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Abstract
Magnetic Resonance Imaging (MRI) is a non-invasive technique, which has been employed to detect and diagnose many spine patholo-
gies. In a Computer-Aided Diagnosis (CAD) context, the segmentation of the paraspinal musculature from MRI may support measure-
ment, quantification, and analysis of muscle-related pathologies. Current semi-automatic segmentation techniques require too much
time from the physicians to annotate all slices in the exams. In this work, we focus on minimizing the time spent on manual annotation
as well as on the overall segmentation processing time. We use the mean absolute error between slices in order to minimize the number
of annotated slices in each exam. Moreover, we optimize the manual annotation time by estimating the inside annotation based on the
outside annotation, while the competitors demand the annotation of inside and outside annotation (seeds). The experimental evaluation
shows that our proposed approach is able to speed up the manual annotation process in up to 50% by annotating only a few representative
slices, without loss of accuracy. By annotating only the outside region, the process can be further speed up by another 50%, reducing the
total time to only 25% of the previously required. Thus, the total time spent on manual annotation is reduced by up to 75%, and, since
the human interaction is greatly diminished, allows a more productive and less tiresome activity. Despite that, our proposed CleverSeg
method presented accuracy similar or better than the competitors, while managing a faster processing time.
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1 Introduction

Back pain is one of the most common complaints worldwide.
In general, it is related to spinal disease and can cause a signifi-
cant loss of function and compromise the quality of life. Surgi-
cal spinal treatments have grown with the population aging, which
require accurate diagnoses to avoid complications [1]. Magnetic
Resonance Imaging (MRI) exams provide meaningful information
to the detection and diagnosis of many spine pathologies and, at
the same time, it is not harmful to the patient (do not use ionizing
radiation) [2, 3].

The segmentation of the paraspinal musculature in the con-
text of Computer-Aided Diagnosis (CAD) may allow a faster and
more objective analysis of the muscle condition, supporting in the
characterization and quantification of back muscle-related prob-
lems [4]. Many works in the literature have shown the disadvan-
tage of dealing only with discrete image slices (2D), which can
generate a loss of relevant information for precise measurements
and diagnosis [5]. Accordingly, 3D segmentation approaches may
assist in better visualization and analysis of the muscle structures
in a reliable way.

Integrating automated procedures for reliable segmentation of
selected muscles may reduce the labor-intensiveness associated
with manual methods [6]. Manually segmenting many slices of
a single 3D exam is also time-consuming. On the other hand,
computer methods can now reduce inaccuracies occurred or aggre-
gated due to subjective judgments, inter and intra-subjective vari-
ability [7, 8].

Fast and accurate segmentation plays a significant role and may
assist the medical specialist in surgical planning and evaluation
of suitable treatments [7, 9, 10]. One of the advantages of semi-

automatic segmentation is the use of the specialists’ knowledge,
gained over the years, to improve the results of computer meth-
ods. Performing semi-automatic segmentation assists the physi-
cians and specialists, leads to time savings, and reduces interpreta-
tion errors [11].

Semi-automatic segmentation serves as an essential tool for
many tasks, whereas clinicians, as well as scientists, would
strongly benefit from automated segmentation methods [12, 13].
Examples of such tasks include the extraction of semantic and
agnostic features, the application of machine learning algorithms
for the classification of anomalies, and Content-Based Image Re-
trieval (CBIR) techniques to obtain semantically similar historical
data [14–17]. The muscle segmentation can be meaningful when
combined with interactive tools, allowing the training and educa-
tion of new radiologists [18], as students can learn how to segment
muscles correctly, and to detect spine pathologies [19]. Visual tools
may also help physicians and professors to evaluate and determine
whether a student is ready to proceed to further tasks related to
a specific pathology. In practice, the visualization of 3D human
structures can also be used for the simulation of surgical proce-
dures [20].

In [21], the authors describe the difficulties and challenges re-
lated to the problem of segmenting anatomical structures from MRI
exams. They include the presence of ambiguous structure bound-
aries, the resemblance in the structures, insufficient contrast, low
spatial resolution, intensity in-homogeneity, and image dimension-
ality of 3D exams.

In this work, we propose CleverSeg, a method that takes advan-
tage of the motto “growth in unity is strength” to achieve a better-
delineated segmentation. We manage the iterations to reduce the
processing time. We propose the annotation of only a few slices
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Figure 1: Proposed pipeline: ground-truth in red, exterior annotation in magenta, estimated interior annotation in yellow and CBG segmentation result in blue.

and the estimation of the interior annotation of each muscle. More-
over, CleverSeg uses a simple annotation (sloppy-like), which does
not require detailed annotation, i.e., works with imprecise annota-
tions. As a consequence, the time spent on manual annotation is
greatly minimized, allowing a more productive and less tiresome
activity.

The remainder of the paper is structured as follows. First, Sec-
tion 2 presents the background and related works. Then, Sec-
tion 3 details CleverSeg for the segmentation and reconstruction
of paraspinal muscles in volumetric MRI. Next, Section 4 explores
the materials and methods used in our experimental design. After
that, Section 5 details the experimental design, results and discus-
sion. Finally, Section 6 draws the conclusions.

2 Background and related works
There is an association between imaging parameters of the

paraspinal muscles such as cross-sectional area size, shape, den-
sity, and volume with spinal degeneration and low back pain. As
a consequence, measuring the paraspinal muscles in 3D is a cru-
cial step in the analysis of the muscle conditions associated with
low back pain [22]. Manually segmenting a large exam (several
slices) is too time-consuming, thus automatic and semi-automatic
approaches are highly attractive due to the reduction of labor-
intensiveness associated with the manual approach [23].

Several fully automatic vertebrae segmentation methods are re-
ported in the literature [5, 6, 21, 24]. Nonetheless, they take too
much processing time or do not produce reasonably precise re-
sults, which may not suit clinical practice [5]. Semi-automatic ap-
proaches, in general, take considerably faster processing time and
produce reasonably precise segmentation results. However, they
often require too much time from the radiologists on manual anno-
tation of a few or all the slices in the exam [23].

More recently, two novel semi-automatic approaches called Bal-
anced Growth (BGrowth) [25] (for 2D images) and 3D Balance
Growth (3DBGrowth) [23] (for 3D images) were proposed for the
segmentation of vertebral bodies. BGrowth has presented promis-
ing results for the segmentation of crushed vertebral bodies in a
single slice at a time, considering malignant (metastasis) and be-
nign (osteoporosis) as well. 3DBGrowth works well for the seg-
mentation of vertebral bodies in volumetric MRI scans. Briefly,
both approaches balance the weights along the growing path of a
region, so that small intensities transitions are better delineated.

Another semi-automatic segmentation method is GrowCut [26],
which has been one of the most employed methods on the seg-

mentation of medical imaging. GrowCut is based on cellular au-
tomata (analogous to a bacteria growth in biology) and works
as a region-growing approach with an interactive labeling proce-
dure [26]. Also, a faster but less accurate version of GrowCut,
Fast GrowCut [27], has been widely used for segmentation of
medical images in the 3D Slicer2 open-source software [28]. 3D
Slicer is a framework which provides a friendly Graphical User In-
terface (GUI) and allows interactive operations and visualization,
which is especially helpful for semi-automatic segmentation ap-
proaches [27].

Currently, the results achieved by BGrowth and 3DBGrowth sur-
pass the other methods from the literature, including GrowCut,
presenting promising segmentation results, even with very sim-
ple/sloppy annotation (seed points). However, due to the balancing
approach, 3DBGrowth may require more iterations for the segmen-
tation of larger exams (more slices). Furthermore, 3DBGrowth was
tested with only 18 slices (in average) on each exam, and a maxi-
mum number of iterations of 50 [23]. Besides, the slope coefficient
defined by the authors may heavily rely on the physical spacing be-
tween slices.

3 The Proposed Method
Placing (annotating) seeds appropriately in MRI data is a crucial

initial step to produce accurate paraspinal muscles segmentation.
Nevertheless, due to the 3D nature of MRI data and the complex
structure of the human spine, it becomes a very difficult and tire-
some task.

In this work, we present CleverSeg, which focus on minimizing
the specialist's effort to segment and reconstruct MRI exams built
on 2D slices. To this end, we contribute in three main aspects, as
the pipeline shown in Fig. 1. The three main parts of CleverSeg
are detailed as follows:

A – Annotation of a few slices: we use the Mean Absolute Error
(MAE) to verify slices that look alike and, therefore, are not
required to be manually annotated. The error is calculated
slice vs. slice and is not dependent on the physical spacing
between slices.

B – Estimation of the interior annotation: given the initial outside
annotation of each slice annotated in part A, we estimate the
inside annotation using mathematical morphology. As a con-
sequence, the time spent on manual annotation may be greatly
reduced.

2https://www.slicer.org/
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(a) Original Image. (b) Ground-truth. (c) Outside annotation. (d) Filled Annotation, ∆ = 100%.

(e) Erosions = 3, ∆ = 70%. (f) Erosions = 6, ∆ = 34%. (g) Erosions = 8, ∆ = 16%. (h) Estimated annotation.

Figure 2: Sample slice with ground-truth (red) and exterior annotation (magenta) and estimated interior annotation in yellow using a ∆ threshold of 20%.

C – Fast and effective semi-automatic segmentation method: our
proposed CleverSeg method works in a faster and smart way,
using only a few iterations. CleverSeg efficiently propagates
the annotated slices in parts A-B into non-annotated slices.
Therefore, the processing time speeds up while keeping high
accuracy.

In the next Subsections, we explore the three main aforemen-
tioned contributions. CleverSeg method is publicly available3 as
an extension for 3D Slicer [28].
3.1 Outside annotation

To choose the most representative slices to be annotated, we use
the MAE to compute the difference between two paired variables.
The MAE (M ) is also applied to measure the difference between
two 2D images S1 and S2, as shown in Eq. 1. Here, S1 and S2

represent two distinct slices of the volumetric MRI exam V . Both
slices have size n, which corresponds to the total number of pixels
from each slice. The i-th entries in S1 and S2 are represented by
s1,i and s2,i, respectively. Note that the closer M(S1, S2) is to
zero, the more similar the images are [29, 30].

M(S1, S2) =
1

n

n∑
i=1

|s1,i − s2,i| (1)

Considering a volumetric exam V = {S1, S2, .., Si, .., Sn}, in
which Si represents the i-th slice in the exam, similar sequential
slices can be avoided from the manual annotation process. The
most representative slices may be selected in a bottom-up manner
in three steps, as follows.

Step 1: define S1 to be manually annotated and set S1 as the initial
slice for comparison with the next slice S2.

Step 2: if the error M(S1, S2) is lower then a threshold η, then
compare S1 with the next slice S3. This process repeats until
the i-th slice Si, such that M(S1, Si) ≥ η. Then, define Si as
the initial slice for comparison and go back to Step 1.

Step 3: repeat Steps 1 and 2 until the final slice Sn is reached. The
last slice is always set to be manually annotated.

Note that, the first (S1) and last (Sn) slices are always set to
be manually annotated and the number of non-annotated slices be-
tween them may vary according to the threshold η. The value of
the threshold η can be set by the user.

3https://github.com/JonathanRamos/SlicerCleverSeg.git

For analysis purposes, we define a Percentage of Anno-
tated Slices (PAS), which is the number of annotated slices
(#annotatedSlices) divided by the total number of slices in the
exam with muscle content (#slices):

PAS =
#annotatedSlices

#slices

3.2 Inside annotation estimation
Given the outside annotation of the i-th slice (Si) as exemplified

in Fig. 2c (in magenta), we estimate the inside annotation using
morphological operations [31] in four steps:

Step I: represent the manually annotated outside region of Si as
a 2D binary mask ki. Considering that the region in k0 is
always a closed boundary, fill this boundary with ones (white
pixels), as exemplified in Fig. 2d.

Step II: set k0 as the initial interior annotation and t0 as the total
number of white pixels in k0 and apply an erosion operation
over k0 using a 5×5 square structuring element, which results
into a new mask k1. As a consequence, the number of white
pixels in k1 is reduced to t1. The 5× 5 square structuring el-
ement allows a smooth erosion without losing the main shape
of the region.

Step III: apply the same erosion over k1, which results in k2 with
t2 white pixels. Repeat the erosion process until the i-th itera-
tion, resulting in the mask ki with ti white pixels. The erosion
process stops when the percentage of remaining white pixels
in the eroded mask (ki) associated to the initial mask k0 is
lower than a threshold ∆:

∆ >
ti
t0

(2)

Step IV: finally, use the ki mask as the inside annotation. The
whole erosion process is depicted in Fig. 2e to Fig. 2g, in
which ∆ was set to 20%, yielding the estimated inside anno-
tation shown in Fig. 2h (in yellow).

3.3 Clever Segmentation – CleverSeg
In our proposed CleverSeg method (Algorithm 1), for the sake of

simplicity, initially, we segment grayscale volumes into foreground
and background. However, the algorithm works for more than two
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regions, and the difference between voxels intensities may be eas-
ily adapted for color images.

Considering a volume V and a matrix L of corresponding anno-
tations/seeds, both with dimensions M ×N × Z, representing the
number of rows, columns and slices, respectively. The total num-
ber of voxels in V is represented by n. The entries of L may have
values 0 (unlabelled), 1 (background or outside annotation) or 2
(foreground or inside annotation).

The method is divided in three steps:

Step A: a weighted matrix W is initialized, so that every entry
∀wi ∈ W is filled with ones for corresponding labelled en-
tries li ∈ L (inside/outside annotation) and zeros otherwise
as in Eq. 3 (lines 1 to 2). The maximum voxel intensity is
calculated/represented as m (line 3).

wi =

{
1.0 if li 6= 0,
0.0 otherwise. (3)

Step B: every voxel vi ∈ V, i = {1, 2, 3, ..., n} and each of its 26
neighbors vji ∈ V, j = {1, 2, 3, ..., 26} is analyzed (line 4) as
follows. The absolute difference between the voxel intensity
(vi) and its neighbor's (vji ) is calculated and subtracted by the
maximum voxel intensity (m). The result is represented as h
(line 5). A strength s is calculated (line 6) normalizing h by
m and multiplying with the current voxel strength wi.

Step C: if the difference between s and the neighbor's current
strength wni (line 7) is greater than a threshold (θ), then, the
strength win is averaged with the new strength s (line 8) and

Input: Image V and annotation/labels matrix L.
Output: Segmented image (grown regions in L).
/* Initialization */

1 if li 6= 0,∀li ∈ L then
2 wi ← 1.0

3 m← max vi, ∀vi ∈ V, i = {1, 2, 3, ..., n}
/* For every voxel and its 26

corresponding neighbors */

4 for ∀vi ∈ V and ∀vji ∈ V, j = {1, 2, 3, ..., 26} do
5 h← m− |vi − vji |
6 s← wi × h/m
7 if (s− wji ) > θ then
8 wji ← mean(s , wji )

9 lji ← li

Algorithm 1: CleverSeg method overview.

its label lji is updated (line 9).

Steps A and B repeat for a maximum number of iterations or
until the algorithm converges. The threshold θ avoids iterations
that do not contribute to a better segmentation. For example, it
avoids balancing (averaging) values that only change the third or
fourth decimal place.

4 Materials and methods
In order to evaluate the performance of our proposed CleverSeg

method, due to space limitations, we present only a meaningful
dataset of lumbar muscles. Next, we compare our method with
the state-of-the-art semi-automatic segmentation techniques, such
as Balanced Growth and GrowCut, considering default parame-
ters settings for each method. Then, we consider the measures

of Jaccard Coeficcient, Dice Score, Hausdorff's Distance and F-
measure to analyze the segmentation results. To further validate
the results, we employ statistical testing. Table 1 shows a sum-
mary of acronyms used throughout this work and Section 4.5 ex-
plores the computational setup. We highlight that no deep-learning
approaches were applied due to the limited number of available
exams.

Table 1: Summary of symbols/acronyms used in this work.

Acron. Description Acron. Description

DSC Dice Score Coeff. 3DBGrowth 3D Balanced Growth
JAC JAccard Coeff. CleverSeg Clever Segmentation
HD Hausdorff's Distance FM F-Measure

RT Running Time (processing time)
PAS Percentage of manually Annotated Slices
ANT ANnotation Time (time spent in manual annotation)

G Ground-truth
S Segmentation yielded by a semi-automatic method

4.1 Image Dataset
In the work [12], the authors present a manually segmented

dataset, called MyoSegmenTUM spine. This dataset contains seg-
mented lumbar muscle groups and vertebral bodies, from MRI
scans of 54 healthy volunteers. Each exam contains the muscles
erector spinae left and right as well as psoas left and right muscles
with corresponding manual segmentation. Summing up, there are
54 × 4 = 216 muscles. The exams have an average resolution of
334× 334× 67.4± 135× 135× 5.02 voxels and a spatial resolu-
tion of 1 × 1 × 3.6 ± 0 × 0 × 0.5 mm. In order to assure the best
conditions to all segmentation algorithms, the grayscale intensities
of the exams are normalized into 256 gray levels (8 bits/pixel):

V = 255× V −min vi
max vi −min vi

,∀vi ∈ V, i = {1, 2, 3, ..., n}

in which V represents the data volume of the exam, with result-
ing entries vi (voxel intensities) within [0, 255]. The volumes are
not normalized to isotropic resolution to avoid adding noise to the
image and manual segmentations. We employed MyoSegmenTUM
spine in the validation of our method, as it provides the ground
truth to support testing and refining computer vision methods and
is fully available at [12].
4.2 Segmentation algorithms and parameters settings

In order to evaluate our proposed method for the segmentation of
spinal muscles, we compared it with 3DBGrowth [23] and Grow-
Cut [26]. Since Fast GrowCut presents a lower accuracy than
Growcut [27], it was not considered in the analysis. The maximum
number of iterations was set to 500 for all algorithms considered
in the analysis. However, in general, the algorithms take less than
500 iterations to converge.

For CleverSeg, the threshold θ, which controls the approximate
roundness’ of the averaged weights during the balancing of region
expansion, was set to 1% and avoids averaging values on the third
decimal place. In order to allow a simple or sloppy-like annota-
tion, the ∆ threshold was set to a small value, 20%. Thus, impre-
cise external annotation do not compromise the estimated internal
annotation.

For the η threshold, we considered an initial value of 0, increas-
ing by 1.5, up until 10.5, which sums up to 8 thresholds.
4.3 Comparison measures

We considered four well-known measures to compare the result-
ing segmentation yielded by a segmentation method (S) and the
ground-truth (G) as follows.

Jaccard Coefficient (JAC): calculates the intersection of the
manual (G) and semi-automatic (S) segmentation, and divides it
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by the union of them as in Eq. 4. This indicates the similarity be-
tween the segmentations, in which 0 indicates no similarity and,
the closer JAC is to 1, the more alike the segmentations are [32].

JAC(G,S) =
|G ∩ S|
|G ∪ S|

(4)

Dice Score Coefficient (DSC): measures, in voxels, the spatial
overlap of several segmentations of the same object, i.e, quantifies
the overlap degree between two segmented objects, as in Eq. 5. A
DSC close to 0 indicates very low overlap, while a DSC closer to
1 indicates a higher overlap [33, 34].

DSC(G,S) =
2× |G ∩ S|
|G|+ |S|

(5)

Hausdorff's Distance (HD): indicates how far away (in voxels)
G and S are, as in Eq. 6. A HD of 0 indicates comparable seg-
mentations [35].

HD(G,S) = max{mm1,mm2}
mm1 = max

gi∈G
( min
si∈S

{d(gi, si)} )

mm2 = max
si∈S

( min
gi∈G

{d(si, gi)} )

(6)

in which d denotes the Euclidean distance [36]:

d(gi, si) =
√

(sxi − gxi )2 + (syi − g
y
i )2 + (szi − gzi )2

F-measure (FM ): calculates the harmonic mean between preci-
sion (P ) and recall (R) as in Eq. 7.

FM = 2× P ×R
P +R

, (7)

in which P and R are defined, respectively, as: P = TP/(TP +
FP ), R = TP/(TP + FN), considering that True Positive (TP )
represents the number of voxels correctly segmented as part of the
foreground (G), False Positive (FP ) represents the number of vox-
els miss-segmented as belonging to G and False Negative (FN )
represents the number of voxels incorrectly segmented as part of
the background.

4.4 Statistical tests
According to [25], if the data present several similar values,

the Kolmogorov-Smirnov [37] is the most suitable normality test.
Then, in order to analyze if there are significant statistical differ-
ences, the Wilcoxon [38] test may be employed. In this test, the
null hypothesis is that data from two paired sample groups were
selected from populations having the same distribution, against the
opposite alternative [23].

4.5 Computational setup
Every experiment used a 2.40GHz Intel(R) Core(TM) i7 CPU

and 8GB RAM machine, using Matlab(R) version 2018a. To as-
sure the same conditions for all segmentation methods, no pre or
post-processing techniques were applied.

5 Experiments, results and discussion
In our experimental design, three main parts are analyzed, as de-

picted in Fig. 3. First, we analyze the segmentation of each muscle,
considering that all slices are annotated on the outside and we es-
timate the inside annotation. Then, we vary the number of slices
annotated, based on the error (η) between slices. Finally, we statis-
tically evaluate the results.

Experiment A
Individual muscle

segmentation

Experiment B
Varying # of

annotated slices

Validation
Statistical
evaluation

Figure 3: Experimental design.

5.1 Muscle segmentation
We performed the segmentation of each muscle considering the

manual annotation of all slices on each MRI exam. Fig.4 shows
the average results for all muscles. Note that, CleverSeg presented
better results than GrowCut for the measures DSC, FM , JAC
and RT , while keeping a similar HD. CleverSeg presented bet-
ter results for the measures FM , JAC and RT than 3DBGrowth,
while keeping comparable DSC and HD.

CleverSeg 
3DBGrowth    
GrowCut

x Average value

Figure 4: Comparison between the segmentation approaches.

In average, CleverSeg presented a running time of 377ms, while
3DBGrowth took 1202ms and GrowCut 565ms. The number of
iterations were 32 ± 6.5, 99 ± 22.6 and 49 ± 13.2 for CleverSeg,
3DBGrowth and GrowCut, respectively. In the original work [23],
3DBGrowth was tested with 18 slices (in average) and a maximum
of 50 iterations. In our experimental dataset, in average, there are
67 slices for each exam.

3DBGrowth requires more iterations to converge as the number
of slices increases, consequently, increasing the processing time.
On the other hand, CleverSeg presented results comparable or bet-
ter than the competitors, while managing a faster processing time
(RT ). To better illustrate this, Fig. 5a shows the segmentation re-
sults for a single muscle. Note that, CleverSeg presented the fastest
running time and a comparable or better DSC than the competi-
tors. For this example, the interior annotation took 96s (ANT )
while the estimation of the interior annotation was considerable
faster (5.2ms). In average, the interior estimation for all muscles
took 4.5 ± 3.6 ms. If the inside annotation was to be manually
given, the time spent on manual annotation (ANT ) would possible
double.

Analyzing the segmentation results in Fig. 5a, GrowCut pre-
sented spiculated borders with a lower DSC, while CleverSeg and
3DBGrowth presented smooth borders and equal DSC. However,
CleverSeg had the lowest number of iterations, and presented the
fastest processing time (RT ). To further validate CleverSeg and,
at the same time, reduce the annotation time (ANT ), on the next
experiment we vary the number of slices with exterior annotation
for each muscle.
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CleverSeg
DSC = 90% RT = 0.49s

3DBGrowth
DSC = 90% RT = 1.21s

GrowCut
DSC = 87% RT = 0.64s

Iterations = 50Iterations = 88Iterations = 36

Ground-Truth
Outside annotation
ANT = 96s (all slices)

Estimated Inside annotation
Time = 5.2ms (per slice)

(a) All slices annotated (PAS = 100%).

Iterations = 50Iterations = 123Iterations = 36

CleverSeg 
DSC = 90% RT = 0.54s

3DBGrowth
DSC = 90% RT = 1.80s

GrowCut
DSC = 87% RT = 0.64s

Outside annotation
ANT = 50s (50% annotated)

Estimated Inside annotation
Time = 2.8ms (per slice)

(b) η = 4.5 (PAS = 50%).

Figure 5: Segmentation results for a single muscle: exam 52, psoas left.

5.2 Varying the number of annotated slices
For this experiment, we use the error η between slices as a

threshold in order to find which slices should be annotated. The
average results for all muscles are summarized in Fig. 6, and ana-
lyzed as follows. The DSC starts dropping at η = 4.5 (Fig. 6a),
while ANT fastly drops at η = 1.5 (Fig. 6b) along with the PAS
slices (Fig. 6c). For the running time, CleverSeg was the fastest
method for all thresholds (Fig. 6d).

According to the results reported, η = 4.5 presented the best
trade-off between DSC and ANT . For this threshold, the PAS
drops to approximately 50% and theANT drops from 72 to 40 sec-
onds (almost 2x faster), losing just a tiny bit of DSC (from 87%,
87% and 83% to 85%, 84% and 81% for CleverSeg, 3DBGrowth
and GrowCut, respectively). Fig. 5b illustrates this, in which, com-
pared to Fig. 5a, ANT drops almost to a half, whileDSC drops 1%
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(a) Dice Score Coefficient (DSC).
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(b) Annotation Time (ANT).

Dice Score Coeffcient (DSC)

0 1.5 3 4.5 6 7.5 9 10.5
MAE threshold

45
52
59
66
73
80
87

P
er

ce
nt

ag
e Clever BGrowth

BGrowth
GrowCut

0 1.5 3 4.5 6 7.5 9 10.5
MAE threshold

0
20
40
60
80

100
120
140

S
ec

on
ds

Annotation Time (ANT)

Average (inclusive)

0 1.5 3 4.5 6 7.5 9 10.5
MAE threshold

0.2

0.5

0.7

1.0
1.2

1.5

S
ec

on
ds

Running Time (RT)

Clever BGrowth BGrowth GrowCut

0 1.5 3 7.5 9 10.54.5 6 
0

20

40

60

80

100

P
er

ce
nt

ag
e

Number of Annotated Slices (NAS)

Average PAS

η
(c) Percentage of Annotated Slices (PAS).

Dice Score Coeffcient (DSC)

0 1.5 3 4.5 6 7.5 9 10.5
MAE threshold

45
52
59
66
73
80
87

P
er

ce
nt

ag
e Clever BGrowth

BGrowth
GrowCut

0 1.5 3 4.5 6 7.5 9 10.5
MAE threshold

0
20
40
60
80

100
120
140

S
ec

on
ds

Annotation Time (ANT)

Average (inclusive)

0 1.5 3 7.5 9 10.54.5 6
  0.2

0.5

  0.7

1.0
  1.2

1.5

S
ec

on
ds

Running Time (RT)

CleverSeg 3DBGrowth GrowCut

0 1.5 3 4.5 6 7.5 9 10.5
MAE threshold

0

20

40

60

80

100

P
er

ce
nt

ag
e

Number of Annotated Slices (NAS)

Average (inclusive)

η
(d) Running Time (RT).

Figure 6: Results for varying the mean absolute error (η) threshold.

Table 2: Wilcoxon test results: D means that CleverSeg was significantly better and × means
that no significant difference is observed.

CleverSeg η

against Meas. 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5

3DBGrowth

DSC × × × D D D D D
JAC × × × D D D D D
HD × × D D D D D D
RT D D D D D D D D

GrowCut

DSC D D D D D D D D
JAC D D D D D D D D
HD × × × × × × × ×
RT D D D D D D D D

for GrowCut. To further validate the results presented herein, in the
next section we perform statistical testing.

5.3 Statistical evaluation
As the data for all measures presented several similar values, the

Kolmogorov-Smirnov [37] test was applied at the 5% significance
level. The null hypothesis was rejected for all measures, which
indicates the data do not follow a normal distribution. Therefore,
the Wilcoxon [38] test was employed at the 5% significance level.

The Wilcoxon test results are reported in Table 2. Note that,
CleverSeg presented significantly better running time (RT ) than
3DBGrowth and GrowCut. Compared to 3DBGrowth, CleverSeg
presented better results for DSC, JAC and HD from η = 4.5 to
10.5. In general, CleverSeg presented comparable or significantly
better results than the competitors, while always achieving a faster
processing time.
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6 Conclusion
The semi-automatic segmentation of muscles in larger volumet-

ric MRI exams is a challenging task. In general, too much time
is spent on manual annotations of each slice of the exam, both in-
side and outside the object of interest (muscles in this work). For
this reason, allowing a fast and accurate segmentation of slices is
crucial in order to obtain a proper 3D reconstruction of the mus-
cle. Aimed at overcoming this issue, we used the mean absolute
error to remove not needed slices from the manual annotation pro-
cess. Furthermore, we estimated the inside annotation based on the
outside annotation, not requiring manual inside annotations, while
the competitors demand the annotation of both inside and outside
seeds.

The experimental results showed that, on average, only 50% of
the slices required outside annotations. Moreover, the time spent
on overall annotations is 50% faster by using only the outside an-
notation and quickly estimating the interior annotation with our ap-
proach. As a final remark, we highlight that CleverSeg presented
better or similar results than 3DBGrowth and GrowCut while man-
aging a statistically significant lower processing time. As a future
work, we intend to exploit the segmentation of temporal images
sequences.
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