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Abstract 

In this article, among other results, we develop a Galois theory of 
commutative rings under partial actions of finite groups, extending the 
well-known results by S. U. Chase, D. K. Harrison and A. Rosenberg. 

Introduction 

In the celebrated paper by S. U. Chase, D. K. Harrison and A. Rosenberg 
[3] the authors developed a Galois theory for commutative ring extensions 
S ::) R, under the assumptions that S is separable over R, finitely generated 

and projective as an R-module, and the elements of the Galois group G are 

pairwise strongly distinct R-automorphisms of S. In particular, Theorem 1.3 

of that paper gives several equivalent conditions for the definition of a Galois 
extension and Theorem 2.3 states a one-to-one correspondence between the 

subgroups of G and the R-subalgebras of S which are separable and G-strong. 

1This paper was partially supported by CNPq, CAPES and FAPERGS (Brazil) 
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On the other hand, partial actions of groups ho.ve been introduced in 

the theory of operator algebras giving powerful tools of their study (see, in 

particular, [6], [7], [10], [15) and [17]). A related concept, that of a partial 

representation of a group on a Hilbert space, has been defined independently 

by R. Exel [7), and J. C. Quigg and I. Raeburn [17]. Severo.I relevant classes 

of C"-algebras, were deeply investigated in [8], [9], [10) from the point of 

view of partial actions and partial representations of groups, including the 

Cuntz-Krieger algebras introduced in [4]. 
Given a partial action of a group on an object it is natural to ask whether 

it is a restriction of a global action defined on a bigger object. Such global 

action is called a globalization or an enveloping action, provided that certain 

minimality condition is satisfied which guarantees its uniqueness. Globaliza­

tions of partial actions where first considered by F. Abadie in his PhD Thesis 

of 1999 (see also [1]). 
Partial actions in a pure algebraic context were first studied in [5]. A 

partial action a of a group G on a unital algebra S is a collection of ideals 

Su together with isomorphisms au : S,,-1 -+ Su, u E G, which satisfy some 

additional conditions of compatibility with the group. From the categorical 

point of view it seems to be reasonable supposing that the Su's and S arc 

objects of the same category, i.e., each Su is a unital algebra. This idea 

is confirmed when dealing with globalizations: a partial action on a unital 

algebra possesses an enveloping action (which is necessarily unique) if and 

only if every Srr is an algebra with identity clement [5]. That this situation 

is natural in one more sense follows from the results of this article: assuming 

this condition, a complete generalization of the results on Galois Theory of 

commutative rings by Chase-Harrison-Rosenberg [3] con be obtained in the 

context of partial actions. 
Recently R. Exel wrote a preprint on Hecke algebras, which can be found 

on his homepage [11). Among a number of results he proves that given a 

Hecke pair (G, L) such that the normalizer of L in G is normal in G, the 

corresponding Hecke algebra is isomorphic to a crossed product by a twisted 

partial action. It is known that an H-extension of algebras R C S, where 

H is a Hopf algebra, is Galois with normal basis property if and only if S is 

a crossed product of R by a Hopf algebra ([16], Corollary 8.2.5). This also 

suggests that there may be applications of the ideas in this paper to Hecke 

algebras and o. theory of partial Hopf Galois extensions. 
The purpose of this paper is to introduce the notion of a partial Galois 

extension and to develop a Galois theory for a commutative ring extension 
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S ::) R, when G is a group acting partially on S by R-linear maps. Some of 

our results are proved using similar ideas of [3], but it is necessary to check 

carefully many details which come from the fact that the action of the Galois 

group is partial instead of being global. 
We shall deal with a partial action a of G on S which has an enveloping 

action, i.e., there exist a ring S' and a global action of G on S' such that 

S is an ideal of S' and the restriction of the global action to the ideals S,, 

gives the partial action a [5]. Roughly speaking, a partial Galois extension 

can be considered as a direct summand of a Galois extension. If T is a (non­

necessarily commutative) ring which is a (global) Galois extension of B with 

Galois group G and e is a central idempotent of T, then G acts partially 

on S = Te. Then we define the invariant subring S 0 of S under a and the 

extension S ::) S 0 is called a partial Galois extension. It follows from our 

results that any partial Galois extension is of this type. 

In the first sections of the paper rings are not necessarily commutative. 

Section 1 is a preliminary section. In Section 2 we define the trace map of 

a partial action of a finite group on an algebra and fixed subrings and we 

obtain some relations. Partial Galois extensions arc defined in Section 3. The 

main result of this section proves that an algebra S with a partial action a 

is a partial Galois extension of its fixed subring if and only if the enveloping 

action is a (global) Galois extension of its fixed subring. 

In Section 4 we consider partial Galois extensions of fixed subrings which 

are contained in the center of the extension. We prove a theorem giving 

several equivalent conditions for S to be a partial Galois extension of a central 

subring R, extending to our case Theorem 1.3 of [3]. Section 5 is devoted to 

prove the Fundamental Galois Theorem for partial actions of commutative 

rings, giving an extension of Theorem 2.3 of (3]. Finally, in Section 6 we 

include some examples and additional remarks. 

Throughout the paper rings are always with identity element and algebras 

are assumed to be unital and associative algebras. Unadorned 0 means 0n. 

1. Prerequisites 

We first recall the notion of a partial action of a group on an algebra [5]. 

Let G be a group and S a unital algebra over a commutative ring k. A 

partial action a of G on S is a collection of ideals S,,, CT E G, of S and 

isomorphisms of (non-necessarily unital) k-algebras a,, : S"-1 -+ S,, such 
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that: 

(i) S1 = S and o:1 is the identity automorphism of S; 

(ii) S(uT)-1 2 o:;1(ST n Su-1); 

(iii) O:u o o:T(x) = O:uT(x), for every x E o:;1(ST n Su-1) and u, 'TE G. 

In case we have a partial action of G on S as above we simply say that 
o: is a partial action of G on S, where the ideals associated with the action 
will be denoted by Su, unless otherwise stated. 

We recall some facts which are already known (sec [5]). The property (ii) 
of the definition easily implies that au(Su-1 n ST) = Sun Sun for all CT, r E G. 
Also o:;1 = O:u-1, for every a E G. 

In this paper, unless otherwise stated, we assume that any Su is generated 
by a central idempotent la cl 0, i.e., Su is an k-algebra with identity. It is 
clear that in this case Sun ST = lulTS. In the particular case S,,. = S, for all 
a E G, we have a usual (global) action of the group G on the k-algebra S. 

Assume that a is a partial action of G on S. By Theorem 4.5 of [5], o: 
possesses an enveloping action, which means that there exist a ring S' and a 
(global) action of G by automorphisms of S' such that S can be considered 
as an ideal of S' generated by a central idempotent ls of S' and the following 
properties hold: 

(i) the subalgebra of S' generated by UuEG a(S) coincides with S' and we 
have S' = Z:uEG a(S); 

(ii) Su =Sn a(S), for every a E G; 

(iii) o:,,.(x) = a(x), for all c, E G and x E S,,.-1. 
Note that the authors in [5] allow some S,,. to be equal zero, i.e., they 

consider the zero algebra as a ring with identity element. As we said above 
we assume here that all the ideals Sa arc non-zero. Hereafter we will denote 
by (S', G) the enveloping action of a. 

Note that S'I,,. =Sia= sna(S) = S'lsnB'u(Is) = S'Isa(Is), and 
this implies that 1,,. = lsa(Is). 

Assume that o: is a partial action having an enveloping action. Then for 
any x ES we have a,,.(xlu-1) = u(xlsa-1(1s)) = a(x)Is, where a(x) ES'. 
We give an example as how to use this relation: we have o:u(ITlu-1) = 
a(IT)Is = a(Is)a(r(ls))Is = IuluT• 

All the above remarks will be used freely throughout the sequel. 
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Natural examples of partial actions can be easily given: 

Example 1. 1 Assume that T is an algebra over k and G acts on T by k­
automorphisms, and let S be an ideal of T. For any a E G put Su = Sna(S). 
Define au : Su-1 -+ Su as the restriction of the automorphism a to Su-'• Then 
it is easy to see that a is a partial action of G on S, called the restriction of 
the global action of G on T to S. In addition, if S is generated by a central 
idempotent of T we have that any Su has an identity element. 

2. The trace map and fixed subrings 

Throughout the rest of the paper G is a finite group. Assume that a is 
a partial action of G on a k-algebra S, where k is a commutative ring. The 
subring of invariants of S under a is defined as 

s(i = {x Es I a:u(xlu-1) = la-X, for all (1 E G}. 

Note that X E sa is equivalent to O'u(xa) = xau(a), for every a E Su-I, 
a E G. Denote by (S', G) the enveloping action of a, R' = S10 and R = sa. 

Since S' = I:a-EG a(S), it is easy to see that the identity element of S' can 
be written as a boolean sum of the idempotents a(ls), a E G, of S'. Denote 
the elements of G by {a1 = l,a21 ... 1 <1n}- Thus we can write ls, as an 
orthogonal sum ls, = e1 EB e2 EB··• EB en, where e1 = ls, e2 = (ls, - ls)a2(ls) 
and ei = (ls, - ls) ... (ls, - O"j-i{ls))aJ{ls), for 2 :5 j :5 n. It is clear that 

ls,= L L (-1)1+1a;1(ls) ... a;1(1s) . 
l:Sl:Sni1< .. ·<i1 

We will use o. map defined as follows: for any x E S' put 

'1/J(x) = L L (-l)1+1a;,(x)a;1 (1s) .. . a;1(1s) . 
1:Sl:Sn it <··• <iz 

It is clear that 'ljJ is a (right and left) R'-linear map and we can write '1/J(x) = 
I: ai(x)e;. By the above '1/J{ls) = ls,. 

1:Si:Sn 

The trace map plays an important role when having actions of finite 
groups on algebras. In our case we define it by trs;R(x) = I:a-eG au(xlu-1 ), 
for any x ES. The usual trace map from S' to R' will be denoted by trs'/R'· 
We have 
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Lemma 2.1 
(i) trs;R : S - R is a (left and right) R-linear map. 
(ii) trs;n(x) = trs1;n1 (x)ls, for any x ES. 
(iii) trs,;n1(S1

) = trs1;n,(S). 

Proof. (i) If x E S and r E G, 

a:r(trs;n(x)lr-1) = L r(a(x)ls)ls = L r(a(x))r(ls)ls = trs;n(x)lr-
"EG '1EG 

Hence trs;n(x) E R. 

(ii) For any x E S we have 

trs;n(x) = I:o:"(xl"-1) = I:a(x)ls = trs'/R'(x)ls. 
'1EG qEG 

(iii) Assume that y E trs,;n,(S') and take x ES' with trs,;n,(x) = y. We can write x = E"eaa(x") with x" ES, since S' = E a(S). Thus we have 
'1EG 

Y = E p(x) = E (I: pu(x")) 
pEG '1EG pEG 

= I: trs1;n,(xu) E trs,;11'(S). 
qEG 

Thus trs'/R'(S') £:; trs1;n1 (S) and so (iii) clearly follows. D 

Corollary 2.2 Under the same assumptions as above trs, 1 II! is onto R' if and only if trs;n is onto R. 

Proof If there is c E S' with trs,;u,(c) = ls,, then there exist an element d E S such that trs;n(d) = ls, by Lemma 2.1. Conversely, assume that there exists c E S with trs;R(c) = ls. Thus trs,;n,(c)ls = ls and we have ls,= 1P(trs,;n1 (c)ls) = trs1;n1 (c)1,V(ls) = trs,;n,(c)ls, = trs,;n1 (c). The result follows from Lemma 2.l(i). D 

Proposition 2.3 Assume that R, R', S, S', G and a are as above and that trs,; R' is onto. Tl1en the restriction of the map 1P to R is a ring isomorphism from R onto R' whose inverse is the mapping¢ sending r' to r'ls, for any r' ER'. 
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Proof It is clear that '1/J is a homomorphism of rings. If r E R there exists 

c ES such that trs;R(c) = r, by Corollary 2.2. Thus trs,;ni(c)ls =rand 

hence '1/J(r) = '1/J(trs'/R'(c)ls) = trs1;R1 (c)'I/J(ls) = trs,;R1 (c) ER'. Therefore 

'1/JIR: R-+ R'. Also '1/J(r)ls = trs'/R'(c)ls = r. Finally '1/J(r'ls) = r''I/J(ls) = 
r', for every r' ER'. D 

3. Partial Galois Extensions 

The definition of Galois extensions used in [3] was used later on also for 

non-commutative rings in many papers. In this section we do not need the 

commutativity of the rings and so we will use the same definition of Galois 

extensions as given in ([3], Theorem 1.3) for arbitrary ring extensions. 

Assume that Tis a ring, Bis a subring of T and G is a group acting on 

T by B-automorphisms. Recall that T is said to be a Galois extension of B 

with group G if B is equal to the fixed subring TG of T under the action of 

G and there exist Xi, y; in T, 1 $ i $ n, such that I:i<i<n x;a(y;) = 81,u, for 

every a E G. The elements X;, Yi are called a Galois coordinate system of T. 

Now assume that o is a partial action of a group G on a k-algebra S. 

The above definition induces the following: 

Definition 3.1 Sis said to be a partial Galois extension of R with partial 

action o (an a-partial Galois extension, for short) if SOI. =Rand there exist 

elements xi, Yi E S, 1 :5 i :5 n, such that I:i<i<n x;ou(Y;lu-1) = 81,u, for 
each a E G. - -

As in the global case we say that the elements x;, Yi are partial Galois 

coordinates of S over R. The following proposition shows that examples of 

partial Galois extensions appear naturally. 

Proposition 3.2 Assume that T is a Galois extension of a ring B witl1 

Galois group G, S = Te is the ideal ofT generated by a central idempotent 

e and suppose that Sn a(S) =I- 0, for any u E G. Then S is an a-partial 

Galois extension of SOI., where a is the partial action induced on S by the 
global action of G on T. 

Proof. If x;, Yi are Galois coordinates of T over B, then it can easily be 

checked that ex;, ey; are partial Galois coordinates of S over SOI.. □ 
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The main purpose of this section is to show that any partial Galois ex­tension can be obtained in the way given in Proposition 3.2. For this we will use the enveloping action of a which we denote as above by (S', G). We prove the following main result: 

Theorem 3.3 Assume that a is a partial action of G on S and ( S', G) is its enveloping action, and as above R = S 0 and S'c = R'. TJ1en the following statements are equivalent: 
(i) S' is a (global) Galois extension of R' witl1 Galois group G. (ii) S is an a-partial Galois extension of R. 

Proof. (i)==}-(ii) holds by Proposition 3.2. Conversely, assume that (ii) holds. Then there exist Xi, Y; ES, 1 s:; i s; m, such that Li<i<m Xiacr(Y;lcr-1) = 81,cr, for every a E G. Using the same notation as in the 1o-rmer section, consider in S' the elements x:i = ai(xi)ei and y:i = ai(Y;)ej, 1 s:; i s; m, 1 ~ j ~ n. Then 
L xii?hi = I>ix;)ai(Y;)ei = L ai(L XiYi)ei i,j i,j j . = Z:ai(ls)e; = 1/J(ls) = ls,, 

j 

Also, putting Yi = (ls, - ls) ... (ls, - CTj-l (ls)) and ail = a-;1 a1aj we have 

for 2 ::; l $ n, and the proof is complete. D 
Remark 3.4 Under the same conditions as above, if S is a commutative ring and an a-partial Galois extension of R, then by a well-known result in commutative Galois theory, Theorem 3.3 and Corollary 2.2, it follows immediately that there exists c ES such that trs;R(c) = Is. 
Remark 3.5 Some authors who have worked on Galois theory of non­commutative rings used the definition of Galois extensions as a ring exten­sion A ::> B such that there exist Galois coordinates in A and furthermore trA;B(A) = B (see, for example [14], p. 310). We can use also the corre­sponding to this definition for partial actions in non-commutative rings. So 
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a partial Galois extension in this sense would be a ring extension S ::) R to­

gether with a partial action of G on R such that the conditions of Definition 

3.1 are satisfied and trs;n is onto R. We can conclude from Corollary 2.2 

and Theorem 3.3 that also in this case S is a partial Galois extension of R if 

and only if S' is a Galois extension of R'. 

4. Galois Extensions of Commutative Rings. 

In this section we consider partial Galois extensions whose fixed subrings 

are contained in the center. The main purpose here is to prove a result 

corresponding to Theorem 1.3 of [3]. The proof follows the lines of the proof 

of that theorem and so we will omit many details. 
Throughout the section we assume that S is a ring, R is a subring of 

the center of S and a is a partial action of G on the R-algebra S. The skew 

group ring S*o. G is defined as the set of all formal sums I:o-EG x,,.u,,., x,,. E S,,., 
with the usual addition and the multiplication determined by (x,,.u,,.) (Yr Ur) = 
au ( a,,.-1 (x,,. )Yr )uur- Since each S,,. is an algebra with identity, then S *a G is 
an associative R-algebra ([5], Corollary 3.2). 

A natural map j: S*a G-+ Endn(S) is defined by j(I:,,.E0 x,,.uu)(z) = 
I:o-EG x,,.au(zlu-1 ), for every z E S. It can easily be seen that j is a homo­

morphism of left S-modules and R-algebras. 

Let M be a left S *o. G-module. We put 

M 0 = {m EM: (1,,.u,,.)m = 1,,.m, for all a E G}, 

the R-submodule of invariants of Munder G. Note that Mis a left S-module 

via the embedding x - xu1 from S into S *o. G. 

The algebra S can be considered as a left S *o. G-module via j, that 

is, (xuu,,.)y = j(xuu,,.)(y), for ally E Sand a E G. Then the subring of 

invariants as defined above is s0 = {x E S \ au(xl,,.-1) = xl,,., for all a E G} 

which coincides with the definition of so. given in Section 2. 

Now we give the sketch of the proof of the following result, corresponding 

to Theorem 1.3 of (3]. 

Theorem 4.1 Let a be a partial action of a (finite) group G on an R-algebra 

S. Then tlw following statements are equivalent: 

(i) S is an a-partial Galois extension of R. 
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(ii) S is a finitely generated projective R-module and j : S *a G --t 
EndR(S) is an isomorphism of left S-modules and R-algebras. 

(iii) Sis a finitely generated projective R-module and for every left S*0 G­
module M the map 11,: S ® MG --t M, given by µ(x ® m) = xm, is an isomorphism of left S-modules. 

(iv) Sis a finitely generated projective R-modulc and the map 'I/; : S®S --t 
IL-ea S,;, defined by '1/;(x ® y) = (xau(Ylu-1))ueG, is an isomorphism of left S-modules. 

Proof. (i)=}(ii) Take X;,y; ES, l $ i $ n, with Li<i<nx;au(Y;lu-1) = 01,u 
and define f; E HomR(S,R) by f;(x) = trs;R(Y;X), for-all XE s. It follows 
easily that ,E x;f;(x) = x, for all x E S. Hence Sis a finitely generated l<i<n 
projective R:.-module. 

To show that j is an isomorphism, for h E EndR(S) take w E S*a G given 
by w = LuEGLI<i<nh(x;)au(Y;lu-i)uu. We can see that j(w)(x) = h(x), 
for any X E s. Thus -j is surjective. Finally, suppose that V = LuEG XuUu E 
Ker(j). Then j(v)(x;) = 0, for all I $ i $ n. An easy computation gives 
0 = LreG L1$i$nj(v)(x;)ar(Y;lr-1)ur = v. 

(ii)=}(iii) Since S is a finitely generated projective R-module there exist 
x; E Sand f; E HomR(S, R), 1 $ i $ l, such that x = Lt<i<z f;(x)x;, for 
all x E S. We define v : M --t S ® MG by v(m) = Lt<i<I x~ ® v;m, where 
V; = F 1(f;) E s *a G. It follows that V is a well-defined homomorphism 
which is the inverse of µ. 

(iii)=}(iv) Put ::F = {J : G --t SI f(a-) E Su, for all CJ' E G}. Then it 
is clear that ::F is isomorphic to fiueG Su as left S-modules. Also, ::f has a 
structure of a left S*aG-module given by ((xuuu)f)(r) = Xuau(f(CJ'- 1r)lu-1), 
for every f E ::f and CJ', T E G. It follows from the assumption (iii) that the 
mapµ: S ® ::F° --t ::F ~ ITuEGSu defined by µ(x ® J) = (xf(a))uEG is an 
isomorphism of left S-modules. 

Also the map S --t ::F°, x 1--t fx, where fx: G --t Sis defined by fx(r) = 
ar(xlr-' ), T E G, is an isomorphism of left R-modules. Consequently the 
composition S®S - S®::F° --t fiueG Su is an isomorphism of left S-modules, 
which is clearly equal to 'I/;. 

(iv)=}(i) Take x E 8"'. It follows from (iv) that x ® l = 1 ® x. On 
the other hand, since S is a faithfully projective R-modulc, R is a direct 
summand of S. Hence x ER and so S 0 = R follows. 
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To obtain the partial Galois coordinates take (1, 0, . . . , 0) E IlueG Su, 
whose first entry corresponds to u = 1. Since 1/J is an isomorphism, there 
exists w = LI<i<n x; 0 Yi E S 0 S such that 1/J(w) = (1, 0, .. . , 0) and (i) 
follows. The proof is complete. D 

We say that two elements u and T of G are strongly distinct, with respect 
to the partial action a of G on S ( a-strongly distinct, for short), if for any 
non-zero idempotent e E Su U Sr there exists x E S such that au(xlu-1 )e -:f 
a.,.(xl.,.-1 )e 

Theorem 4.2 Let <x be a partial action of a group G on an R-algebra 
S . If S is 8J1 a-partial Galois extension of R , then S is separable over R 
and the elements of G are pairwise a-stro11gly distinct. If, in addition, S is 
commutative and S°' = R, the converse also holds. 

Proof. Since S is a direct summand of its enveloping algebra S' and S' is a 
Galois extension of R' = S'c, by Theorem 3.3, we have that Sis R'-separable. 
It follows easily that Sis separable over R ~ R'. 

Now take a, TE G and suppose that e E Su US.,. is a non-zero idempotent. 
If au(xlu-1)e = a.,.(xl.,.-1)c, x E S, we have u(x)lse = r(x)lse and so 
xa-1(e) = u-1r(x)u-1(e) in S'. Using Galois coordinates xi,Yi, 1 ~ i ~ n, 
of S' over R' and the last relation for x = y;, for every i, we easily obtain 
a= T. So the elements of Gare pairwise a-strongly distinct. 

Conversely, assume that S is a commutative separable algebra over R = 
S°' and the elements of G are pairwise a-strongly distinct. For u E G consider 
the homomorphism of S-algebras (S acting on the left) Bu: S 0 S-> S 0 Su 
defined by 0u(x®y) = x®au(Ylu-1). Denote bye= Li<i<nx;®Yi E S@S 
the idempotent of the separability of S over R and by µ : S 0 S -> S the 
multiplication map. It is easy to verify that for any u E G, the element eu = 
11(0u(e)) = Z:x;au(Y;lu-1) E Su is an idempotent. Also, xeu = au(xlu-1)eu, 
for any x E S. Since the elements of G are pairwise a-strongly distinct, 
for a -:f 1 we obtain eu = 0 and so LI<i<n x;au(Y;lu-1) = 0. The proof is 
complete. - - D 

Remark 4.3 Note that if S is an a-partial Galois extension of a central 
subring R, (S', G) is the enveloping action and R' = S'G we can consider 
S ®n S 0 as contained in S' ®n' S'°. In fact, it is easy to sec that R' ~ R 
is a subring of the center of S' and the remark follows since S is a direct 
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summand of S'. 

Corollary 4.4 Let S be an a-partial Galois extension of R. If lo = 
TicrEG lcr -=/: 0, then Slo is a (global) Galois extension of Rlo with Galois 
group G. 

Proof. It is easy to sec that ao-lsia E Autm0 (Slo), for all a E G. Also 
(Slo}° = S 0 10 = R10 . Finally if Xi, y; ES, 1 :5 i::; n, are the partial Galois 
coordinates of S over R, then Xilo, y;lc, 1 :5 i $ n, are Galois coordinates 
of Slo over Rla. □ 

Corollary 4.5 Let S be an a-partial Galois extension of R and T be a 
commutative R-algebra. Then T ® S is a 1 0 a-partial Galois extension of 
T ~ T ® R, where the partial action of G on T ® S is given by the maps 
10 a": T® Scr-1 -t T0 Ser, for any a E G. 

Proof. It is easy to see that T®Scr, a E G, are non-zero ideals of T®S and 
that (T®Su, l®au) defines a partial action on T®S. Also T can be identified 
with T ® R s;; T ® S. Furthermore, a Galois coordinate system for S over R 
easily gives a Galois coordinate system for T ® S. Finally, T 0 R = (T ® S) 0 

follows as in the global case using the partial trace map. D 

To finish this section we prove the following 

Corollary 4.6 Let S be an a-partial Galois extension of R. Then, for any 
prime ideal~ of R, ranknp(Sp) $ !GI. Moreover, ranknp(Sp) = IGI, for any 
~, if and only if S is a (global) Galois extension of R with group G. 

Proof. By Corollary 3.4 we can assume that R is a local ring. So each So­
is a finitely generated free R-module. Since S ® S ~ Ilo-EG Su, we have 

(rankn(S))2 = rankn(S ® S) = I: rankn(Su) :5 IGlrankn(S) 
uEG 

and the first part follows. 
For the second assertion assume that rankn(S) = IGI. Then rankn(Su) = 

rankn(S), for every a E G, and since Su is a direct summand of Sit follows 
that S = Su. D 

5. The Galois Correspondence 
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In this section we assume that S is a commutative partial Galois extension 
of R with partial action a of G on S. For a subalgebra T of S we set 
Hr= {a E G J au(xlu-1) = xlu, for allx ET}. We say that Tis a-strong if 
for every a, r E G, with a-1r ¢ Hr, and any non-zero idempotent e E SuUSr 
there exists an element t E T such that au(tlu-1 )e =f ar(tlr-1 )e. If the action 
of G on Sis a global action, then we have the well-known notion of a G-strong 
subalgebra [3). 

We will see in Example 6.3 that the set Hr is not always a subgroup of 
G, even when T is R-separable and a-strong. The fundamental Theorem 
of Galois theory we will prove here is the following result which extends 
Theorem 2.3 of [3]. 

Theorem 5.1 Let S be a partial Galois extension of R with partial action a 
of G on S. Then there is a one-to-one correspondence between the subgroups 
of G and tlie separable subalgebras T of S wl1ich arc a-strong arid sucl1 that 
Hr is a subgroup of G. 

We begin with the following 

Theorem 5.2 Let S be an a-partial Galois extension of R and H a subgroup 
of G. Then all = {au : Bu-1 -t Su I a E H} is a partial action of H on S 
and S is an au-partial Galois extension of T = san. Also T is R-separable 
and a-strong and Hr= H. 

Proof. Obviously the restriction o:u of o: to H is a partial action of H on S 
and the first part follows directly from the definition. 

Denote by (S', G) the enveloping action of a and put S'c = R' . Since 
S' = EuEG a(S) it is easy to see that there exists a global action of H on 
S = Euw a(S) which is the enveloping action of O'.JI. 

The global action of G on S' induces a partial action {3 of G on S for 
which it is also enveloping. Then Proposition 2.3 implies that R'18 = (S)/3 
and R'ls = R. Co~sequently (S)/31s = R'lsls = R'ls = R. Also, (S)llls = 
saH. 

On the other hand, S' = S'ls ED 8'(18, - ls)= S ED 8'(18, - ls). Clearly, 
S~(ls, -18) is H-invariant, hences':= (S)ll ED (S'(l 8, - ls)) 11 and S 1H1 8 = 
(S)llls = (S)H. Thus T = saH = (S)llls = S'Jllsls = S'Ills. 

By Theorem 3.3 S' is a Galois extension of R' with Galois group G. Hence 
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by the results of [3] the R'-algebra S'H is separable, G-strong and H = H8m. 
It is easy to verify that if e' E S'H ®R' S'll is the separability idempotent of s1H over R', then e = e'(ls® ls) E S'llls®R'ls S'Ills = saH ®SClH = T®T 
is the separability idempotent of T over R. Thus T is R-separable. 

Now we prove that T is a-strong. Take any u, r E G with u-1r </. 
Hr and a non-zero idempotent e E Su LJ S,. . Since S'II is G-strong and 
u-1r </. Hr 2 H = H8 ,11, if eluLr :-j= 0 there exists x E 8'11 such that 
u(x)elal.,. # r(x)elul.,.. Consequently xls E T and au(xlslu-1)elul.,. = 
au(xlu-1)elul.,. = u(x)elul.,. =-/= r(x)elul.,. = a.,.(xlsl.,.-1)eluln and therefore 
au(xlslu-1 )e i a.,.(xlsl.,.- 1 )e. Finally, if el,,.1,. = 0 and e E S,,. we have 
a,,.(lsla-1)e = 1,,.e = e i O = elul.,. =el.,.= a.,.(lsl.,.-1)e. The case e ES.,. is 
similar. 

Finally, clearly Hr 2 H. Conversely, assume that u E Hr\H, H = Hs1H. 

Since S'JI is G-strong it follows that there is x E S'H with u(x)lu i xlu 
(recall that 1,,. =f 0) . Hence a,,.(xlsl,,.-1) = a(x)lu =f xlu = xlslu which is a 
contradiction because a E Hr and xls E S'Ills = T. Thus Hr= Hand the 
~is~~- D 

For the next result we need the following lemma. We omit its proof 
because it is similar to the last part of the proof of Theorem '1.2. 

Lemma 5.3 Let S be an a-partial Galois extension of R a11d T a separable 
and a-strong R-subalgebra of S. Then there exist X;, y; E T, 1 S i S m, 
such that Li:;;;:;;m X;Y; = 1 a1id Li:;;i:;;m X;a,,.(y;l,,.-1) = 0, for all a E G \ Hr, 

The next theorem completes the proof of Theorem 5.1. 

Theorem 5.4 Let S be an a-partial Galois extension of R and T be a 
separable and a-strong R-subalgebra of S such that Hr is a subgroup of G. 
Then sa11 = T for H = Hr, where aH is the partial action of H on S defined 
above. 

Proof. Clearly T ~ S011 • Now we prove the converse inclusion. Let (S' , G) 
be the enveloping action of a and R' = S'G. As in the proof of Theorem 5.2 
we consider the subalgebra S = Luell u(S) on which H acts as a group 
of automorphisms and (S, H) is the enveloping action of the partial action 
0:H ={a,,.: S,,.-1-+ Sula EH} of Hon S. 

By Proposition 2.3 there exists a ring isomorphism 1PII : sa11 -+ (S)ll 
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such that '1/JII(x)ls = x, for all x E S011
• Write T = '1/Ju(T). 

Claim 1 There arc elements x;, Yi ET', 1 s i s m, such that E1<i<m x;y; = 
18 and Ei$i$m x;a(yi) = 0, for every a E G \ H. - -

Indeed, by Lemma 5.3 there exist elements x;, y; E T, 1 S i S m, such 
that El$i$m XiYi = 1s and Ei$i$m X;O:u(Y;lu-1) = 0, for all a E G \ H. 
Since Ei<i<m x;a(y;) E Sn a(S) = Su we have that Ei$i$m x;a(y;) = 
Et$i$m X~a{y;)lu = E1$i$m X;O:u(Y;lu-1) = 0. 

Write x; = '1/Ju(x;) and Yi = '1/Jn(Y;) in T, 1 :5 i :5 m, and denote by 
71 = 1, 72, ••• , 71 the elements of H. As we saw in Section 2, for x E SII we 
have '1/Ju(x) = Ei<i<z 7;(x)e;, where e1, ... , e1 E S are pairwise orthogonal 
idempotents. Therefore E1<i<m x;y; = '1/JJI(E1<i<m X;Yi) = '1/JJI(ls) = l;s 
and for each a E G \ H we have - -

which completes the proof of Claim 1. 

Note that since H ~ H,y, and the elemenLs x;, y; of Claim 1 are in T, this 
claim implies, in particular, that H,y, = H. 

As we pointed out in Theorem 5.2, the restriction of (S', G) to S gives a 
partial action (3 of G on S for which it is also enveloping. Then it follows from 
Proposition 2.3 that there is an isomorphism of rings S10 --, (S)/3 sending x 
to x18. Also, the map x 1-+ xls is an isomorphism from S10 onto R. Thus 
we have an isomorphism (8)13 --, R defined by y 1-+ yls, for any y E (8) 13 , 

whose inverse is '1/JJI restricted to R. Hence '1/JJI(R) = (8)13 and consequently 
T = '1/Jn(T) is separable over (S)/3. 

Note that S'JI = S'1I18 EB sm(ls, - 18) = (S118)11 EB S'H(ls, - 18) = 
(S)JI EB S'II(Is, - 18). In particular S'Hls = (8)111 8 = S011 • Consider the 
subalgebra T' = T EB S'H (ls, - 18). 

Claim 2 T' is separable over R' and G-strong. 

In fact, sm is separable over R' and so S111 (1s, - 18) is separable over 

R'(ls, - 18). Since Tis (S)/3-separable and (8)13 = S1018 = R'I8, it follows 
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that T' is separable over (S)/J EB R'(ls1 - 18) = R'. 
To prove that T' is G-strong assume that a E G \ H and e E S' is 

an idempotent, and suppose that a(x + y)e = (x + y)e, for all x E T and 
y E S'H (1s1 - 18). 

Put e = ei + e2 with ei = el8 and e2 = e(ls, - ls)- Then multiplying 
a(x + y)e = (x + y)e by ls we obtain a(x + y)ei = (x + y)ei = xei, for 
all x E Tandy E S'll(Is, - 18). In particular, taking y = 0 we see that 
cr(x)ei = xei, for every x E 'I'. 

By Claim 1 there exist x;, 'ff; E T, 1 ::::; i ::::; m, with Li<i<m XiYi = lg 
and Li<i<m x;a(jh) = 0. Hence 0 = Li<i<m x;a('fii)ei = ~.;<m XiYiei ~ 
1 sei = e;: .- - - - -

Thus e = e2 and cr(x + y)e2 = (x + y)e2 = ye2, for all x E T and 
y E S'JI(ls, - 18). Taking x = 0 and any y we obtain a(y)e2 = ye2. Since 
sm is G-strong and separable over R', by Lemma 5.3 there exist ui, vi E S'11 , 

1 ::::; j::::; l, with Lt::;j::;I uivi = ls1 and Li::;j::;I uia(vj) = 0. Consequently 0 = 
Li::;j:,;luia(vi)a(ls1 -l8)e2 = Lig::;zUjVj(ls1 -l8)e2 = ls,(ls1 -l8)e2 = e2, 
which completes the proof of Claim 2. 

Now we are able to complete the proof of the theorem. By Claim 2 and 
the results in [3] T' = S 1

II' for H' = {a E GI a(x) = x, for allx E T'}. 
Also, by definition of T', an element a E G is in Hr, = H' if and only 
if a E Hr = H and thus H' = H. It follows that T' = sm and s 0 u = 
(s)Hls = S'Hls = T'ls = Tls = T. The proof is complete. D 

6. Examples and Remarks 

In this section first we give some examples which illustrate our results. 

Example 6.1 Let R be a commutative ring and put S = Rei EB Re2 EB Re3, 
where { ei, e2, e3} is a set of non-zero orthogonal idempotents whose sum is 
one. We denote by G the cyclic group of order 4 generated by a, and define 
a partial action of G on Staking Si= S, Sa= Rei EB Re2, Sa2 = Re1 EB Re3 
and Sa3 = Re2 EB Re3, and defining a1 = ids, 

au : Sa3 --. Sa by au(e2) = ei and aa(e3) = e2, 

a,,.2 : S,,.2--. Sa2 by O:a2(ei) = e3 and au2(e3) = ei, and 

a,,.s: Sa--. S,,.a by O'a3(e1) = e2 and aas(e2) = e3. 
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Then it is easy to verify that S is an a-partial Galois extension of R. In 
this case it is also clear that the enveloping action of o: is the trivial extension 
S' = S EB Re4 of R, where the global action is given by ai(ei) = e;-i(mod4)· 

Example 6.2 Let R be a commutative ring and put S = I:i<;<4 EBRe;, 
where { e1, e2, e3, e4 } is a set of non-zero orthogonal idempotents wliose sum is 
one. Denote by G the cyclic group generated by a of order 5. The mappings 
defined on the ideals {S, S" = Re2, 8"2 = Re1, S"s = Re3, 8"4 = Re1} by 
a1 = ids, a"(e1) = e2, a"2(e3) = e4, a"3(e4) = e3 and a"4(e2) = e1, give a 
partial action a of G on S. 

It can easily be verified that S0 = R(e1 + e2) EB R(e3 + e4) and taking 
x; = Yi = e;, 1 $ i $ 4, we have a Galois coordinate system for S over S 0

• 

Thus Sis an a-partial Galois extension of S 0
• Also, it is not difficult to show 

that the enveloping action is given by S' = S EB I:i:,;;:56 e,Rv;, where the set 
{v;ll $ j $ 6} is a set of orthogonal idempotents which are also orthogonal 
with the e;'s and such that I;; e; + I:; Vj = ls,, The action of a is given by 
e1 -. e2 -. v1 -. v2 -. V3 -. e1 and e3 -. V4 -. e4 -. V5 -. Vo -. e3. Here we 
have S10 = R(e1 + e2 +vi+ V2 + V3) ffi R(e3 + e4 + V4 +Vs+ v5). 

Example 6.3 Let A be a cyclic (global) Galois extension of a commutative 
ring R with Galois group G generated by a of order 6. Set S = I:i<i<S ffiAei, 
where { ei 11 $ i $ 5} is a set of non-zero orthogonal idempotents whose sum 
is one. Define the partial action a of G on S taking A", = Ae6-i and 
a",(ae;) = ai(a)e6_;, 1 $ i $ 5. Thus we have a partial action of G on S 
and S0 = {ae1 + be2 + ce3 + a2(b)e4 + a(a)e5 I a, b EA, c E A"

3
}. 

Let a;, b; E A, 1 $ i $ m, a Galois coordinate system for A over R and 
consider the elements x; = y;e;, j = 1, 2, 4, 5 together with the elements 
X;3 = a;e3, Yi3 = b;e3. It is easy to see that this gives a Galois coordinate 
system for S over sa. Hence Sis an a-partial Galois extension of sa. 

We have two non-trivial separable a-strong subalgebras T of S with Hr a 
subgroup of G: T1 = {x1e1 +x2e2+x3e3+a2(x2)e4+xse5 Ix; EA} and T2 = 
{x1e1 + X2e2 + X3e3 + X4e4 + X5e5 I X3 E A"

3
, X; E A fori -=/: 3}. Furthermore 

the subalgebra T = {x1e1 + x2e2 + x3e3 + a 2(x2)e4 + a(x1)es IX; E A} is 
S0 -separable and a-strong but Hr= {id,a,a2,a4,a5} is not a subgroup of 
G. 

We can apply the results to reduced rings and its rings of quotients. 
Assume that S is reduced and denote by Q the complete ring of quotients of 
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S. Recall that Q can be obtained considering the filter S" of essential ideals 
of Sand the set of all S-homomorphisms f : H-+ S, where H ES". Two 
homomorphisms f : H -+ R and f' : H' -t R arc said to be equivalent if the 
restrictions of J and f' to H n H' are equal. Then Q is defined as the set of 
all the equivalence classes of this homomorphisms with natural operations. 
Also, Scan be considered as a subring of Q. 

Let a be a partial action of the group G on S and we denote, as in the 
former sections, by (Se1)uEG the ideals involved in the action. There is a one­
to-one correspondence, via contraction, between the closed ideals of S and 
the closed ideals of Q. So for any a E G there exists a closed ideal s; of Q 
such that s; n S = [Sul, where [Se1] denotes the closure of Su in S. Also, s; 
is the complete ring of quotients of the reduced ring (without identity) Su 
see ([12], Section 1). 

Thus the isomorphisms au : Su-1 -t Bu can be extended to isomorphisms 
a; : s;-1 -t s;, which we will denote by au again, and it can easily be seen 
that this defines a partial action a of G on Q [13]. Note that this extended 
action satisfies the assumption we used in the former sections, i.e., the ideals 
s; have identity elements. 

Let S be a reduced ring and a be a partial action of G on S . Denote by 
Q the complete ring of quotients of S and again by a the extended partial 
action of a to Q. As a consequence of Theorem 5.1 we obtain the following 

Corollary 6.4 Under tl1e above notation, nssume that there exist elements 
Xi, Yi E S, 1 :5 i :5 n, sucl1 that b = Z:i<i<n x;y; is a non-zero divisor of S 
and :Ei<i<n X;au(y;a) = 0, for any a E S~--; and id ,f= a E G. Then Q is an 
o.-partial Galois extension of Q0

• In particular, Theorem 5.1 can be applied 
to the extension Q ::, Q0 • 

Proof. As b is a non-zero divisor, bS is an essential ideal of S and so b is 
invertible in Q. Also, since Se1 is essential in s;, for any a E G, it follows 
easily that the clements b-1xi, y;, 1 :5 i :5 n, give a Galois coordinate system 
in Q. Consequently Q is an a-partial Galois extension of Q0 and the result 
follows. D 

Remark 6.5 After a first version of this paper was finished Cacnepeel and 
Groot (2] extended some of our results to the context of Galois corings. On 
the other hand, it can easily be seen that the algebra S *a G has a structure 
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of a bialgebra which do not seem to be a Hopf algebra. This bialgebra acts 
naturally on S, as we have seen in Section 3. So we think that it is possible 
to extend the results also to the context of bialgebras acting on algebras. 
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