), and 69 were identified in
309 both contrasts (Figure 2). Among the 13 proteins of the (MI60 vs MI30) contrast,
310 the largest number (5) belong to the defense class. In the (LxxI60 vs LxxI30)

311 contrast, the carbohydrate metabolism class was the more numerous (25 proteins),
312 followed by protein metabolism (15), and transcription regulation (6). Other classes
313 with lower number of proteins were also detected, including the cell division cycle
314 class. Proteins common to the MI60 vs MI30 and LxxI60 vs LxxI30 contrasts were
315 grouped into various classes (Supplementary Table S3).

316

317 DISCUSSION

318 ***Increased bacterial titers induce discrete changes in gene expression and***
319 ***protein accumulation***

320 Of the 14,522 SAS analyzed, significant changes were found in the
321 expression levels of a small proportion of genes (1.9%) in response to increased
322 bacterial titers considering the two times of analysis. This agrees with a previous
323 study which analyzed the expression of 3,575 ESTs also by hybridization of a
324 cDNA array and found only 49 genes (1.4%) with altered expression in response to
325 inoculation with Lxx (Ferro et al. 2007). This sharply contrasts with other
326 pathosystems where intense transcriptional reprogramming is commonly reported
327 most likely because our results reflect responses to quantitative changes in
328 population densities of a slow-growing endophytic pathogen rather than to infection
329 by biotrophic and necrotrophic pathogens which result in clearly defined symptoms
330 within a short period. Also, the proportion of genes with altered expression could
331 relate to the bacterial levels in the plant tissue and to the fact that we analyzed leaf
332 whorl and shoot apex rather than xylem tissue where the bacterium grows. The
333 number of differentially expressed genes was 43% higher at 60 DAI than at 30 DAI,
334 suggesting an increased transcriptional response of sugarcane to increased
335 bacterial titers. Moreover, the small overlap between the sets of genes detected at
336 these times suggests that the responses were not only quantitative but also
337 qualitative in nature. Changes at the protein level, however, did not follow the
338 changes in gene expression, since few differentially accumulated proteins were
339 found between treatments at 30 and 60 DAI. This could be due not only to the
340 general poor agreement between transcriptomic and proteomic studies caused by

341 biological and methodological factors (Maier et al. 2009), but also possibly reflects
342 the slower responses of the proteome to this type of vascular pathogen.

343

344 ***Plants with increased levels of Lxx present down-regulation of genes
345 involved in the cell division cycle***

346

347 Inoculation with Lxx resulted in the down-regulation of genes involved in the
348 cell division cycle at both DAI. Among these are classical genes regulating the cell
349 cycle progression and cell division, such as cyclin A (CycA), which is considered to
350 be involved in the control of the S-M transition, cyclin B (CycB) and a cyclin
351 dependent protein kinase (CDKB1;1) involved in the G2-M transition (Inzé and De
352 Veylder 2006), and a gene coding for a syntaxin similar to the KNOLLE protein of
353 *Arabidopsis* required for cytokinesis (Lauber et al. 1997). In addition, various genes
354 coding for proteins required for successful chromosome replication and
355 transmission (mini-chromosome maintenance proteins 2-7; origin recognition
356 complex subunit 6; mitotic spindle checkpoint proteins MAD2 and MAD3;
357 chromosomal structural maintenance proteins; microtubule associated proteins,
358 condensins, kinesins, chromatin assembly factor) were down-regulated. These
359 results agree with the observed down-regulation of genes involved in DNA
360 metabolism as the down-regulation of the cell division cycle is expected to be
361 accompanied by a down-regulation in DNA replication and processing as well.
362 Moreover, the repression of all genes of the cytoskeleton functional category at 30
363 DAI may also be related, since these comprise mostly kinesins, a protein family
364 that includes members essential for cell growth and division by mediating the
365 reorganization of the microtubules in anticipation of the mitotic division (Li et al.
366 2012) and a gene encoding for a microtubule binding protein similar to TANGLED-
367 1 of maize involved in the orientation of cytokinesis (Smith et al. 2001).

368 An interesting finding relates to a gene (SCCCLB1003E01.g) similar to one
369 coding for a 14 KDa proline-rich DC 2.15 protein of carrot that at 60 DAI was the
370 most down-regulated gene of this study besides being down-regulated at 30 DAI
371 as well. In carrot as in other plant species, this gene occurs in small gene families

372 and although not a classical gene of the cell cycle, it was tentatively considered as
373 such because transcripts of similar genes from maize and bean specifically
374 accumulate in the cortical region of the root meristem where cell division occurs
375 (John et al. 1992; Choi et al. 1996). In addition, suppression of its expression in
376 carrot caused retarded growth and development and a reduced ratio of
377 phloem/xylem cells in the vascular bundles, suggesting a role in the differentiation
378 of these cells (Holk et al. 2002). Additional studies should be performed to detail
379 the expression profile of this gene in the intercalary meristem during the interaction
380 of sugarcane with Lxx and its possible contribution to the stunting symptom
381 characteristic of RSD.

382

383 **Hormone metabolism**

384 Plant hormones play key roles in controlling cell division, plant growth and
385 stress responses, and as such it was expected to find genes involved in their
386 metabolism in this study. Genes related to the metabolism of abscisic acid (ABA),
387 ethylene (ET), gibberellin (GA), auxin (IAA), and JA were all up-regulated in Lxx-
388 inoculated plants, mostly at 60 DAI. By contrast, no genes related to the synthesis
389 of salicylic acid (SA) were detected. Our results are in general agreement with a
390 previous study on hormonal changes in sugarcane conducted in a similar
391 experimental design (Zhang et al. 2016b). The concentrations of ABA, IAA, and GA
392 were evaluated in plants regenerated from Lxx-inoculated setts at 90, 120, 150,
393 and 180 days after shoot emergence. Although the levels of Lxx were not
394 evaluated as in our study, the concentration of ABA increased and of IAA
395 decreased at all evaluation times in inoculated plants compared to non-inoculated,
396 whereas the concentration of GA decreased in the inoculated plants only at 180
397 days. In our study, the up-regulation of the regulatory gene in the biosynthesis of
398 ABA (9-cis-epoxycarotenoid dioxygenase) at 60 DAI was accompanied by the up-
399 regulation of an ABA 8-hydroxylase-1 gene involved in its degradation at the same
400 time, possibly to cope with the increased levels of this hormone in response to
401 higher bacterial titers. The reported reduced levels of IAA could result from the up-
402 regulation of a gene (indole-3-acetic acid-amido synthetase GH3.8) that prevents

403 the accumulation of free IAA (Ding et al. 2008). In addition, it is worth mentioning
404 that the over expression of GH3.8 in rice also hinders plant growth and
405 development (Ding et al. 2008). The up-regulation at 30 DAI of a gene coding for
406 an oxidase (cytochrome P450 ent-kaurenoic acid oxidase) involved in the final
407 three steps of the biosynthetic pathway of GA (Helliwell et al. 2001) suggests an
408 expected increase rather than a decrease in the concentration of this hormone, but
409 this could result from the differences in plant genotypes and times of analysis
410 between our study and that of Zhang et al. (2016b). The up-regulation of three
411 genes involved in the last two steps of the synthesis of ET (one ACC synthase and
412 two ACC oxidases) and of two involved in the metabolism of JA (lipoxygenase -
413 LOX and a jasmonate ZIM motif protein) extends the range of hormonal responses
414 of sugarcane to Lxx reported by Zhang et al. (2016b), but additional experiments
415 are needed to confirm their predicted increased levels *in planta* in response to
416 increased Lxx titers.

417 Our data indicate a more complex hormonal response of sugarcane to Lxx
418 than that previously reported by Zhang et al. (2016b). Given the dynamic nature of
419 plant growth control by hormones in response to various stimuli, the development
420 of RSD symptoms is also expected to respond dynamically to varying
421 environmental conditions. As a fact, in plants with stunting the length of the
422 internodes is not uniformly reduced along the stem compared to healthy plants,
423 with some internodes presenting normal length, possibly corresponding to growth
424 periods under more favorable conditions. The balance between ABA production
425 and degradation in response to Lxx as suggested in this study could represent an
426 underlying mechanism of this growth pattern, since a combination with any other
427 factor that enhances the production of ABA would aggravate the symptoms. The
428 accentuated severity of RSD reported under conditions of moisture stress (Rossler
429 1974; Ngaruiya et al. 2005) could be explained by this phenomenon given that the
430 production of ABA is well recognized to be drought-responsive. The same applies
431 to ET whose synthesis is reciprocally regulated with that of ABA during stress (Li
432 and Huang 2011) and inhibits the mitotic cell cycle under high osmotic conditions
433 by reducing the activity of CDKA following a suggested pause-and-stop model

434 (Skirycz et al. 2011) where the cell cycle is rapidly arrested after the sensing of
435 osmotic stress and resumes when conditions improve.

436 Aside for their role in plant growth, these hormones also play crucial roles in
437 defense, notably ABA, JA and ET. However, the available information on this
438 pathosystem presently does not allow predicting if the hormonal changes induced
439 by Lxx act by increasing or decreasing the susceptibility of sugarcane towards this
440 pathogen given that they exert positive or negative roles in disease promotion
441 depending on the characteristics of the interaction. Moreover, it is difficult to
442 determine changes that are directly related to the pathogen attack from those that
443 are side effects of the extensive crosstalk between these hormones.

444

445 ***Signal transduction and transcription regulation associated to plant growth***

446 The alteration of the cell cycle would be expected to be accompanied by
447 changes in signal transduction and regulation of plant growth processes. Most
448 down-regulated genes at 30 DAI involved in signal transduction comprised kinases
449 and two of these were classified as AURORA kinases whose subtypes play
450 different major roles in the cell division cycle, such as regulation of the cycle
451 progression, chromosomal segregation and cytokinesis. In *Arabidopsis*, the down-
452 regulation of an AURORA kinase by RNAi compromised growth and development
453 by arresting the development of the apical meristem (Petrovská et al. 2012). Two
454 genes coding for Rac GTPase-activating proteins were also down-regulated while
455 a WD40-like beta propeller repeat family protein was up-regulated. Besides the cell
456 cycle, these proteins regulate various other cellular processes. On the other hand,
457 at 60 DAI, genes encoding for receptor Ser/Thr kinases involved both in plant
458 development and defense were up-regulated in Lxxl plants perhaps due to the
459 recognition of the pathogen in the mesophyll and bundle sheath cells after a certain
460 level of cell-density has been achieved. The only LRR receptor serine/threonine-
461 protein kinase down-regulated at this time was the ERECTA gene. *Arabidopsis*
462 mutants of this gene showed short lateral organs and internodes, a phenotype
463 attributed to the arrest of the cell cycle (Van Zanten et al. 2009). Pathogen
464 recognition by receptors could then lead to the differential expression of genes

465 involved in downstream signaling (MAPKKK, calcium dependent protein kinase
466 and calmodulin binding protein) at 60 DAI.

467 Numerous genes encoding transcription factors (TF) involved in several
468 aspects of plant growth and defense were up or down-regulated at both times,
469 reflecting a complex crosstalk between genes with different developmental roles.
470 At 30 DAI, these include down-regulated genes coding for TFs of the
471 SCARECROW-Like 28 (SCL28) class that controls plant development and of the
472 CXC-domain containing residue involved in cell division (Hauser et al. 2000). At 60
473 DAI, a different and more diverse set of TFs, mostly involved in growth processes
474 and responses to stress with interplay of phytohormones, notably ABA and ET,
475 were detected. These include genes coding for growth regulating factor (GRF),
476 PLATZ, MYB, and NAC TFs. A member of the WRKY51 class that acts as a
477 negative regulator of gibberellin and a positive of ABA signaling (Xie et al. 2006)
478 was up-regulated, agreeing with the reported levels of these hormones in Lxx-
479 infected plants (Zhang et al. 2016b). Also noteworthy was the up-regulation of a
480 KNOX TF, once members of this protein family are involved in the maintenance of
481 the meristem. On the other hand, two members of the TCP family of TFs (PCF5 e
482 PCF7) were down-regulated. Members of this family may act by stimulating or
483 inhibiting the cell cycle (Müller and Leyser 2011). Six genes coding for AP2/EREBP
484 family members were down or up-regulated at 30 or 60 DAI, two of which were
485 identified as the ethylene-responsive TFs 1 and 4 (ERF1 and ERF4). The latter is a
486 transcriptional repressor of ET and ABA and was up-regulated at 30 DAI and the
487 former is an ET activator whose up-regulation at 60 DAI coincided with the up-
488 regulation of ACC synthase and ACC oxidase. Finally, at both times chromatin
489 remodeling complex ATPase ISW1 genes involved in cell expansion in *Arabidopsis*
490 (Huanca-Mamani et al. 2005) were down-regulated.

491

492 ***Host defense through reactive oxygen species, antimicrobial compounds
493 and hypoxia***

494 Of the few reported defense responses of sugarcane to Lxx, the production
495 of reactive oxygen species (ROS) seems to be a major one as the activity of the

496 antioxidative stress enzymes superoxide dismutase and peroxidase increased
497 whereas that of catalase decreased in inoculated plants evaluated starting 150 DAI
498 (Zhang et al. 2016a). Also, increased concentrations of O_2^- were reported in Lxx
499 inoculated plants at 240 DAI. Our data support this previous report and indicated
500 that this response can be detected at earlier times at the gene expression level as
501 indicated by the up-regulation of a NADPH respiratory burst oxidase protein B
502 (Rboh) and of a peroxidase (Pox). Three other peroxidase genes were up-
503 regulated at 60 DAI. These genes are responsible for producing ROS which are
504 secreted to the apoplast as defense signaling or accumulated in the vacuole where
505 they contribute to cell wall reinforcement (Almagro et al. 2009) perhaps contributing
506 to the observed uneven thickness of the cell walls observed in Lxx-infected plants
507 (Zhang et al. 2016b). Also, increased levels of ROS could make the xylem
508 environment more inhospitable to Lxx. The differential expression of a universal
509 stress protein A (USPA) at this time could also be related to ROS production or to
510 a reduction in water availability due to xylem clogging, since its chaperone activity
511 has been related to the control of these oxidative compounds under drought
512 conditions (Isokpehi et al. 2011). In addition to triggering ROS responses,
513 increased bacterial titers at 60 DAI also lead to the up-regulation of genes related
514 to the production of antimicrobial agents, namely phenylalanine ammonia liase
515 (PAL), lipoxygenase (Lox) and cytochrome P450. PAL is the first enzyme in the
516 biosynthesis of phenylpropanoids, from which several antimicrobial compounds are
517 produced (Dixon et al. 2002) whereas Lox, besides participating in the synthesis of
518 JA as mentioned before, generates oxylipins with diverse roles in plant defense
519 against pathogens and insects through the oxidation of fatty acids (Porta and
520 Rocha-Sosa 2002). Cytochrome P450 proteins participate in several cell processes
521 including detoxification of harmful substances and synthesis of defense-related
522 compounds such as phenylpropanoids, alkaloids and terpenoids, as well as the
523 phytohormones GA, auxin and JA (Schuler 1996; Chapple 1998; Schuler and
524 Werck-Reichhart 2003). Metabolomic studies should confirm if these compounds
525 accumulate in sugarcane as a function of Lxx colonization and if they exert any
526 inhibitory effect on its growth.

527 As an obligate aerobe who colonizes the microaerophilic environment of the
528 xylem vessels, it is expected that any changes in the availability of oxygen would
529 have a substantial impact on the ability of Lxx to grow in the host tissues. The up-
530 regulation of genes commonly expressed under hypoxia both at 30 (pyruvate
531 phosphate dikinase - PPDK; adenylate kinase - AK) and at 60 DAI (pyrophosphate-
532 fructose-6-phosphate 1-phosphotransferase – PFP; pyruvate decarboxylase -
533 PDC; alcohol dehydrogenase – ADH; hypoxia-responsive family protein) in Lxx-
534 inoculated plants indicates a response of sugarcane to higher bacterial titer
535 towards a reduction in the availability of O₂ probably related to hormonal signaling
536 mediated by ET and MYB TFs as suggested by the up-regulation of the ethylene-
537 dependent hypoxia-marker-genes ADH and PDC (Peng et al. 2001).

538

539 ***Pathogen-beneficial transcriptional alterations of the host include
540 suppression of host defenses and up-regulation of genes related to the
541 synthesis of methionine and transport of sugar***

542 Some host physiological modifications induced by pathogens represent
543 remarkable adaptive mechanisms of microorganisms. Viewing Lxx as an obligatory
544 endophyte of sugarcane, modification of the host environment would be crucial for
545 its growth and understanding these mechanisms could provide insights as to
546 means of reducing the impact of RSD on sugarcane production. At 30 DAI, we
547 observed a down-regulation of genes coding for antimicrobial compounds such as
548 phenylpropanoids (4-coumarate CoA ligase) and the pathogenesis-related proteins
549 (PR-proteins) defensin (PR-12) and thaumatin (PR-5) which are markers of
550 systemic acquired resistance. The down-regulation of these genes at 30 DAI may
551 contribute to suppress the plant immune response thus favoring Lxx growth at the
552 early stages of colonization. By contrast, the up-regulation of a gene coding for
553 methionine synthase (MS) at 30 DAI potentially represent another example of
554 pathogen-beneficial modification since Lxx growth *in vitro* is greatly enhanced by
555 the addition of this amino acid because two genes of the methionine biosynthetic
556 pathway are probably non-functional (Monteiro-Vitorello et al. 2004). Thus, an
557 increase in the synthesis of methionine induced by the pathogen at the early

558 phases of colonization, besides up-regulating the synthesis of ET, could also
559 provide the needed supply of this amino acid for pathogen establishment and
560 posterior growth. On the other hand, methionine synthase is also involved in the
561 synthesis and regeneration of S'adenosyl-L-methionine (SAM), which is a
562 precursor of spermidine, a polyamine that is essential for prokaryotic cell growth
563 and protection from various stresses, including ROS (Shah and Swiatlo 2008). As
564 Lxx does not have the genes necessary for the synthesis of this compound, it
565 would be interesting to determine the role of spermidine on its growth in the host.
566 Another intriguing finding related to the methionine pathway was the up-regulation
567 of a nicotianamine synthase (NS) gene that is known to be induced under
568 conditions of iron deficiency to produce nicotianamine through the trimerization of
569 SAM. As nicotianamine plays an important role in mineral homeostasis, higher
570 bacterial levels would up-regulate NS to cope with mineral sequestering by the
571 pathogen and a candidate mineral would be iron, since hemin is required for its
572 growth *in vitro*. SAM is also important to the biosynthesis of ET indicating a major
573 role of methionine in the interaction of sugarcane with Lxx.

574 The up-regulation at 60 DAI of a SWEET14 gene in LxxI plants provides
575 another example of Lxx-beneficial alteration of sugarcane as it has been proposed
576 that plant pathogens may divert the carbon flux of their hosts to support their own
577 growth by interfering in the expression of genes of the SWEET class of sugar
578 transporters (Chen et al. 2010). Whether this interference results from the action of
579 an effector as in the case of the *pthXo1* effector of the xylem-dwelling
580 *Xanthomonas oryzae* pv. *oryzae* which induces the expression of OsSWEET11
581 (Chen et al. 2010) is an interesting line of research on the pathogenicity
582 mechanisms of Lxx. Additionally, since SWEET transporters can also enhance
583 pathogen growth through interaction with copper transporters to remove toxic
584 copper from the xylem (Lapin and Van Den Ackerveken 2013), it is interesting to
585 note that a copper export ATPase, which can be involved in Cu sequestration into
586 the vacuole and/or transport in xylem vessels (Printz et al. 2016) also was up-
587 regulated at 60 DAI, highlighting the activation of a potential toxic copper removal
588 mechanism by Lxx.

589

590 **Proteomics data**

591 Among the seven differentially accumulated proteins, a calcium-binding
592 chaperone of the endoplasmic reticulum (calreticulin – CRT2) was less abundant in
593 Lxxl plants both at 30 and 60 DAI. Recognized primarily as a regulator of calcium
594 homeostasis in both animals and plants, CRT proteins have also been implicated
595 in a variety of plant processes, such as plant growth and responses to stresses,
596 including pathogen attack. CRT2 is a mediator of salicylic acid-dependent immune
597 responses as the overexpression of the CRT2 gene leads to higher levels of SA
598 and of expression of SAR marker-genes, including PR-5 (Qiu et al. 2012). Thus, it
599 is reasonable to assume that the observed reduction in the expression of PR-5
600 observed in Lxxl plants at 30 DAI could be related to the lower abundance of
601 CRT2. At 30 DAI, in contrast with the down-regulation of cyclin transcripts of the A
602 and B classes, higher titers of Lxx lead to increased levels of a H;1 class cyclin,
603 whose role in the control of the cell cycle is not firmly established but in
604 *Arabidopsis* has been associated to drought responses (Zhou et al. 2013). A
605 polyphenol oxidase (PPO) was also more abundant, indicating that the production
606 of quinones with antimicrobial properties may also occur in sugarcane in response
607 to Lxx along with the production of phenylpropanoids and oxylipins as evidenced
608 from the transcriptomic data. At 60 DAI, three spots of glutathione S-transferase,
609 another key enzyme involved in stress response, differentially accumulated in Lxxl
610 plants, evidencing a detoxicating reaction of sugarcane to the accumulation of
611 stressing agents perhaps in response to the generation of reactive electrophile
612 species resultant from the up-regulation of cytochrome P450.

613 Because of the few proteins identified between treatments when Lxxl and MI
614 plants were compared within DAI and since there also was a significant increase in
615 Lxx titers between mock-inoculated plants along the time, we compared the
616 proteomes of the MI and of the Lxxl plants between DAI. Since these data are not
617 directly comparable to the results of the microarray analyses because of the
618 variation both in Lxx titers and in time, we highlighted some results that tentatively
619 corroborate the transcriptomic data. For instance, changes in protein abundances

620 common to both comparisons (69 out of 148) may represent developmental
621 responses of sugarcane or a common response to the growth of the bacterium
622 since bacterial titers increased over time in both treatments. Also a larger set of
623 proteins was uniquely identified in the comparison LxxI60 vs LxxI30 where
624 variation in bacterial titer was higher than in the MI60 vs MI30 comparison.

625 In both comparisons, proteins representing the same major functional
626 categories identified in the microarray analysis were detected and, in some cases,
627 there was a direct gene-protein relationship, such as PAL, methionine synthase,
628 ADH, PFP, and UBC9, whereas in other the results complemented the
629 transcriptomic data. For instance, the accumulation of SAM at higher levels in LxxI
630 plants at 30 DAI compared to 60 DAI together with the up-regulation of the
631 methionine synthase, ACC synthase and ACC oxidase genes completes the
632 pathway from the synthesis of methionine to ET and corroborates the involvement
633 of this hormone in the response to Lxx. Also, evidences of responses to hypoxia,
634 besides being supported by the accumulation of ADH and PFP were strengthened
635 by the accumulation of three protein spots identified as sucrose synthases which
636 are also known to accumulate under this condition. Finally, different components of
637 the ubiquitin/proteasome system (UPS) were identified at the transcript (ubiquitin
638 conjugating and ligase enzymes - E2 and E3) and protein levels (five subunits of
639 the proteasome), indicating active protein degradation.

640

641 ***Host growth inhibition and ratoon stunting disease***

642 Despite of its economic importance, there is little information on the effects
643 of RSD on the transcriptome of sugarcane and none so far on its proteome. Once it
644 is still unclear which metabolic pathways are activated as responses of the host to
645 Lxx, our study focused on young susceptible plants at the early times of plant and
646 disease development. By inoculating a set of plants, the experimental conditions
647 simulated an increase in the population densities of Lxx over time and by
648 comparing their responses to the responses of a set of non-inoculated ones, both
649 sets infected with the bacterium, it was possible to detect genes and proteins
650 whose changes in expression or abundances coherently explain the genesis of the

651 main symptom of RSD. An overview of sugarcane responses at the transcriptome
652 level was elaborated (Figure 5). Our data indicate the negative control of the cell
653 cycle associated with higher bacterial cells as one of the main determinant of
654 stunting. The cumulative negative effects on the division cycle in response to
655 increasing bacterial titers over time modulated by hormones and environmental
656 factors would lead to stunting. Given that the progression of the cell cycle is
657 inhibited by water stress, it is possible that this results from the reported occlusion
658 of the xylem vessels in plants infected with Lxx (Teakle et al. 1973). This
659 conclusion is further supported by changes in other genes and proteins associated
660 to drought and hypoxia here reported. However, since Lxx plants did not display
661 visual symptoms of water stress or growth reduction, this conclusion needs to be
662 confirmed by testing for water restriction or xylem clogging under these
663 experimental conditions. Alternatively, it is possible that a yet uncharacterized
664 compound of bacterial origin, perhaps an analog of ABA, might also negatively
665 affect plant growth (Monteiro-Vitorello et al. 2004) and this could be tested, for
666 example, by assessing gene expression after exposing plants to Lxx-culture
667 filtrates.

668 *Leifsonia xyli* subsp. *xyli* behaves similarly to other fastidious and vascular-
669 limited bacteria such as *Herbaspirillum rubrisubalbicans* and *Xanthomonas*
670 *albilineans* in sugarcane, *Xylella fastidiosa* and *Spiroplasma citri* in citrus and
671 'Candidatus phytoplasma mali' in apple, which are detected at low levels in
672 asymptomatic plants and at high levels in symptomatic ones (James et al. 1997;
673 Alves et al. 2004; Mello et al. 2010; Baric et al. 2010; Gutierrez et al. 2016). This
674 dual endophytic/parasitic behavior and its modulation by environmental and host
675 factors is an intriguing aspect of the relationships between plants and
676 microorganisms. For instance, drought is a recognized factor that increases losses
677 due to RSD as it compounds with the occlusion of the xylem in aggravating water
678 stress. Other factors such as the population dynamics of Lxx over time and in
679 concert with water stress should be explored. Our study described host responses
680 at the gene and protein level and highlighted metabolic pathways that must be
681 studied in more detail to improve our understanding on the genesis of this disease.

682

683

684

685 This study is part of the Ph.D. theses of M.C. Cia and G. Carvalho supported by
686 FAPESP grants 2008/56260-2 and 2015/18681-0. J.P.R. Marques was supported
687 by a scholarship from FAPESP (grant 2012/25315-1).

688

ACKNOWLEDGEMENTS

689 Literature cited

690

691 Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Barceló, A. R., and
 692 Pedreño, M. A. 2009. Class III peroxidases in plant defence reactions. *J. Exp. Bot.*
 693 60:377–390.

694 Alves, E., Marucci, C. R., Lopes, J. R. S., and Leite, B. 2004. Leaf symptoms on
 695 plum, coffee and citrus and the relationship with the extent of xylem vessels
 696 colonized by *Xylella fastidiosa*. *J. Phytopathol.* 152:291–297.

697 Amalraj, R. S., Selvaraj, N., Veluswamy, G. K., Ramanujan, R. P., Muthurajan, R.,
 698 Palaniyandi, M., Agrawal, G.K., Rakwal, R., and Viswanathan, R. 2010. Sugarcane
 699 proteomics: Establishment of a protein extraction method for 2-DE in stalk tissues
 700 and initiation of sugarcane proteome reference map. *Electrophoresis.* 31:1959–
 701 1974.

702 Bailey, R. A. 1977. The systemic distribution and relative occurrence of bacteria in
 703 sugarcane varieties affected by ratoon stunting disease. *Proc S. Afr. Sug. Technol*
 704 Ass. 6:55–56.

705 Baric, S., Berger, J., Cainelli, C., Kerschbamer, C., Letschka, T., and Dalla Via, J.
 706 2010. Seasonal colonisation of apple trees by “*Candidatus Phytoplasma mali*”
 707 revealed by a new quantitative TaqMan real-time PCR approach. *Eur. J. Plant*
 708 *Pathol.* 129:455–467.

709 Carvalho, G., da Silva, T. G. E. R., Munhoz, A. T., Monteiro-Vitorello, C. B., Azevedo,
 710 R. A., Melotto, M., and Camargo, L. E. A. 2016. Development of a qPCR for
 711 *Leifsonia xyli* subsp. *xyli* and quantification of the effects of heat treatment of
 712 sugarcane cuttings on Lxx. *Crop Prot.* 80:51–55.

713 Chapple, C. 1998. Molecular-genetic analysis of plant cytochrome P450-dependent
 714 monooxygenases. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 49:311–43.

715 Chen, L.-Q., Hou, B.-H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X.-Q., Guo,
 716 W.-J., Kim, J.-G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White,
 717 F. F., Somerville, S. C., Mudgett, M. B., and Frommeret, W. B. 2010. Sugar
 718 transporters for intercellular exchange and nutrition of pathogens. *Nature.* 468:527–
 719 534.

720 Choi, D., Song, J. Y., Kwon, Y. M., and Kim, S. 1996. Characterization of a cDNA
 721 encoding a proline-rich 14 kDa protein in developing cortical cells of the roots of
 722 bean (*Phaseolus vulgaris*) seedlings. *Plant Mol. Biol.* 30:973–982.

723 Comstock, J. C., Shine Jr, J. M., Davis, M. J., and Dean, J. L. 1996. Relationship
 724 between resistance to *Clavibacter xyli* subsp. *xyli* colonization in sugarcane and
 725 spread of ratoon stunting disease in the field. *Plant Dis.* 80:704–708.

726 Dal-Bianco, M., Carneiro, M. S., Hotta, C. T., Chapola, R. G., Hoffmann, H. P.,
 727 Garcia, A. A. F., and Souza, G. M. 2012. Sugarcane improvement: How far can we
 728 go? *Curr. Opin. Biotechnol.* 23:265–270.

729 Damann Jr, K. E., and Benda, G. T. A. 1983. Evaluation of commercial heat treatment
 730 methods for control of ratoon stunting disease of sugarcane. *Plant Dis.* 67:966–
 731 967.

732 Davis, M. J., Dean, J. L., and Harrison, N. A. 1988. Quantitative variability of
 733 *Clavibacter xyli* subsp *xyli* populations in sugarcane cultivars differing in resistance
 734 to ratoon stunting disease. *Phytopathology.* 78:462–468.

735 Dean, J. L., and Davis, M. J. 1990. Losses caused by ratoon stunting disease of

736 sugarcane in Florida. *Am. Soc. Sugar Cane Technol.* 10:66–72.

737 Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., and Wang, S. 2008. Activation of
738 the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression
739 and promotes salicylate- and jasmonate-independent basal immunity in rice. *Plant*
740 *Cell.* 20:228–240.

741 Dixon, R. A., Achnina, L., Kota, P., Liu, C.-J., Reddy, M. S. S., and Wang, L. 2002.
742 The phenylpropanoid pathway and plant defence—a genomics perspective. *Mol.*
743 *Plant Pathol.* 3:371–390.

744 Fegan, M., Croft, B. J., Teakle, D. S., Hayward, a. C., and Smith, G. R. 1998.
745 Sensitive and specific detection of *Clavibacter xyli* subsp. *xyli*, causal agent of
746 ratoon stunting disease of sugarcane, with a polymerase chain reaction-based
747 assay. *Plant Pathol.* 47:495–504.

748 Ferro, M., Barros, N. de, Dabbas, K., Laia, M., Kupper, K., Moraes, V., Oliveira, J. C.
749 F., Ferro, J. A., and Zingaretti, S. M. 2007. Análise do perfil de expressão dos
750 genes da cana-de-açúcar envolvidos na interação com *Leifsonia xyli* subsp. *xyli*.
751 *Summa Phytopathol.* 33:157–166.

752 Gutierrez, A., Garces, F.F., Hoy, J.W. 2016. Evaluation of Resistance to Leaf Scald
753 by Quantitative PCR of *Xanthomonas albilineans* in Sugarcane. *Plant Dis.*
754 100:1331–1338.

755 Hauser, B. A., He, J. Q., Park, S. O., and Gasser, C. S. 2000. TSO1 is a novel protein
756 that modulates cytokinesis and cell expansion in *Arabidopsis*. *Development.*
757 127:2219–2226.

758 Helliwell, C. A., Chandler, P. M., Poole, A., Dennis, E. S., and Peacock, W. J. 2001.
759 The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps
760 of the gibberellin biosynthesis pathway. *Proc. Natl. Acad. Sci. U.S.A.* 98:2065–
761 2070.

762 Holk, A., Klumpp, L., and Scherer, G. F. E. 2002. A cell wall protein down-regulated
763 by auxin suppresses cell expansion in *Daucus carota* (L .). *Plant Mol. Biol.*
764 50:295–305.

765 Huanca-Mamani, W., Garcia-Aguilar, M., Leó N-Martínez, G., Grossniklaus, U., and
766 Vielle-Calzada, J.-P. 2005. CHR11, a chromatin-remodeling factor essential for
767 nuclear proliferation during female gametogenesis in *Arabidopsis thaliana*. *Proc.*
768 *Natl. Acad. Sci. U.S.A.* 102:17231–17236.

769 Inzé, D., and De Veylder, L. 2006. Cell cycle regulation in plant development. *Annu.*
770 *Rev. Genet.* 40:77–105.

771 Isokpehi, R. D., Simmons, S. S., Cohly, H. H. P., Ekunwe, S. I. N., Begonia, G. B.,
772 and Ayensu, W. K. 2011. Identification of Drought-Responsive Universal Stress
773 Proteins in Viridiplantae. *Bioinform. Biol. Insights.* 5:41–585.

774 James, E. K., Olivares, F. L., Baldani, J. I., and Döbereiner, J. 1997. *Herbaspirillum*,
775 an endophytic diazotroph colonizing vascular tissue *3Sorghum bicolor* L. Moench.
776 *J. Exp. Bot.* 48:785–798.

777 John, I., Wang, H., Held, B., Wurtele, E., and Colbert, J. 1992. An mRNA that specific
778 accumulates in maize roots delineate a novel subset of developing cortical cells.
779 *Plant Mol. Biol.* 20:821–831.

780 Kao, J., and Damann Jr, K. E. 1978. Microcolonies of the bacterium associated with
781 ratoon stunting disease found in sugarcane xylem matrix. *Phytopathology.* 68:545–
782 551.

783 Lapin, D., and Van Den Ackerveken, G. 2013. Susceptibility to plant disease: more
784 than a failure of host immunity. *Trends Plant Sci.* 18:546-554.

785 Lauber, M. H., Waizenegger, I., Steinmann, T., Schwarz, H., Mayer, U., Hwang, I.,
786 Lukowitz, W., and Jürgens, G. 1997. KNOLLE protein is a cytokinesis-specific
787 syntaxin. *J. Cell Biol.* 139:1485-1493.

788 Lembke, C. G., Nishiyama, M. Y., Sato, P. M., de Andrade, R. F., and Souza, G. M.
789 2012. Identification of sense and antisense transcripts regulated by drought in
790 sugarcane. *Plant Mol. Biol.* 79:461-77.

791 Li, Z., and Huang, R. 2011. The reciprocal regulation of abscisic acid and ethylene
792 biosyntheses. *Plant Signal. Behav.* 6:1647-50.

793 Li, J., Xu, Y., and Chong, K. 2012. The novel functions of kinesin motor proteins in
794 plants. *Protoplasma*. 249:S95-S100.

795 Li, W.-F., Shen, K., Huang, Y.-K., Wang, X.-Y., Yin, J., Luo, Z.-M., Zhang, R.-Y., and
796 Shan, H.-L. 2014. Incidence of sugarcane ratoon stunting disease in the major
797 cane-growing regions of China. *Crop Prot.* 60:44-47.

798 Madan, V., Singh, K., Shukla, U., and Sayena, Y. 1986. Biochemical studies on
799 sugarcane (*Saccharum officinarum* L.) affected with ratoon stunting disease. *Indian*
800 *Phytopathol.* 39:506-508.

801 Maier, T., Güell, M., and Serrano, L. 2009. Correlation of mRNA and protein in
802 complex biological samples. *FEBS Lett.* 583:3966-3973.

803 McFarlane, S. 2002. The relationship between extent of colonisation by *Leifsonia xyli*
804 subsp. *xyli* and yield loss in different sugarcane varieties. *Proc. S. Afr. Sug.*
805 *Technol. Ass.* 76:281-284.

806 Mello, A., Yokomi, R., Melcher, U., Chen, J., and Fletcher, J. 2010. Citrus stubborn
807 severity is associated with *Spiroplasma citri* titer but not with bacterial genotype.
808 *Plant Dis.* 94:75-82.

809 Mills, L., Leaman, T. M., Taghavi, S. M., Shackel, L., Dominiak, B. C., Taylor, P. W.
810 J., Fegan, M., and Teakle, D. S. 2001. *Leifsonia xyli*-like bacteria are endophytes
811 of grasses in eastern Australia. *Australas. Plant Pathol.* 30:145-151.

812 Monteiro-Vitorello, C. B., Camargo, L. E. A., Van Sluys, M. A., Kitajima, J. P., Truffi,
813 D., do Amaral, A. M., Harakava, R., de Oliveira, J.C., Wood, D., de Oliveira, M. C.,
814 Miyaki, C., Takita, M. A., da Silva, A. C., Furlan, L. R., Carraro, D. M., Camarotte,
815 G., Almeida Jr, N. F., Carrer, H., Coutinho, L. L., El-Dorry, H. A., Ferro, M. I.,
816 Gagliardi, P. R., Giglioti, E., Goldman, M. H., Goldman, G. H., Kimura, E. T., Ferro,
817 E. S., Kuramae, E. E., Lemos, E. G., Lemos, M. V., Mauro, S. M., Machado, M. A.,
818 Marino, C. L., Menck, C. F., Nunes, L. R., Oliveira, R. C., Pereira, G. G., Siqueira,
819 W., de Souza, A. A., Tsai, S. M., Zanca, A. S., Simpson, A. J., Brumbley, S. M.,
820 and Setúbal, J. C. 2004. The genome sequence of the gram-positive sugarcane
821 pathogen *Leifsonia xyli* subsp. *xyli*. *Mol. Plant. Microbe. Interact.* 17:827-836.

822 Müller, D., and Leyser, O. 2011. Auxin, cytokinin and the control of shoot branching.
823 *Ann. Bot.* 1203:1212-2011.

824 Ngaruiya, P. N., Shipton, W. A., and Coventry, R. 2005. Ratoon stunting disease of
825 sugarcane as influenced by environmental stressors. *Proc. Aust. Soc. Sugar Cane*
826 *Technol.* 27:324-333.

827 Papini-Terzi, F., Rocha, F., Vêncio, R., Oliveira, K., Felix, J., Vicentini, R., Rocha, C.
828 S., Simões, A. C., Ulian, E. C., di Mauro, S.M., da Silva, A.M., Pereira, C.A.,
829 Menossi, M., and Souza, G.M. 2005. Transcription profiling of signal transduction-

830 related genes in sugarcane tissue. *DNA Res.* 12:27–38.

831 Peng, H.-P., Chan, C.-S., Shih, M.-C., and Yang, S. F. 2001. Signaling events in the
832 hypoxic induction of alcohol dehydrogenase gene in *arabidopsis*. *Plant Physiol.*
833 126:742–749.

834 Petrovská, B., Cenková, V., Pochylová, Ž., Kourová, H., Doskočilová, A., Plíhal, O.,
835 Binarová, L., and Binarová, P. 2012. Plant Aurora kinases play a role in
836 maintenance of primary meristems and control of endoreduplication. *New Phytol.*
837 193:590–604.

838 Pfaffl, M. W., Horgan, G. W., and Dempfle, L. 2002. Relative expression software tool
839 (REST) for group-wise comparison and statistical analysis of relative expression
840 results in real-time PCR. *Nucleic Acids Res.* 30:e36.

841 Ponte, E. C., Silveira, S. F., Carneiro Jr., J. D. B., and Lima, R. M. P. 2010. Incidência
842 de *Leifsonia xyli* subsp. *xyli* em áreas de multiplicação de cana-de-açúcar no
843 Espírito Santo, sul da Bahia e oeste de Minas Gerais. *Summa Phytopathol.*
844 36:313–321.

845 Porta, H., and Rocha-Sosa, M. 2002. Plant lipoxygenases. Physiological and
846 molecular features. *Plant Physiol.* 130:15–21.

847 Printz, B., Lutts, S., Hausman, J.-F., and Sergeant, K. 2016. Copper trafficking in
848 plants and its implication on cell wall dynamics. *Front. Plant Sci.* 7:601.

849 Qiu, Y., Xi, J., Du, L., Roje, S., and Poovaiah, B. W. 2012. A dual regulatory role of
850 *Arabidopsis* calreticulin-2 in plant innate immunity. *Plant J.* 69:489–500.

851 Quecine, M. C., Silva, T. M., Carvalho, G., Saito, S., Mondin, M., Teixeira-Silva, N. S.,
852 Camargo, L. E. A., and Monteiro-Vitorello, C. B. 2015. A stable *Leifsonia xyli*
853 subsp. *xyli* GFP-tagged strain reveals a new colonization niche in sugarcane
854 tissues. *Plant Pathol.* 65:154–162.

855 Rago, B. A. M., Acreche, M. M., Sopena, R. A., and Mariotti, J. A. 2004. A survey of
856 ratoon stunting disease (*Leifsonia xyli* subsp. *xyli*) in commercial sugarcane fields
857 at Tucumán. *Sugar Cane Int.* 22:12–14.

858 Ramakers, C., Ruijter, J. M., Deprez, R. H. L., and Moorman, A. F. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction
859 (PCR) data. *Neurosci. Lett.* 339:62–66.

860 Rossler, L. 1974. The effects of ratoon stunting disease on three sugarcane varieties
861 under different irrigation regimes. *Proc. Int. Soc. Sugarcane Technol.* 1:250–257.

862 Schuler, M. A. 1996. The role of cytochrome P450 monooxygenases in plant-insect
863 interactions. *Plant Physiol.* 112:1411–1419.

864 Schuler, M. A., and Werck-Reichhart, D. 2003. Functional genomics of P450. *Annu. Rev. Plant Biol.* 54:629–67.

865 Shah, P., and Swiatlo, E. 2008. A multifaceted role for polyamines in bacterial
866 pathogens. *Mol. Microbiol.* 68:4–16.

867 Skirycz, A., Claeys, H., De Bodt, S., Oikawa, A., Shinoda, S., Andriankaja, M.,
868 Maleux, K., Eloy, N. B., Coppens, F., Yoo, S.-D., Saito, K., and Inzé, D. 2011. Pause-and-stop: The effects of osmotic stress on cell proliferation during early leaf
869 development in *Arabidopsis* and a role for ethylene signaling in cell cycle arrest.
870 *Plant Cell.* 23:1876–1888.

871 Smith, L. G., Gerttula, S. M., Han, S., and Levy, J. 2001. TANGLED1: A microtubule
872 binding protein required for the spatial control of cytokinesis in maize. *J. Cell Biol.*
873 152:231–236.

877 Teakle, D., Smith, P., and Steindl, D. 1973. Association of a small coryneform
878 bacterium with the ratoon stunting disease of sugar-cane. Aust. J. Agric. Res.
879 24:869–874.

880 Teakle, D. S., Appleton, J. M., and Steindl, D. R. L. 1978. An anatomical basis for
881 resistance of sugar cane to ratoon stunting disease. Physiol. Plant Pathol. 12:83–
882 91.

883 Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., and Leunissen, J. A.
884 M. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res.
885 35:71–74.

886 Urashima, A. S., and Marchetti, L. B. L. 2013. Incidence and severity of *Leifsonia xyli*
887 subsp. *xyli* infection of sugarcane in São Paulo State, Brazil. J. Phytopathol.
888 161:478–484.

889 Urashima, A. S., Silva, M. F., Correa, J. J., Moraes, M. C., Singh, A. V., Smith, E. C.,
890 and Sainz, M. B. 2017. Prevalence and severity of ratoon stunt in commercial
891 brazilian sugarcane fields. Plant Dis. 101:815–821.

892 Vêncio, R. Z. N., and Koide, T. 2005. HTself: self-self based statistical test for low
893 replication microarray studies. DNA Res. 12:211–214.

894 Vettore, A. L., Silva, F. R., Kemper, E. L., Souza, G. M., Silva, A. M., Ferro, M.I.,
895 Henrique-Silva, F., Giglioti, E. A., Lemos, M. V., Coutinho, L. L., Nobrega, M. P.,
896 Carrer, H., França, S.C., Bacci Jr, M., Goldman, M. H., Gomes, S. L., Nunes, L. R.,
897 Camargo, L. E. A., Siqueira, W. J., Van Sluys, M. A., Thiemann, O. H., Kuramae,
898 E. E., Santelli, R. V., Marino, C. L., Targon, M. L., Ferro, J. A., Silveira, H. C.,
899 Marini, D. C., Lemos, E. G., Monteiro-Vitorello, C. B., Tambor, J. H., Carraro, D.
900 M., Roberto, P. G., Martins, V. G., Goldman, G. H., de Oliveira, R.C., Truffi, D.,
901 Colombo, C. A., Rossi, M., de Araujo, P. G., Sculaccio, S. A., Angella, A., Lima, M.
902 M, de Rosa Jr, V. E., Siviero, F., Coscrito, V. E., Machado, M. A., Grivet, L., Di
903 Mauro, S. M., Nobrega, F. G., Menck, C. F., Braga, M. D., Telles, G. P., Cara, F.
904 A., Pedrosa, G., Meidanis, J., and Arruda, P. 2003. Analysis and functional
905 annotation of an expressed sequence tag collection for tropical crop sugarcane
906 analysis and functional annotation of an expressed sequence tag collection for
907 tropical crop sugarcane. Genome Res. 13:2725–2735.

908 Xie, Z., Zhang, Z. L., Zou, X., Yang, G., Komatsu, S., and Shen, Q. J. 2006.
909 Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin
910 signaling in aleurone cells. Plant J. 46:231–242.

911 Young, A., Petrasovits, L., Croft, B., Gillings, M., and Brumbley, S. M. 2006. Genetic
912 uniformity of international isolates of *Leifsonia xyli* subsp. *xyli*, causal agent of
913 ratoon stunting disease of sugarcane. Australas. Plant Pathol. 35:503–511.

914 Young, A. J. 2016. Possible origin of ratoon stunting disease following interspecific
915 hybridization of *Saccharum* species. Plant Pathol. 65:1403–1410.

916 Van Zanten, M., Snoek, L. B., Proveniers, M. C. G., and Peeters, A. J. M. 2009. The
917 many functions of ERECTA. Trends Plant Sci. 14:214–218.

918 Zavaglia, A. C., Cia, M. C., Popin, R. V., and Camargo, L. E. A. 2016. No alternative
919 hosts of the sugarcane pathogen *Leifsonia xyli* subsp. *xyli* were identified among
920 grass and non-grass species using novel PCR primers. Trop. Plant Pathol. 41:336–
921 339.

922 Zekarias, Y., Yirefu, F., Baissa, T., Tafesse, A., and Mengistu, L. 2012. Effect of
923 *Leifsonia xyli* subsp. *xyli* concentration on yields of four sugarcane varieties in the

924 sugarcane plantations of Ethiopia. *Ethiop. J. Sci. Technol.* 3:25–30.

925 Zhang, X., Liang, Y., Zhu, K., Wu, C.-X., Yang, L., and Li, Y. 2016a. Influence of
926 inoculation of *Leifsonia xyli* subsp. *xyli* on photosynthetic parameters and activities
927 of defense enzymes in sugarcane. *Sugar Tech.* 19:394–401.

928 Zhang, X., Chen, M., Liang, Y., Xing, Y., Comstock, J. C., Li, Y., Yang, L. 2016b.
929 Morphological and physiological responses of sugarcane to *Leifsonia xyli* subsp.
930 *xyli* infection. *Plant Dis.* 100:2499–2506.

931 Zhou, X. F., Jin, Y. H., Yoo, C. Y., Lin, X.L., Kim, W.Y., Yun, D.J., Bressan, R.A.,
932 Hasegawa, P.M., Jin, J.B. 2013. CYCLIN H;1 regulates drought stress responses
933 and blue light-induced stomatal opening by inhibiting reactive oxygen species
934 accumulation in *Arabidopsis*. *Plant Physiol.* 162:1030–1041.

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971 **Figure captions**
 972

973 **Figure 1** – Mean bacterial titers \pm standard error of mock-inoculated (MI) or
 974 inoculated plants with *Leifsonia xyli* subsp. *xyli* (Lxxl) at 30 and 60 days after
 975 inoculation. Letters indicate different means based on paired Student's t test ($P <$
 976 0.05).

977
 978 **Figure 2** – Venn diagrams of differentially expressed genes (A) and accumulated
 979 proteins (B, C) between treatment contrasts. Lxxl –inoculated; MI – mock-
 980 inoculated; 30 and 60 refer to days after inoculation. Numbers by up or down
 981 arrows indicate the sum of up or down represented genes or proteins in each
 982 contrast.

983
 984
 985
 986 **Figure 3** – Numbers of up or down-regulated genes at 30 and 60 days after
 987 inoculation with *Leifsonia xyli* subsp. *xyli* based on the SUCEST functional
 988 categorization.

989
 990
 991 **Figure 4** – Relative expressions (Log_2 fold-change) of genes differentially
 992 expressed at 30 (A) and 60 (B) days after inoculation according to the microarray
 993 (stripped bars) and real-time qPCR (solid bars) assays. MCM3, Minichromosome
 994 maintenance protein 3; MCM4, Minichromosome maintenance protein 4; MCM6,
 995 Minichromosome maintenance protein 6; CycA, Cyclin A; CycB, Cyclin B;
 996 CDKB1;1, Cyclin-dependent protein kinase B1;1; SMC4, Structural maintenance of
 997 chromosome 4; MAD3, Mitotic spindle checkpoint component MAD3; H4, Histone
 998 H4; TOPII, DNA topoisomerase II; CAPH, Non-SMC condensin I complex subunit
 999 H; AP2/EREBP-30, AP2/Ethylene Responsive Element Binding Protein; SCL28,
 1000 Scarecrow-like protein 28-like; Defensin; Lox, Lipoxygenase; MS, Methionine
 1001 synthase; CS1, Condensin subunit 1; ACCO, ACC oxidase; NCED, 9-cis-
 1002 epoxycarotenoid dioxygenase; ABAHase, Abscisic acid 8-hydroxylase; WRKY51,
 1003 WRKY transcription factor 51; AP2/EREBP-60, AP2/Ethylene Responsive Element
 1004 Binding Protein; bHLH61, Transcription factor bHLH61; CYP450, Cytochrome
 1005 P450; POX, Peroxidase; ADH, Alcohol dehydrogenase 1; Kinase, Receptor
 1006 Ser/Thr kinase; USP, Universal stress protein A; and PAL, Phenylalanine
 1007 ammonia-lyase.

1008
 1009
 1010 **Figure 5** – Schematic representation of the response of sugarcane plants variety
 1011 SP80-3280 to increased titers of *Leifsonia xyli* subsp. *xyli* at 30 (A) and 60 (B) DAI.
 1012 Genes are labeled with colors indicating the fold change (Log_2) of their transcript
 1013 levels based on microarray data (color code is given in the figure). LRR-erecta,
 1014 LRR receptor-like serine/threonine-protein kinase ERECTA; LRR-Kinase, LRR
 1015 receptor-like serine/threonine-protein kinase; MAPKKK, Mitogen-activated protein
 1016 kinase kinase kinase A; Mcm2-7, Minichromosome maintenance protein complex

1018 2-7; DNA topoisomerase; RpA, replication protein A; Cdc7, Cell division control
1019 protein 7; Orc6, Origin recognition complex subunit 6; WD40, WD40-like beta
1020 propeller repeat family protein; CycA, Cyclin A; CycB, Cyclin B; H4, Histone H4;
1021 H2A, Histone H2A; Caf, Chromatin assembled factor; cdkb1;1, Cyclin-dependent
1022 protein kinase B1;1; Smc2, Structural maintenance of chromosome 2; Smc4,
1023 Structural maintenance of chromosome 4; Tangled1, Microtubule binding protein
1024 Tangled1; Mad2, mitotic spindle checkpoint component MAD2; Mad3, mitotic
1025 spindle checkpoint component MAD3; Knolle, Syntaxin-related protein KNOLLE;
1026 Kinesins; Aur, Aurora kinase A; cs1, condensin subunit 1; Ms, methionine
1027 synthase; Ns, Nicotianamine synthase 3; Pox, Peroxidase; Cyp450, Cytochrome
1028 P450; Adh, Alcohol dehydrogenase 1; Ppdk, Pyruvate phosphate dikinase; Pdc,
1029 Pyruvate decarboxylase; Pfp, pyrophosphate-fructose-6-phosphate 1-
1030 phosphotransferase; Ak, Adenylate kinase; Usp, Universal stress protein A; Pal,
1031 Phenylalanine ammonia-lyase; 4Cl, 4-Coumarate-CoA ligase; Defensin;
1032 Thaumatin; Grf; growth regulation factor; Wrky51, WRKY transcription factor 51;
1033 Nac, NAC-domain containing protein; Myb, MYB-like protein; Jaz, Jasmonate ZIM
1034 motif family protein; Iswi, ISWI chromatin remodeling complex ATPase ISW1; Cxc,
1035 Tesmin/TSO1-like CXC domain; ap2/erebp, AP2/ ethylene responsive element
1036 binding protein; Scl28, Scarecrow-like protein 28-like; Pcf7, transcription factor
1037 PCF7; ACC oxidase; ACC synthase; Nced, 9-cis-epoxycarotenoid dioxygenase;
1038 Abah, Abscisic acid 8-hydroxylase; Lox, Lipoxygenase; GH3.8, Indole-3-acetic
1039 acid-amido synthetase GH3.8; Kao, Cytochrome P450 ent-kaurenoic acid oxidase;
1040 Rbdoh, NADPH Respiratory burst oxidase homolog protein B; Cdpk, Calcium
1041 dependent protein kinase; Sweet14, Bidirectional sugar transporter SWEET14.
1042
1043

1044 **Supplementary Figure 1.** Representative 2D-DIGE protein patterns of plantlets of
1045 the SP80-3280 sugarcane variety (A) mock-inoculated or (B) Lxx- inoculated at 30
1046 DAI and (C) the overlapping image of (A) and (B); (D) mock-inoculated or (E) Lxx-
1047 inoculated at 60 DAI and (F) the overlapping image of (D) and (E); (G) Circled
1048 spots indicate differentially accumulated proteins.
1049

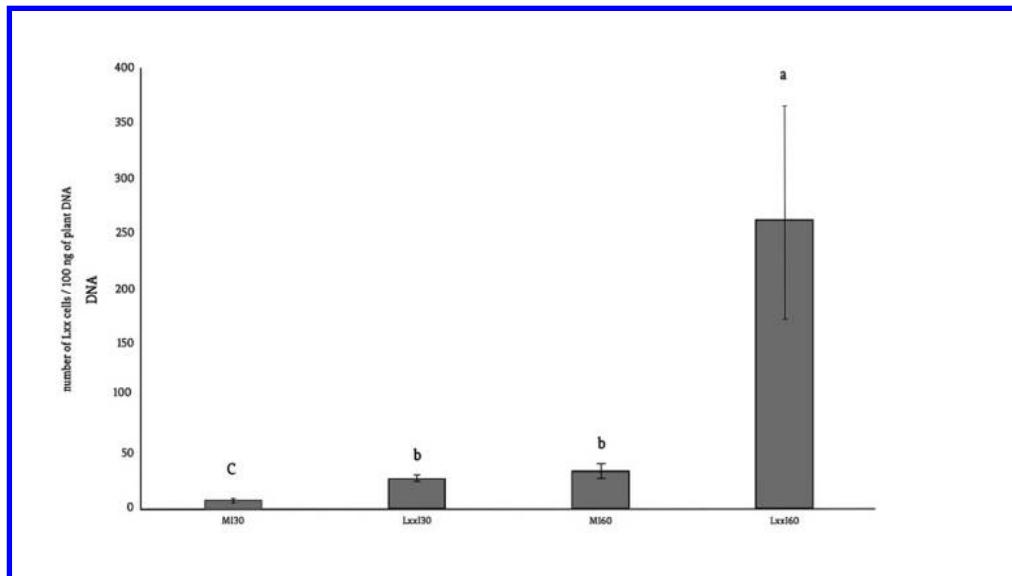


Figure 1 – Mean bacterial titers ± standard error of mock-inoculated (MI) or inoculated plants with *Leifsonia xyli* subsp. *xyli* (LxxI) at 30 and 60 days after inoculation. Letters indicate different means based on paired Student's t test ($P < 0.05$).

370x208mm (72 x 72 DPI)

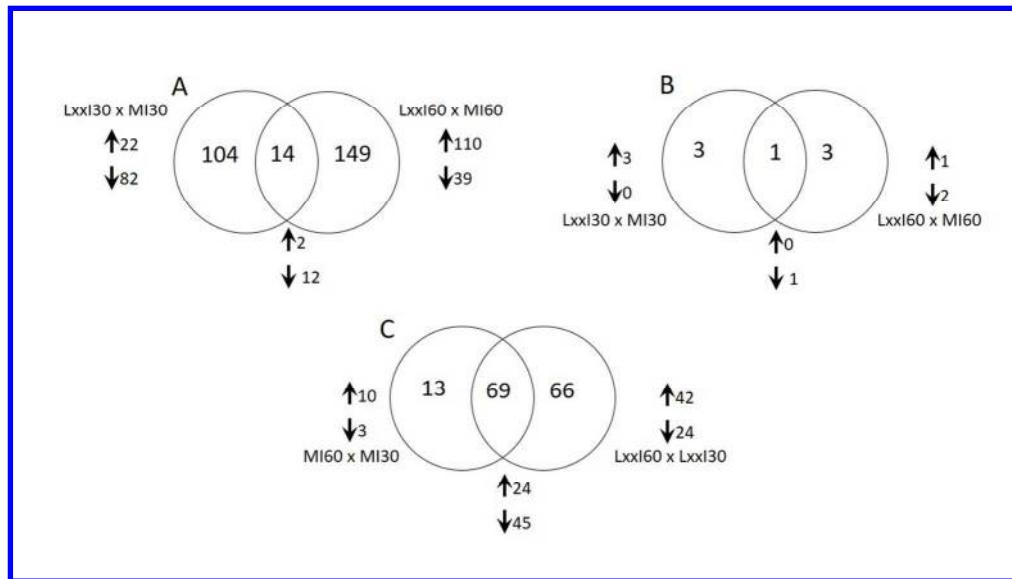


Figure 2 – Venn diagrams of differentially expressed genes (A) and accumulated proteins (B, C) between treatment contrasts. LxxI –inoculated; MI – mock-inoculated; 30 and 60 refer to days after inoculation. Numbers by up or down arrows indicate the sum of up or down represented genes or proteins in each contrast.

338x190mm (96 x 96 DPI)

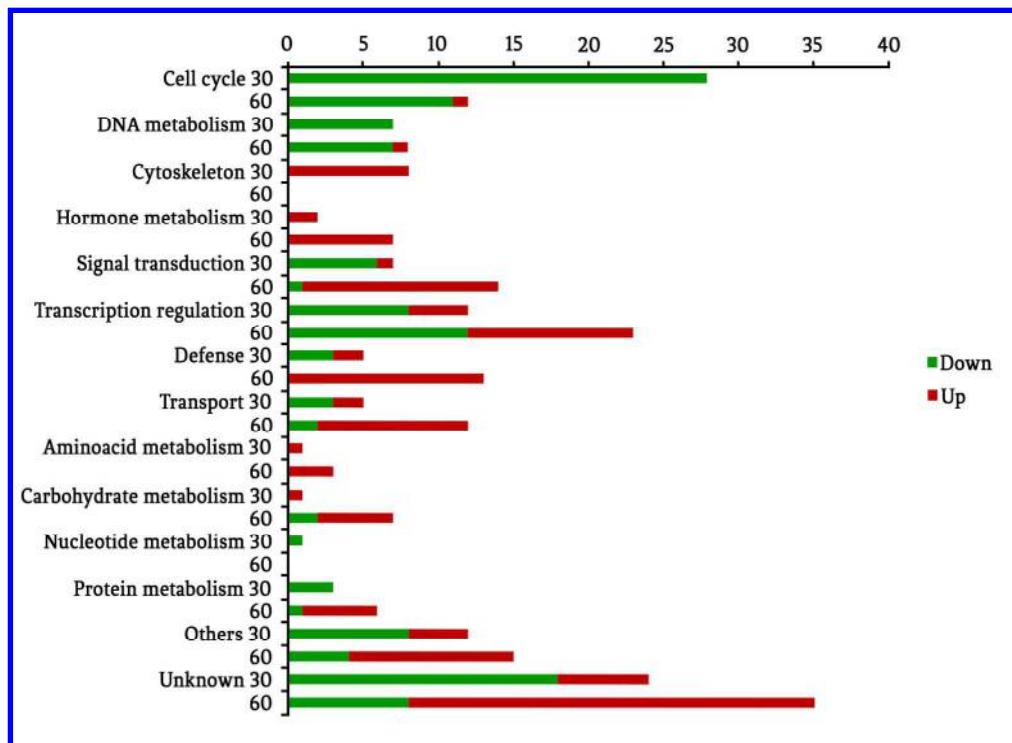


Figure 3 – Numbers of up or down-regulated genes at 30 and 60 days after inoculation with *Leifsonia xyli* subsp. *xyli* based on the SUCEST functional categorization.

203x147mm (300 x 300 DPI)

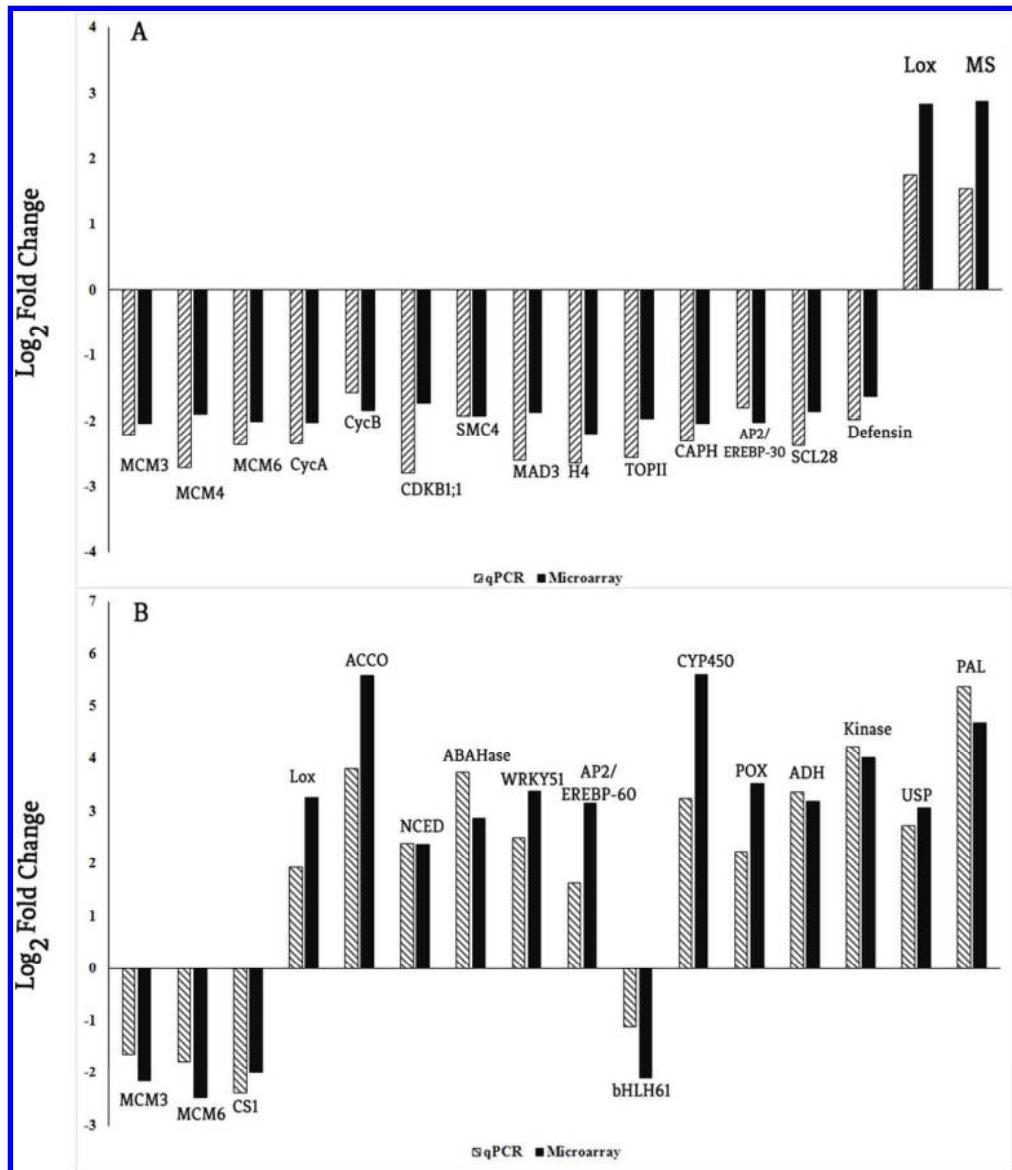


Figure 4- Relative expressions (Log₂ fold-change) of genes differentially expressed at 30 (A) and 60 (B) days after inoculation according to the microarray (stripped bars) and real-time qPCR (solid bars) assays.

MCM3, Minichromosome maintenance protein 3; MCM4, Minichromosome maintenance protein 4; MCM6, Minichromosome maintenance protein 6; CycA, Cyclin A; CycB, Cyclin B; CDKB1;1, Cyclin-dependent protein kinase B1;1; SMC4, Structural maintenance of chromosome 4; MAD3, Mitotic spindle checkpoint component MAD3; H4, Histone H4; TOPII, DNA topoisomerase II; CAPH, Non-SMC condensin I complex subunit H; AP2/EREBP-30, AP2/Ethylene Responsive Element Binding Protein; SCL28, Scarecrow-like protein 28-like; Defensin; Lox, Lipoxygenase; MS, Methionine synthase; CS1, Condensin subunit 1; ACCO, ACC oxidase; NCED, 9-cis-epoxycarotenoid dioxygenase; ABAHase, Abscisic acid 8-hydroxylase; WRKY51, WRKY transcription factor 51; AP2/EREBP-60, AP2/Ethylene Responsive Element Binding Protein; bHLH61, Transcription factor bHLH61; CYP450, Cytochrome P450; POX, Peroxidase; ADH, Alcohol dehydrogenase 1; Kinase, Receptor Ser/Thr kinase; USP, Universal stress protein A; and PAL, Phenylalanine ammonia-lyase.

88x102mm (300 x 300 DPI)

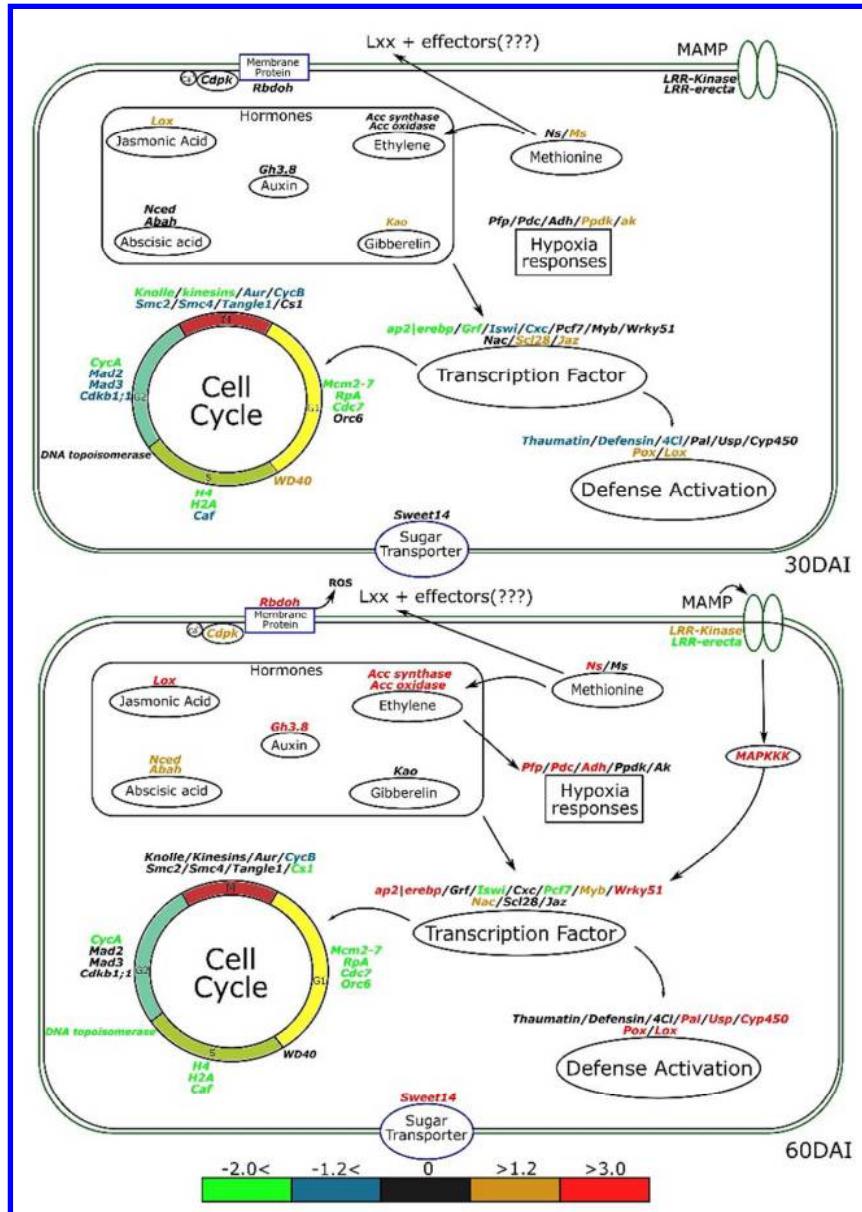


Figure 5 -Schematic representation of the response of sugarcane plants variety SP80-3280 to increased titers of *Leifsonia xyli* subsp. *xyli* at 30 (A) and 60 (B) DAI. Genes are labeled with colors indicating the fold change (Log2) of their transcript levels based on microarray data (color code is given in the figure). LRR-erecta, LRR receptor-like serine/threonine-protein kinase ERECTA; LRR-Kinase, LRR receptor-like serine/threonine-protein kinase; MAPKKK, Mitogen-activated protein kinase kinase kinase A; Mcm2-7, Minichromosome maintenance protein complex 2-7; DNA topoisomerase; RpA, replication protein A; Cdc7, Cell division control protein 7; Orc6, Origin recognition complex subunit 6; WD40, WD40-like beta propeller repeat family protein; CycA, Cyclin A; CycB, Cyclin B; H4, Histone H4; H2A, Histone H2A; Caf, Chromatin assembled factor; cdkb1;1, Cyclin-dependent protein kinase B1;1; Smc2, Structural maintenance of chromosome 2; Smc4, Structural maintenance of chromosome 4; Tangled1, Microtubule binding protein Tangled1; Mad2, mitotic spindle checkpoint component MAD2; Mad3, mitotic spindle checkpoint component MAD3; Knolle, Syntaxin-related protein KNOLLE; Kinesins; Aur, Aurora kinase A; cs1, condensin subunit 1; Ms, methionine synthase; Ns, Nicotianamine synthase 3; Pox, Peroxidase; Cyp450, Cytochrome P450; Adh,

Alcohol dehydrogenase 1; Ppdk, Pyruvate phosphate dikinase; Pdc, Pyruvate decarboxylase; Pfp, pyrophosphate-fructose-6-phosphate 1-phosphotransferase; Ak, Adenylate kinase; Usp, Universal stress protein A; Pal, Phenylalanine ammonia-lyase; 4Cl, 4-Coumarate-CoA ligase; Defensin; Thaumatin; Grf; growth regulation factor; Wrky51, WRKY transcription factor 51; Nac, NAC-domain containing protein; Myb, MYB-like protein; Jaz, Jasmonate ZIM motif family protein; Iswi. ISWI chromatin remodeling complex ATPase ISW1; Cxc, Tesmin/TSO1-like CXC domain; ap2/erebp, AP2/ ethylene responsive element binding protein; Scl28, Scarecrow-like protein 28-like; Pcf7, transcription factor PCF7; ACC oxidase; ACC synthase; Nced, 9-cis-epoxycarotenoid dioxygenase; Abah, Abscisic acid 8-hydroxylase; Lox, Lipoxygenase; GH3.8, Indole-3-acetic acid-amido synthetase GH3.8; Kao, Cytochrome P450 ent-kaurenoic acid oxidase; Rbdoh, NADPH Respiratory burst oxidase homolog protein B; Cdpk, Calcium dependent protein kinase; Sweet14, Bidirectional sugar transporter SWEET14.

239x338mm (96 x 96 DPI)

Supplementary Table S1 - Functional categorization, gene annotation, and expression ratios at 30 and 60 days after inoculation (DAI) of differentially expressed Sugarcane Annotated Sequences (SAS) of the variety SP80-3280 inoculated with *Leifsonia xyli* subsp. *xyli*.

SAS	Functional category	Gene	30 DAI	60 DAI
SCEQRT2026F02.g	Cell cycle	Structural maintenance of chromosome 2	-1.68	-
SCCCCL4005H10.g		Structural maintenance of chromosome 4	-1.91	-
SCRFAM1026H03.g		Cyclin1	-1.62	-
SCUTLR1058G02.g		Cyclin III	-2.10	-
SCACAM2042F03.g		Cyclin A	-2.02	-
SCEPCL6029D04.g		cyclin B	-1.83	-
SCJLLR1033H06.g		cyclin B2	-1.97	-
SCACLR1057B10.g		Cyclin-dependent protein kinase CDKB1;1	-1.72	-
SCJFRZ2006F07.g		Mitotic spindle checkpoint protein MAD2	-1.60	-
SCEPAM1023G10.g		Mitotic spindle checkpoint component MAD3	-1.87	-
SCJLLR1103B02.g		Ubiquitin carboxyl-terminal hydrolase superfamily protein	-1.75	-
SCVPLB1016G07.g		Patellin-5	-1.68	-
SCEQLR1029C07.g		Targeting protein for Xklp2	-1.28	-
SCUTHR1065C09.g		Syntaxin-related protein KNOLLE	-2.05	-
SCSGHR1071A09.g		Non-SMC condensin I complex subunit H	-2.02	-
SCACLR1128F01.g		Microtubule-associated protein RP/EB family member 3	-1.77	-
SCQGLR1019E01.g		Microtubule-associated protein RP/EB family	-1.72	-
SCRLAM1013A12.g		65-kDa microtubule-associated protein 5	-1.99	-
SCCCAM2004F12.g		Cell division control protein 7	-1.99	-
SCCCRZ1C01E03.g		Minichromosome maintenance protein 4	-1.89	-
SCCCLB1023D02.g		Minichromosome maintenance protein 5	-1.62	-
SCJLRZ1023B07.g		Minichromosome maintenance protein 2	-1.78	-2.20
SCCCLR1072B11.g		Minichromosome maintenance protein 3	-2.03	-2.17
SCEPCL6029A03.g		Minichromosome maintenance protein 6	-2.00	-2.47
SCCCLR1C05C04.g		Minichromosome maintenance protein 7	-1.91	-2.43

SCEZRZ1012E01.g		Mini-chromosome maintenance complex-binding protein-like	-1.62	-2.20
SCCCLB1003E01.g		14 kDa proline-rich protein DC2.15	-1.96	-4.58
SCMCRT2086D06.g		Chromatin assembly factor 1 subunit B	-1.39	-2.06
SCEPCL6019G04.g		Condensin subunit 1	-	-2.00
SCCCRZ2003E03.g		Centromeric protein E	-	-1.81
SCUTFL3075D03.g		Type A cyclin	-	-2.30
SCJFST1011F10.g		DNA polymerase III	-	-1.72
SCSGLV1008B03.g		Flowering-promoting factor 1-like protein 1	-	3.50
SCCCLB1002E02.g	DNA metabolism	Phosphoribosyltransferases	-1.60	-
SCCCLB1004H09.g		DNA repair protein RAD51 homolog A	-1.84	-
SCBGLR1002A12.g		DNA topoisomerase II	-1.96	-
SCCCLR2C02C12.g		Histone H2A	-2.06	-
SCRFLR2038C05.g		Histone H4	-1.20	-
SCCCLR2002D04.g		Histone H4	-2.19	-
SCVPRZ2036F02.g		Replication protein A 70 kDa DNA-binding subunit	-1.76	-2.17
SCBFST3135H08.g		Histone H2A	-	-1.97
SCRUFL1021B04.g		Histone acetyltransferase type B subunit 2	-	-1.70
SCVPFL1140D05.g		DNA repair helicase RAD5	-	-2.56
SCCCAD1001F12.g		RAD3-related DNA helicase	-	-2.25
SCCCLR1C02F08.g		Replication protein A 32 kDa subunit-like	-	-2.28
SCMCLR1125B04.g		Origin recognition complex subunit 6	-	-2.80
SCQSLR1061C11.g		MATE efflux family protein 1	-	3.80
SCJLFL1052C01.g	Cytoskeleton	125 kDa kinesin-related protein	-1.66	-
SCCCRZ1C01E04.g		125 kDa kinesin-related protein	-1.21	-
SCBFAM2021A04.g		Kinesin-like protein	-2.19	-
SCEPAM1018H01.g		kinesin	-1.60	-
SCACLR1127F03.g		Kinesin	-1.83	-
SCJLRT2050F05.g		Kinesin family member C2/C3	-1.46	-

SCCCCL3001D11.g		Microtubule-associated protein TORTIFOLIA1-like	-1.81	-
SCRALAM1009B07.g		Microtubule binding protein Tangled1	-1.20	-
SCAGRT3046D01.g	Hormone metabolism	Cytochrome P450 ent-kaurenoic acid oxidase	1.22	-
SCCCRT1001E01.g		Lipoxygenase	2.84	3.26
SCCCLR1048H03.g		9-cis-epoxycarotenoid dioxygenase	-	2.38
SCRFRZ3058E03.b		Abscisic acid 8-hydroxylase 1	-	2.86
SCQGAM2028D11.g		ACC synthase	-	4.91
SCCCLR1022A02.g		ACC oxidase	-	5.59
SCSFRT2070A10.g		ACC oxidase	-	1.98
SCCCCL3002B05.b		Indole-3-acetic acid-amido synthetase GH3.8	-	3.02
SCCCFL1097H04.g	Signal transduction	WD40-like beta propeller repeat family protein	2.68	-
SCJFL4099D04.g		Rac GTPase activating protein	-2.07	-
SCQSLR1061C02.g		Rac GTPase activating protein	-1.73	-
SCBFLR1039G02.g		Serine/threonine-protein kinase	-1.15	-
SCRUFL1112G02.b		Serine/threonine-protein kinase Aurora-1	-1.70	-
SCCCLR2003E06.g		AURORA kinase A	-2.00	-
SCQGFL4078E12.g		Calmodulin binding protein	-1.68	-
SCCCLR1C03F08.g		LRR receptor-like serine/threonine-protein kinase ERECTA	-	-2.31
SCMCRT2108E08.g		Receptor-like protein kinase	-	2.37
SCEQLB2020F07.g		Receptor-like protein kinase	-	3.13
SCBFRT3095E07.g		Receptor Ser/Thr kinase	-	4.01
SCBFAD1045F11.g		Receptor Ser/Thr kinase	-	2.27
SCCCRT1001B08.g		Receptor Ser/Thr kinase	-	2.97
SCBGLR1115B08.g		Receptor Ser/Thr kinase	-	1.99
SCRUHR1074H12.g		L-type lectin-domain containing receptor kinase IX.1	-	2.44
SCJFRZ2015H10.g		L-type lectin-domain containing receptor kinase IX.1-like	-	2.61
SCJLRT1006B11.g		Mitogen-activated protein kinase kinase kinase A	-	3.20
SCCCLR2C02G01.g		Calcium dependent protein kinase	-	2.27

SCVPFL3046E09.b	Zinc(II) purple acid phosphatase	-	2.33
SCCCCL4005C09.g	Light-inducible protein CPRF2	-	2.28
SCCCCL3120A10.b	Auxin response factor 12	-	2.30
SCJFRZ2015E01.g	Transcription regulation	Jasmonate ZIM motif family protein	1.48
SCSGLV1009H10.b		Ribonuclease T2	1.79
SCQSLR1040B09.g		ISWI chromatin remodeling complex ATPase ISW1	-1.48
SCSGFL1079A03.g		Tesmin/TSO1-like CXC domain	-1.36
SCBFLR1039G11.g		Tesmin/TSO1-like CXC domain	-1.83
SCJFRZ1006B02.g		Transcription factor A mitochondrial	-1.98
SCRFAM1028B07.g		Transcription factor jumonji (jmjC) domain-containing protein	-1.55
SCJFRZ2031F06.g		Heat stress transcription factor B-4b	-1.28
SCEQAM2039A10.g		Scarecrow-like protein 28-like	-1.84
SCAGLR1064B08.g		AP2/Ethylene Responsive Element Binding Protein	-2.01
SCQSHR1023B08.g		AP2/Ethylene Responsive Element Binding Protein	1.20
SCQSLR1090A05.g		Ethylene-responsive transcription factor 4 (ETR4)	1.77
SCCCCL4002B07.g		AP2/Ethylene Responsive Element Binding Protein	-
SCVPRT2073F02.g		Ethylene Responsive Factor like protein	-
SCCCLR1068A11.g		Ethylene-responsive transcription factor 1A (ETR1)	-
SCAGLR1021G10.g		Protein Knotted1	-
SCSGFL5C03H04.g		ISWI chromatin remodeling complex ATPase ISW1	-
SCCCFL5096D07.g		Transcription factor PCF5	-
SCEPAM1018C05.g		Transcription factor PCF7	-
SCJFLR1013D05.g		Homeobox-leucine zipper protein ROC1	-
SCAGCL6012F06.g		Homeobox-leucine zipper protein ROC3	-
SCCCAD1003G07.g		Homeobox-leucine zipper protein ROC7	-
SCLRZ1020B01.g		Growth-regulating factor 3	-
SCCCFL4089D04.g		DNA polymerase alpha subunit B	-
SCRFLR1034G09.g		Serine/arginine repetitive matrix protein 1	-1.84

SCACL1130H08.g		Zinc finger protein	-	-3.55
SCFLR1013F11.g		Histone chaperone ASF1	-	-2.12
SCRURT3061D05.g		Transcription factor bHLH61	-	-2.10
SCCCLR2004B09.g		Transcription factor bHLH96-like	-	2.49
SCCCCL4001A01.g		WRKY transcription factor 51	-	3.38
SCCCRZ1004G12.g		NAC-domain containing protein	-	2.30
SCQGST1032D08.g		MYB-like protein	-	2.44
SCJFR1060C03.g		Ribonuclease H protein	-	3.44
SCRLLAD1097D12.g		Zinc finger protein	-	2.60
SCVPLR2027D09.g		PLATZ transcription factor	-	2.66
SCEZLB1005H06.g	Defense	Defensin (PR-12)	-1.62	-
SCJFRZ2025E05.g		Thaumatin-like protein (PR-5)	-1.24	-
SCVPFL1138B04.g		4-coumarate-CoA ligase	-1.12	-
SCCCLR1066D07.g		Glycine-rich cell wall structural protein	1.69	-
SCCCCL3002F08.b		Peroxidase	1.60	-
SCCCCL2001D02.b		Peroxidase	-	3.53
SCSBSD1033E10.g		Peroxidase	-	2.19
SCCCCL4015G04.g		Peroxidase	-	3.23
SCCCCL5002F03.g		Cytochrome P450	-	5.61
SCAGLR2011D02.g		NADPH Respiratory burst oxidase homolog protein B	-	3.86
SCCCLR1075G12.g		Leucine-rich repeat receptor-like serine/threonine-protein kinase	-	2.92
SCJLRT1006H05.g		Leucine-rich repeats (LRRs)	-	2.89
SCEPRZ3047D01.g		LRR receptor-like serine/threonine-protein kinase	-	2.56
SCSGAM1094D05.g		Phenylalanine ammonia-lyase (PAL)	-	4.69
SCQSRT1035D12.g		Protease inhibitor	-	3.41
SCQSST1037D10.g		Universal stress protein A	-	2.83
SCQSRT1035G12.g		Universal stress protein (USP) family protein	-	3.07
SCEQRT2027C06.g		Wound induced protein	-	2.71

SCQLR1061H12.g	Transport	Charged multivesicular body protein 2A	-1.66	-
SCRURT2010A08.g		Mitochondrial 2-oxoglutarate/malate carrier protein-like	-1.09	-
SCCCCL4004D08.g		NADH-plastoquinone oxidoreductase subunit k	1.39	-
SCEPSD2005D11.g		NADH dehydrogenase I subunit M	1.29	-
SCJLR1104H07.g		Early nodulin-like protein 3-like	-2.19	-
SCJFRZ2014D05.g		WAT1-related protein	-	2.06
SCCCCL3004A08.b		Early nodulin 93	-	3.44
SCRFHR1006A11.g		Peptide transporter PTR2	-	-1.82
SCEPAM2013B12.g		Peroxisomal membrane protein	-	-1.68
SCQSHR1020H10.g		Peptide/nitrate transporter	-	1.95
SCSFFL4086H05.g		Potassium transporter 1	-	2.89
SCCCAM1073C01.g		Potassium channel AKT1	-	2.60
SCACLR1057A09.g		Copper-exporting ATPase	-	2.41
SCCCRT2002G08.g		Bidirectional sugar transporter SWEET14	-	3.51
SCSGHR1066C01.g		Sugar transporters	-	2.98
SCEQRT1024C07.g		Pyrophosphate-energized vacuolar membrane proton pump	-	3.45
SCAGLR2018G04.g		RING-H2 finger protein ATL1R	-	2.48
SCCCLR1069H11.g	Aminoacid metabolism	Methionine synthase (methH)	2.88	-
SCMCST1049H08.g		Nicotianamine synthase 3 (NS)	-	3.00
SCJLR1011D09.g		Arogenate dehydratase / prephenate dehydratase 6	-	3.23
SCEZRZ1012F05.g		Methylenetetrahydrofolate reductase 1	-	2.66
SCJFRT1060F11.g	Carbohydrate metabolism	Pyruvate phosphate dikinase (PPDK)	1.29	-
SCQGLR2025A05.g		Adenylate kinase (AK)	1.37	-
SCCCLB1021E06.g		Granule-bound starch synthase	-	-1.75
SCPIRT3021H05.g		Glucosyltransferase	-	-2.66
SCCCFL4002D04.g		Glucose-1-phosphate adenylyltransferase small subunit	-	3.01
SCCCRZ1003C03.g		Acid phosphatase 1 precursor	-	4.21
SCMCRT2089E02.g		Pyruvate decarboxylase (PDC)	-	4.32

SCCCCL3001B07.b		Pyrophosphate-fructose-6-phosphate 1-phosphotransferase (PFK)	-	2.44
SCEZST3151H02.g		Pyrophosphate-fructose-6-phosphate 1-phosphotransferase (PFK)	-	4.27
SCBFAM2117B08.g		Alcohol dehydrogenase 1 (ADH)	-	3.18
SCRFL1005F10.g	Lipid metabolism	Anter-specific proline-rich protein APG	-1.58	-
SCUTLR2008F03.g		Glycerol-3-phosphate acyltransferase 1	1.43	-
SCSGHR1068B07.b		GDSL esterase/lipase	-	-2.50
SCSGFL1079D12.g		Cyclopropane fatty acyl phospholipid synthase	-	-3.00
SCVPRZ2038F04.g		Omega-3 fatty acid desaturase	-	-1.66
SCSBAM1085B06.g		Omega-3 fatty acid desaturase	-	2.07
SCQSLR1089H10.g		Lipid binding protein	-	2.66
SCEPAM2054B05.g		Phosphatidylinositol ceramide inositolphosphotransferase	-	2.66
SCJFRT1008C09.g		3-ketoacyl-CoA synthase	-	2.67
SCEZAM2031E09.g	Nucleotide metabolism	Deoxyuridine 5'-triphosphate nucleotidohydrolase	-1.49	-
SCMCRT2086A02.g		Phosphoribosylglycinamide synthetase	-	3.03
SCCCRZ2003H11.g	Protein metabolism	Ubiquitin-conjugating enzyme E2 I	-1.49	-
SCRLLAM1006G07.g		E3 ubiquitin ligase SINAT3-like	-1.25	-
SCRLLR1059F03.g		E2 Ubiquitin conjugating enzyme 9 (UBC9)	-	2.29
SCSFAD1107B01.g		DnaJ/Hsp40	-1.79	-1.97
SCAGLB2046F01.g		Trypsin inhibitor	-	2.40
SCJFRZ2009E12.g		Protease	-	4.12
SCRLCL6030H11.g		Pyrrolidone carboxylate peptidase family protein	-	2.87
SCSBRZ2021F12.g		Basic 7S globulin	-	2.94
SCCCLB1026C11.g	Others	Transposon protein	-2.17	-
SCSFSD1066D10.g		Translation initiation factor IF	1.56	-
SCACCL6009A08.g		Cellulose synthase-like protein H1-like	1.27	-
SCQGHR1011A04.g		O-acyltransferase WSD1-like	1.44	-
SCSBAD1052E10.g		ATP binding protein	-1.38	-
SCRLLAM1010C03.g		Protein CHUP1 chloroplastic-like	-1.69	-

SCEPCL6023E10.g		EH domain containing protein	-1.56	-
SCEPAM2012H05.g		OB fold nucleic acid binding domain containing protein	-1.45	-
SCCCFL5062D05.g		Tetratricopeptide repeat domain	-2.12	-
SCBGLR1114H02.g		Lamin-like protein	-1.56	-2.21
SCEPAM2015E05.g		Plantacyanin	-1.54	-1.46
SCCCCL3002F05.b		Tetratricopeptide repeat domain	-	3.06
SCQSFL1123E07.g		Aldehyde dehydrogenase family protein	-	-2.19
SCEZRZ1014A06.g		Haloacid dehalogenase-like hydrolase	-	3.41
SCJFRT1010E08.g		3'-N-debenzoyl-2'-deoxytaxol N-benzoyltransferase	-	2.74
SCJFRT1010D11.g		3-hydroxybenzoate 6-hydroxylase 1	-	2.83
SCVPRZ2040D09.g		Pectinesterase	-	2.77
SCMCRZ3065A12.g		Fucosyltransferase	-	2.21
SCAGLR2033H02.g		Oleosin Zm-I 16 kDa	-	-2.25
SCQSRT2035D11.g		Hypoxia-responsive family protein	-	2.61
SCRLLR1110H11.g		2-aminoethanethiol dioxygenase	-	2.18
SCMCLR1010D01.g		Polyprotein	-	3.27
SCCCST2004G03.g		Hydroxyproline-rich glycoprotein 1	-	2.51
SCBGLR1096F11.g	Unknown	Hypothetical protein SORBIDRAFT_02g034460	-1.35	-
SCJLFL1054B04.g		Hypothetical protein SORBIDRAFT_06g023300	-1.28	-
SCCCLR1066B11.g		Hypothetical protein SORBIDRAFT_01g037720	-1.49	-
SCRLFL1004F10.g		Hypothetical protein SORBIDRAFT_01g007940	-1.63	-
SCQGLR2032B01.g		Hypothetical protein SORBIDRAFT_03g042590	-1.79	-
SCSGAM2075E07.b		Hypothetical protein SORBIDRAFT_05g001370	-1.95	-
SCSGFL1083D07.g		hypothetical protein SORBIDRAFT_05g022560	-2.00	-
SCUTRZ2023G10.g		Hypothetical protein SORBIDRAFT_01g027980	-1.74	-
SCBGLR1027F10.g		Hypothetical protein SORBIDRAFT_04g002670	-0.93	-
SCVPLR2012B02.g		Hypothetical protein SORBIDRAFT_03g008530	-1.85	-
SCBFLR1005H01.g		Hypothetical protein SORBIDRAFT_01g006350	-1.98	-

SCCCFL8001C08.g	Hypothetical protein ZEAMMB73_516122	-1.70	-
SCRUFL4020B03.g	Uncharacterized protein DDB_G0287975-like	-1.20	-
SCRLAD1136F04.g	Uncharacterized LOC100831114	-1.75	-
SCBGAM1093E09.g	Uncharacterized LOC100838770	-2.30	-
SCEPAM1021B02.g	Proteophosphoglycan 5	-1.76	-
SCVPRT2075B11.g	Vegetative cell wall protein gp1	1.31	-
SCJFRT1061G09.g	Nucleotide pyrophosphatase/phosphodiesterase	1.44	-
SCJLLR2013D11.g	Hypothetical protein SORBIDRAFT_09g008890	2.04	-
SCBGLR1114D06.g	Hypothetical protein LOC100275145 precursor	1.33	-
SCMCCL6027E12.g	Unknown	-2.33	-
SCUTLR1058H04.g	Unknown	1.74	-
SCBGFL5077B07.g	Unknown	-1.94	-2.46
SCCCCL4001D06.g	phi-1-like phosphate-induced protein	2.30	3.16
SCVPAM1055E12.g	SelT/selW/selH selenoprotein domain containing protein	-	-1.71
SCBFFL1144D08.g	Hypothetical protein SORBIDRAFT_03g040750	-	-2.57
SCQGLB1029D12.g	Hypothetical protein SORBIDRAFT_02g007160	-	-3.24
SCEPAM1017A12.g	Hypothetical protein SORBIDRAFT_02g008000	-	-1.64
SCBFSB1045A05.g	Hypothetical protein ZEAMMB73_084392	-	-2.70
SCSGFL5C03A09.g	Uncharacterized LOC100823323	-	-1.97
SCACRZ3109B12.g	Hypothetical protein SORBIDRAFT_06g018810	-	2.40
SCRLRZ3114C04.g	Hypothetical protein SORBIDRAFT_07g019990	-	2.88
SCRUAD1063A04.g	Hypothetical protein SORBIDRAFT_01g007470	-	2.21
SCEQLR1050B01.g	Hypothetical protein SORBIDRAFT_01g032580	-	2.60
SCQGRZ3014E06.g	Hypothetical protein SORBIDRAFT_08g016800	-	2.98
SCJFRZ3C04A01.g	Hypothetical protein SORBIDRAFT_03g031090	-	3.00
SCAGRT2041E02.g	Hypothetical protein SORBIDRAFT_01g007470	-	2.07
SCUTRZ3070F02.g	Hypothetical protein SORBIDRAFT_02g031530	-	2.84
SCQLSR1090F02.g	Hypothetical protein SORBIDRAFT_01g001260	-	3.24

SCBGR1047A08.g	Hypothetical protein SORBIDRAFT_03g026010	-	2.41
SCCCLR1078E02.g	Hypothetical protein SORBIDRAFT_04g031500	-	3.09
SCACLR1129A10.g	Hypothetical protein SORBIDRAFT_03g039730	-	3.29
SCRFAD1023D02.g	Hypothetical protein ZEAMMB73_392643	-	2.80
SCEZRZ3050H04.g	Hypothetical protein ZEAMMB73_013833	-	3.10
SCRURT2006H09.g	Uncharacterized LOC100846035	-	2.97
SCCCFL4089H04.g	Unknown	-	-2.76
SCACSD2014F07.g	Unknown	-	2.55
SCSGLV1008C08.g	Unknown	-	2.65
SCMCCL6054C02.g	Unknown	-	2.67
SCQGSD1048C09.g	Unknown	-	3.11
SCRURT2006B11.g	Unknown	-	2.97
SCJLRT1023H11.g	Unknown	-	2.54
SCJFSB1011G12.g	Unknown	-	2.52
SCJFLR1073A01.g	Metal ion binding protein	-	3.08
SCQGLR2017A03.g	36.4 kDa proline-rich protein	-	3.80
SCQGAD1065H07.g	Auxin-inducible protein	-	2.24
SCCCCL3003C03.b	VQ motif family protein	-	2.79

Supplementary Table S2 – Sequences of forward and reverse primers used to amplify differentially expressed Sugarcane Annotated Sequences (SAS) by real time qPCR.

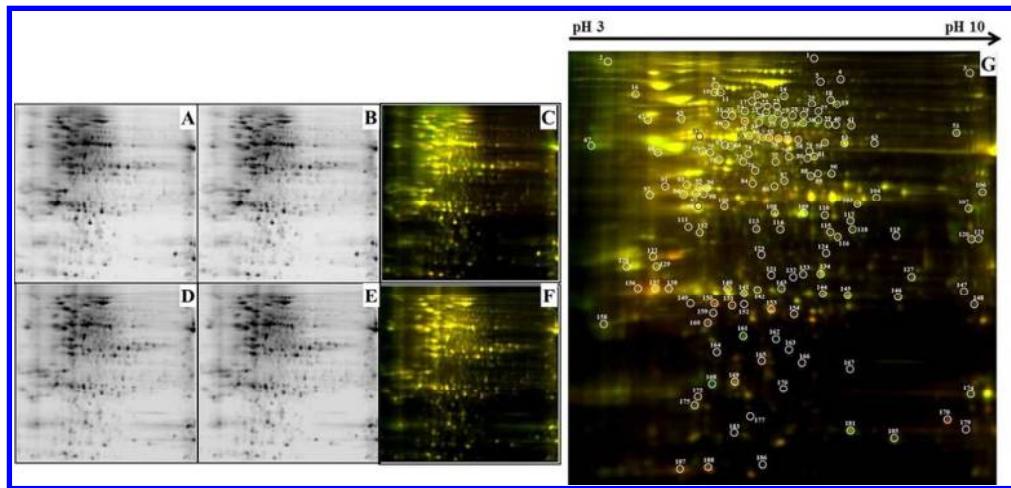
SAS	Gene	Abbreviation	Primer sequence
SCCCLR1072B11.g	Minichromosome maintenance protein 3	MCM3	5' GATGAAATTGAGCAGGCGGT 3' 5' AGGAGATCCACGGTAAACG 3'
SCCCRZ1C01E03.g	Minichromosome maintenance protein 4	MCM4	5' GTTTGTTCATCCGCCTGTC 3' 5' TTACAACCCCAGGCTTCT 3'
SCEPCL6029A03.g	Minichromosome maintenance protein 6	MCM6	5' GCCAGCCAAACCATCGCCA 3' 5' TGACCAAGCAGCGGATAAC 3'
SCACAM2042F03.g	Cyclin A	CycA	5' ATTCAGTAGGGATTGTGGTG 3' 5' GCGACTGTGTAAAGGCATTG 3'
SCEPCL6029D04.g	Cyclin B	CycB	5' ACAAAAGGCACAGCAAATC 3' 5' GACAGTCTACATCATCGA 3'
SCAGLR1064B08.g	AP2/Ethylene Responsive Element Binding Protein	AP2/EREBP-30	5' CGTCCTGCCTACTCTCCTTC 3' 5' ATGGTGTGTCGTCGGTTGCC 3'
SCACLR1057B10.g	Cyclin-dependent protein kinase CDKB1;1	CDKB1;1	5' CTCTCCCACCCATCTACG 3' 5' TACTCTTGAGGTCGGTGTGCG 3'
SCEZLB1005H06.g	Defensin	Defensin	5' CGTGTGCCAGACCGAGAACT 3' 5' AAACAGCAACGCAGGAGAAC 3'
SCCCCL4005H10.g	Structural maintenance of chromosome 4	SMC4	5' GGCTCGCTTGTATGGTGA 3' 5' AAGTCCAGTCGGCATCAC 3'
SCEPAM1023G10.g	Mitotic spindle checkpoint component MAD3	MAD3	5' TAAATGGCATGGCTCTGTCC 3' 5' AAAGTGTGGCTCGAATACGC 3'
SCCCLR2002D04.g	Histone H4	H4	5' ATGCCCTGGATGTTGTCG 3' 5' CGAGCGGAAGAAGCCATG 3'
SCBGLR1002A12.g	DNA topoisomerase II	TOPII	5' CCTTTGTATTGACTGTCTTCTC 3' 5' ATTGGAACTGGATGGAGCAC 3'
SCEQAM2039A10.g	Scarecrow-like protein 28-like	SCL28	5' CTTTTGGCTGCTGAGAGTC 3' 5' CATCCATATACGCTGTGAG 3'
SCSGHR1071A09.g	Non-SMC condensin I complex subunit H	CAPH	5' TCCAGAAGATTGCCATTACC 3' 5' GTCATCATCATTATCCACTG 3'
SCCCRT1001E01.g	Lipoxygenase	Lox	5' CAGTTGAGGAGGATGGAT 3' 5' ATGACGGATGAGGAGTTGG 3'
SCCCLR1069H11.g	Methionine synthase	MS	5' TGGAGTGGATGATGTCGTTG 3' 5' TGGAGCCTTGTCACTGTCAG 3'
SCCCLR1022A02.g	ACC oxidase	ACCO	5' ACAATGGTGGTTCCCGTG 3' 5' TCACGAGCTGGAAGAAC 3'
SCCCLR1048H03.g	9-cis-epoxycarotenoid dioxygenase	NCED	5' TAGCAAGAGGCACCAACCAGC 3' 5' GTAGGAGAGAGAAAGAAAGCG 3'
SCRFRZ3058E03.b	Abscisic acid 8-hydroxylase	ABAHase	5' CGTGGTTTCCCTTTGACTCC 3' 5' CCTGATTGGGATTGTATGTAAGC 3'
SCCCCL4001A01.g	WRKY transcription factor 51	WRKY51	5' GCCATCGGGATTAGTTGAGG 3' 5' AGCGGGACAAGGACGACC 3'

SCCCCL4002B07.g	AP2/Ethylene Responsive Element Binding Protein	AP2/EREBP- 60	5' CATTGATACATCGGCACTG 3' 5' GTTTGGGTGCCTGGAGTTC 3'
SCCCCL5002F03.g	Cytochrome P450	CYP450	5' CGACGACAAGTACCTCCG 3' 5' GGGTTCTGGACAGGAGC 3'
SCCCCL2001D02.b	Peroxidase	POX	5' AGGGCTTGTTCATCTCCGAC 3' 5' TAGTGGTTGACGACGAAGC 3'
SCBFAM2117B08.g	Alcohol dehydrogenase 1	ADH	5' GAGGCTGGAGGGTACATTATC 3' 5' CCAGAGTCCACGCAACATAAC 3'
SCBFRT3095E07.g	Receptor Ser/Thr kinase	Kinase	5' CCTCCACAGACCTGCTCATC 3' 5' CTGGACCCGACATGAAG 3'
SCQSRT1035G12.g	Universal stress protein A	USP	5' CACGACAACGAGCATGACC 3' 5' GGCAGCAGGAAAATAAGGAC 3'
SCSGAM1094D05.g	Phenylalanine ammonia-lyase	PAL	5' TGGAAATACAGTCAGCCTTGC 3' 5' TAGGGAGAAAGAATGGAGTG 3'
SCRURT3061D05.g	Transcription factor bHLH61	bHLH61	5' CGCATCGTCGTACATCAAAGA 3' 5' GCCTCAAGAATGGAAGCAAGT 3'
SCEPCL6019G04.g	Condensin sub. 1	CSI	5' TCAGAAGCGTAATATCAAAGTGC 3' 5' GCCAGAAATTATCAAGCGAGC 3'

Supplementary Table S3 – Functional category, accession number and volume fold-change of proteins differentially accumulated ($P < 0.05$) according to contrasts between plants inoculated with *Leifsonia xyli* subsp. *xyli* or mock-inoculated (LxxI and MI, respectively) at 30 or 60 days after inoculation (DAI).

Functional category	Protein	Accession	Protein fold change in contrasts			
			LxxI30	LxxI60	MI60	LxxI60
			vs MI30	vs MI60	vs MI30	vs LxxI30
Cell cycle	cyclin H;1	CBB36490	1,33	-	-	-1,39
	translationally-controlled tumor protein	ACG47605	-	-	-	1,42
	proliferation-associated protein 2G4	NP_001149216	-	-	-	1,56
Signal transduction	non-TIR-NBS-LRR type resistance protein	ABM30222	-	-	1,76	-
	small Ras-related GTP-binding protein	AAL30396	-	-	-	2,17
	14-3-3-like protein	AAP48904	-	-	-	2,56
	small Ras-related GTP-binding protein	AAL30396	-	-	-2,76	-3,24
	putative protein phosphatase 2C	BAD43676	-	-	-1,46	-1,60
	auxin-binding protein ABP20 precursor	ACG30276	-	-	-6,22	-9,72
	nucleoside diphosphate kinase	AAF91407	-	-	-1,90	-1,52
Transcription regulation	lysyl-tRNA synthetase	NP_001146902	-	-	-	1,6
	pre-mRNA-splicing factor 19	NP_001150622	-	-	-	1,38
	RNA recognition domain containing protein expressed	CBH32582	-	-	-	1,91
	NHP2-like protein 1	ACG28000	-	-	-	1,37
	glycine-rich RNA-binding protein	AAG23220	-	-	-	1,9
	DEAD-box ATP-dependent RNA helicase 56	Q0JM17	-	-	-	1,63
	transcription factor BTF3-like isoform 1	XP_003574078	-	-	-2,83	-3,17
	Tat binding protein	BAA04615	-	-	-1,56	-1,93

heterogeneous nuclear ribonucleoprotein A3 DNA-binding protein	XP_003563737 CAA46876	- -	- -	1,71 -2,53	2,18 -2,20
Defense					
calreticulin2	Q9SP22	-1,6	-1,8	-	-
polyphenol oxidase	AAB94293	1,3	-	1,81	-
glutathione S-transferase C-terminal domain	ACG41887	-	-1,43	1,74	-
glutathione S-transferase12	NP_001104981	-	-	1,83	-
glutathione S-transferase12	NP_001104981	-	-	2,02	-
glutathione S-Transferase-I	1AXD_A	-	-	1,3	-
caffeic acid 3-O-methyltransferase	AAQ67347	-	-	-	-1,77
isoflavone reductase homolog IRL	NP_001105699	-	-	-	-1,58
putative respiratory burst oxidase homolog protein G	Q9SW17	-	-	-	-1,5
phenylalanine ammonia-lyase	ABM63378	-	-	-	1,31
polyphenol oxidase	AAB94293	-	-	1,48	1,54
polyphenol oxidase	AAB94293	-	-	1,77	2,00
polyphenol oxidase	AAB94293	-	-	1,62	1,48
caffeic acid 3-O-methyltransferase	AAQ67347	-	-	-	-1,54
caffeic acid 3-O-methyltransferase	AAQ67347	-	-	-	-1,43
APx1 - Cytosolic Ascorbate Peroxidase	NP_001152249	-	-	1,51	1,71
formate dehydrogenase	AAP80655	-	-	1,46	1,50
isoflavone reductase homolog IRL	NP_001105699	-	-	-	-1,49
osmotin-like protein precursor	NP_001147098	-	-	1,50	1,74
Aminoacid metabolism					
methionine synthase	AAL73979	-	-	-	-1,99
methylenetetrahydrofolate reductase 1	NP_001104947	-	-	-	-1,99
S-adenosylmethionine synthetase	CAJ45548	-	-	-	-1,59
S-adenosylmethionine synthetase	CAJ45549	-	-	-	-1,53


Carbohydrate metabolism	glutamine synthetase	AAW21273	-	-	-	-1,44
	asparaginyl-tRNA synthetase, cytoplasmic	ACG28959	-	-	1,42	1,39
	isocitrate dehydrogenase2	NP_001140324	-	-	-1,3	-
	chlorophyll a-b binding protein. chloroplastic	P06671	-	-	-2,45	-
	transketolase, chloroplastic	Q7SIC9	-	-	-	-1,74
	transketolase, chloroplastic	Q7SIC9	-	-	-	-1,73
	exoglucanase1 precursor	NP_001130296	-	-	-	-1,49
	pyrophosphate-fructose-6-phosphate1-phosphotransferase	ABL10095	-	-	-	-1,57
	Succinate dehydrogenase [ubiquinone] flavoprotein subunit	NP_001058845	-	-	-	-1,82
	ATP synthase CF1 alpha subunit	YP_024377	-	-	-	-1,45
	UDP-glucose 6-dehydrogenase	B6TBY8	-	-	-	-1,4
	ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit	Q6ENV5	-	-	-	-2,69
	NADH-ubiquinone oxidoreductase 51 kDa	B6T6U3	-	-	-	-1,38
	cytoplasmic aldolase	BAA02729	-	-	-	-1,84
	protochlorophyllide reductase B	NP_001167680	-	-	-	-2
	glycosyltransferase	CAI93183	-	-	-	1,66
	sucrose synthase:ISOTYPE=2	2008300A	-	-	-	1,74
	sus1 (sucrose synthase)	AAA68209	-	-	-	2,13
	sucrose-phosphate synthase	BAA19241	-	-	-	1,56
	pyrophosphate-fructose-6-phosphate1-phosphotransferase	ABL10095	-	-	-	1,69
	endo-1,4-b-glucanase BAA94257	CBB36505	-	-	-	1,87
	trehalose-6-phosphate synthase	ADA70118	-	-	-	1,5
	putative trehalose-phosphatase	CAZ96191	-	-	-	1,51
	alcohol dehydrogenase class-3 (ADH)	NP_001105485	-	-	-	1,53
	glyceraldehyde-3-phosphate dehydrogenase	AEA30218	-	-	-	1,85
	fructokinase-2	ACG34322	-	-	-	1,33

mitochondrial ATP synthase gamma chain chain A. Crystal Structure of Dhurrinase 1	ACF06556 Q41290	-	-	-	1,68 1,44
guanine nucleotide-binding protein beta subunit putative r40c1 protein - rice	ABR25943 AAN64997	-	-	-	1,7 1,44
ATP synthase CF1 alpha subunit	YP_024377	-	-	-2,26	-2,02
ATP synthase CF1 alpha subunit	YP_024377	-	-	-2,91	-2,86
ATP synthase CF1 beta subunit	YP_024386	-	-	-2,01	-2,05
pyrophosphate-fructose 6-phosphate 1-phototransferase	XP_003564006	-	-	1,59	1,63
ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit	YP_024387	-	-	-2,56	-2,33
ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit	YP_024388	-	-	-3,33	-2,86
ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit	YP_024389	-	-	-2,40	-2,41
ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit	YP_024390	-	-	-1,41	-1,46
Rubisco large subunit-binding protein subunit alpha, chloroplastic RuBisCo subunit binding-protein beta subunit	XP_003558045 AAT90346	-	-	-2,06 -2,55	-2,01 -2,31
chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase glyceraldehyde-3-phosphate dehydrogenase, cytosolic 3	ABY66908 NP_001105385	-	-	-3,04	-2,21 1,57
glyceraldehyde 3-phosphate dehydrogenase, putative photosystem I reaction center subunit IV A	XP_002513328 ACG30530	-	-	1,39 -4,72	1,30 -4,44
fructose-bisphosphate aldolase	ACG36798	-	-	-2,65	-2,74
plastid high chlorophyll fluorescence 136 precursor ferredoxin	ABQ53629 NP_001105568	-	-	-1,72 -1,89	-2,09 -2,13
oxygen-evolving enhancer protein 1	ACG31595	-	-	-2,76	-2,75
Chlorophyll a-b binding protein, chloroplastic chloroplast-localized Ptr ToxA-binding protein1	P06671 ACG46365	-	-	-1,45 -2,66	-2,41 -2,85
Chlorophyll a-b binding protein, chloroplastic chlorophyll a-b binding protein 1, chloroplastic precursor	P06671 NP_001147639	-	-	-3,26 -2,68	-3,48 -2,86
chlorophyll a-b binding protein 8	ACG28457	-	-	-3,94	-3,91
chlorophyll a/b binding protein precursor	ACD13267	-	-	-4,43	-4,14

Protein metabolism	23 kDa polypeptide of photosystem II	BAA08564	-	-	-3,18	-3,25
	23 kDa polypeptide of photosystem II	BAA08564	-	-	-3,07	-2,95
	cytochrome c oxidase subunit II PS17	P84733	-	-	-2,39	-2,38
	quinone oxidoreductase	CAD31838	-	-	-1,46	-1,63
	chaperonin 60	AAA33450	1,32	-	-	-
	eukaryotic translation initiation factor 3 subunit G-like isoform 1	XP_003570267	-	-	1,53	-
	eukaryotic translation initiation factor 5A	NP_001105606	-	-4,38	-	-2,69
	eukaryotic translation initiation factor 5A	NP_001105607	-	-	-	1,4
	eIF-4A	ACF98296	-	-	-	-1,54
	40S ribosomal protein SA	NP_001149295	-	-	-	-1,37
	poly(A)-binding protein	AAB38974	-	-	-	1,66
	TCP-1/cpn60 chaperonin family protein	NP_198008.1	-	-	-	1,67
	TCP-1/cpn60 chaperonin family protein	AAT77033	-	-	-	1,55
	26S protease regulatory subunit S10B	NP_001148485	-	-	-	1,54
	20S proteasome alpha subunit	NP_001105138	-	-	-	1,52
	proteasome subunit alpha type-4-1-like	XP_003564259	-	-	-	1,43
	protein-O-fucosyltransferase 1	CAH40838	-	-	-	1,66
	Arabidopsis protein targeted to mitochondria	CBB36496	-	-	-	1,3
	SUMO-conjugating enzyme UBC9	NP_567791	-	-	-	1,95
	26S protease regulatory subunit 6B	B6TDT1	-	-	-	1,85
	cyclophilin	ACT53879	-	-	-	1,38
	chloroplast hsp 70	ABP65327	-	-	-2,01	-1,96
	TCP-1/cpn60 chaperonin family protein	NP_186902	-	-	1,73	2,36
	putative t-complex protein 1 theta chain	BAD45605	-	-	1,62	1,91
	T-complex protein 1 subunit delta-like	XP_003573152	-	-	1,52	1,65
	TCP-1/cpn60 chaperonin family protein	AAT77033	-	-	1,41	1,55
	eukaryotic initiation factor 4A	NP_001105372	-	-	1,58	1,61

	translation initiation factor 1	YP_024411	-	-	-2,75	-2,17
	dnaJ subfamily B member 5	NP_001149016	-	-	1,32	1,37
	26S proteasome non-ATPase regulatory subunit 14	ACG37608	-	-	-1,90	-2,42
	proteasome component2	NP_001148490	-	-	-2,72	-2,79
	40S ribosomal protein S12	ACG24471	-	-	1,49	1,93
	EF1a-like protein	AEI29162	-	-	1,38	1,50
	acidic ribosomal protein P40	NP_001141003	-	-	-1,91	-1,89
	nascent polypeptide-associated complex alpha subunit-like protein	NP_001148944	-	-	1,62	1,59
	peptidyl-prolyl cis-trans isomerase	XP_002514874	-	-	-3,23	-3,24
	peptidyl-prolyl cis-trans isomerase	XP_002514874	-	-	-1,48	-1,54
Hormone metabolism	1-aminocyclopropane-1-carboxylate synthase	AAV63950	-	-	-1,52	-1,95
Transport	annexin p33	NP_001105728	-	-	2,02	-
	annexin p33	NP_001105728	-	-	-	1,39
Uknown	uncharacterized protein	XP_002466586	-	1,65	-4,88	-
	rice homologue of Tat binding protein	BAA04614	-	-	1,31	-
	uncharacterized protein [Saccharum hybrid cultivar R570]	CAZ96142	-	-	1,48	-
	uncharacterized protein SORBIDRAFT_09g021240	XP_002448064	-	-	-	-1,52
	uncharacterized protein SORBIDRAFT_09g021240	CAZ96108	-	-	-	1,69
	uncharacterized protein SORBIDRAFT_09g021240	XP_002452667	-	-	-	1,43
	uncharacterized protein	CAZ96176	-	-	-	1,74
	Uncharacterized Protein	XP_002461241	-	-	1,39	1,90
	hypothetical protein SORBIDRAFT_05g005150	XP_002450420	-	-	-3,28	-3,48
	uncharacterized protein At2g34160-like	XP_003569410	-	-	1,41	1,76
	uncharacterized protein LOC100276911	NP_001144080	-	-	3,47	4,73

Putative r40c1 protein - rice	AAN64997	-	-	1,69	1,89
Uncharacterized Protein	XP_002461230	-	-	-1,89	-1,94

Supplementary Figure S1 - Representative 2D-DIGE protein patterns of plantlets of the SP80-3280 sugarcane variety (A) mock-inoculated or (B) Lxx- inoculated at 30 DAI and (C) the overlapping image of (A) and (B); (D) mock-inoculated or (E) Lxx-inoculated at 60 DAI and (F) the overlapping image of (D) and (E); (G) Circled spots indicate differentially accumulated proteins.

177x83mm (150 x 150 DPI)