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Abstract

In this article, among other results, we develop a Galois theory of
commutative rings under partial actions of finite groups, extending the
well-known results by S. U. Chase, D. K. Harrison and A. Rosenberg.

Introduction

In the celebrated paper by S. U. Chase, D. K. Harrison and A. Rosenberg
[3] the authors developed a Galois theory for commutative ring extensions
S D R, under the assumptions that S is separable over R, finitely gencrated
and projective as an R-module, and the elements of the Galois group G are
pairwise strongly distinct R-automorphisms of S. In particular, Theorem 1.3
of that paper gives several equivalent conditions for the definition of a Galois
extension and Theorem 2.3 states a one-to-one correspondence between the
subgroups of G and the R-subalgebras of S which are separable and G-strong.

1This paper was partially supported by CNPq, CAPES and FAPERGS (Brazil)



On the other hand, partial actions of groups have been introduced in
the theory of operator algebras giving powerful tools of their study (see, in
particular, [6], [7], [10], [15] and [17]). A related concept, that of a partial
representation of a group on a Hilbert space, has been defined independently
by R. Exel [7), and J. C. Quigg and I. Raeburn (17]. Several relevant classes
of C*-algebras, were deeply investigated in (8], [9], [10] from the point of
view of partial actions and partial representations of groups, including the
Cuntz-Krieger algebras introduced in [4].

Given a partial action of a group on an object it is natural to ask whether
it is a restriction of a global action defined on a bigger object. Such global
action is called a globalization or an enveloping action, provided that certain
minimality condition is satisfied which guarantecs its uniquencss. Globaliza-
tions of partial actions where first considered by F. Abadie in his PhD Thesis
of 1999 (sce also {1}). '

Partial actions in a pure algebraic context were first studied in [5]. A
partial action o of a group G on a unital algebra S is a collection of ideals
S, together with isomorphisms oy : S,-1 — Sq, 0 € G, which satisfy some
additional conditions of compatibility with the group. From the categorical
point of view it seems to be reasonable supposing that the S,’s and S arc
objects of the same cetegory, i.e., cach S, is & unital algebra. This idea
is confirmed when dealing with globalizations: a partial action on a unital
algebra possesses an enveloping action (which is necessarily unique) if and
only if every S, is an algebra with identity element [5]. That this situation
is natural in one more sense follows from the results of this article: assuming
this condition, a complete generalization of the results on Galois Theory of
commutative rings by Chase-Harrison-Rosenberg [3] can be obtained in the
context of partial actions.

Recently R. Exel wrote a preprint on Hecke algebras, which can be found
on his homepage [11]. Among a number of results he proves that given a
Hecke pair (G, L) such that the normalizer of L in G is normal in G, the
corresponding Hecke algebra is isomorphic to a crossed product by a twisted
partiel action. It is known that an H-extension of algebras R C 5, where
H is a Hopf algebra, is Galois with normal basis property if and only if S is
a crossed product of R by a Hopf algebra ([16}, Corollary 8.2.5). This also
suggests that there may be applications of the ideas in this paper to Hecke
algebras and a theory of partial Hopf Galois extensions.

The purpose of this paper is to introduce the notion of a partial Galois
extension and to develop 2 Galois theory for a commutative ring extension

2



S D R, when G is a group acting partially on S by R-linear maps. Some of
our results are proved using similar ideas of [3], but it is necessary to check
carefully many details which come from the fact that the action of the Galois
group is partial instead of being global.

We shall deal with a partial action a of G on S which has an enveloping
action, i.e., there exist a ring §' and a global action of G on S’ such that
S is an ideal of S’ and the restriction of the global action to the ideals S,
gives the partial action o [5]. Roughly speaking, a partial Galois extension
can be considered as a direct summand of a Galois extension. If T' is a (non-
necessarily commutative) ring which is a (global) Galois extension of B with
Galois group G and e is a central idempotent of T, then G acts partially
on S = Te. Then we define the invariant subring S% of S under o and the
extension $ O S* is called a partial Galois extension. It follows from our
results that any partial Galois extension is of this type.

In the first sections of the paper rings are not necessarily commutative.
Section 1 is a preliminary section. In Section 2 we define the trace map of
a partial action of a finite group on an algebra and fixed subrings and we
obtain some relations. Partial Galois extensions are defined in Section 3. The
main result of this section proves that an algebra S with a partial action
is a partial Galois extension of its fixed subring if and only if the enveloping
action is a (global) Galois extension of its fixed subring.

In Scction 4 we consider partial Galois extensions of fixed subrings which
are contained in the center of the extension. We prove a theorem giving
several equivalent conditions for S to be a partial Galois extension of a central
subring R, extending to our case Theorem 1.3 of [3]. Section 5 is devoted to
prove the Fundamental Galois Theorem for partial actions of commutative
rings, giving an extension of Theorem 2.3 of [3]. Finally, in Section 6 we
include some examples and additional remarks.

Throughout the paper rings are always with identity element and algebras
are assumed to be unital and associative algebras. Unadorned ® means ®g.

1. Prerequisites

We first recall the notion of a partial action of a group on an algebra [5].
Let G be a group and S a unital algebra over a commutative ring k. A
partial action o of G on 8 is a collection of ideals S,, ¢ € G, of § and
isomorphisms of (non-necessarily unital) k-algebras a, @ Sp-1 — S, such



that:

(i) S1 = S and o is the identity automorphism of S;
(ii) S(,.,.)-l 2 a;‘(S, N Sy-1);
(ili) ag 0 07 (2) = - (z), for every z € a7} (S, N S,-1) and 0,7 € G.

In case we have a partial action of G on S as above we simply say that
«a is a partial action of G on S, where the ideals associated with the action
will be denoted by S, unless otherwise stated.

We recall some facts which are already known (sec [5]). The property (ii)
of the definition easily implies that a,(S,-1NS;) = S,NS,,, forall 0,7 € G.
Also o} = qp-1, for every o € G.

In this paper, unless otherwise stated, we assume that any S, is generated
by a central idempotent 1, # 0, i.e., S, is an k-algebra with identity. It is
clear that in this case S, NS, = 1,1,5. In the particular case S, = S, for all
o € G, we have a usual (global) action of the group G on the k-algebra S.

Assume that « is a partial action of G on S. By Theorem 4.5 of [5],
possesses an enveloping action, which means that there exist a ring S’ and a
(global) action of G by automorphisms of §’ such that S can be considered
as an ideal of S generated by a central idempotent 15 of S’ and the following
properties hold:

(i) the subalgebra of S generated by Useq o(S) coincides with §” and we
have §' =3 .~ 0(5);

(i) Sy = SN a(8), for every o € G;

(iil) ay(z) = o(z), for all 0 € G and z € S,-1.

Note that the authors in [5] allow some S, to be equal zero, i.e., they
consider the zero algebra as a ring with identity element. As we said above
we assume here that all the ideals S, arc non-zero. Hereafter we will denote
by (5, G) the enveloping action of a.

Note that S'1, = S1, = S(}o(S) = 15 So(1ls) = S'1s0(1s), and
this implies that 1, = 150(1s).

Assume that « is a partial action having an enveloping action. Then for
any z € S we have a,(zl,~1) = o(zrlg0~!(1s)) = o(z)1s, where o(z) € S
We give an example as how to use this relation: we have a,(1,15-1) =
o(1:)1s = o(15)o(r(15))1s = lo1or.

All the above remarks will be used frecly throughout the sequel.



Natural examples of partial actions can be easily given:

Example 1.1 Assume that T is an algebra over k and G acts on T by k-
automorphisms, and let S be an ideal of T. For any ¢ € G put S, = SNa(S).
Define o, : S,-1 — S, as the restriction of the automorphism ¢ to S,-1. Then
it is easy to see that « is a partial action of G on S, called the restriction of
the global action of G on T to S. In addition, if S is generated by a central
idempotent of T we have that any S, has an identity element.

2. The trace map and fixed subrings

Throughout the rest of the paper G is a finite group. Assume that ¢ is
a partial action of G on a k-algebra S, where k is & commutative ring. The
subring of invariants of S under ¢ is defined as

5% = {z € S|ay(zl,-1) = 1,2, for all o € G}.

Note that z € S is equivalent to as(za) = za,(a), for every a € S,-1,
o € G. Denote by (S',G) the enveloping action of @, R’ = S’ and R = 5>,

Since §' = " . 0(S), it is easy to see that the identity element of S’ can
be written as a boolean sum of the idempotents o(1g), o € G, of S'. Denote
the elements of G by {1 = 1,02,...,0,}. Thus we can write 1g as an
orthogonal sum lg =€, B ey ® - - D ey, where e; = 1g, e = (1gr — 15)02(15)
and e; = (1g — 1g)... (lg — 0j-1(1g))o;(1s), for 2 < j < m. It is clear that

lg’ = Z z 1)1-‘-10',1 ]-S O'i‘(ls).

1<l<n i1 <<ty

We will use o map defined as follows: for any z € S’ put

=Y > ()Mo (@)ow(1s) . 04 (Ls).

1<1€n i1 <<i)

It is clear that % is a (right and left) R'-linear map and we can write ¢(z) =
> ai(z)e;. By the above ¢(ls) = 1g.
1<ign
The tracc map plays an important role when having actions of finite
groups on algebras. In our case we define it by trg/p(z) = 3, 0o (z15-1),
for any « € S. The usual trace map from S’ to R’ will be denoted by trg,/p:.
We have
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Lemma 2.1
(i) trsyp: S — R is a (left and right) R-linear map.

(ii) trs/n(z) = tro/r(z)1s, for any z € S.
(lll) tI'S//R/(S’) = tI‘SI/R/(S).
Proof. (i) If z€ Sand 7 € G,
ar(trs/r(z)1e-1) = ZT(U(x)ls)ls = ZT(O’((L‘))T(Is)lg = trg/p(z)1,.

0cEG ceG

Hence trg/r(z) € R.

(ii) For any z € § we have

trs/r(@) = ) ap(el,) = ZU(Q)ls = tro/p(z)ls.

o€G cEG

(iif) Assume that y € trg /r(S’) and take z € & with trg/p(z) = y. We

can write £ =3 .~ 0(x,) with z, € S, since §' = 2. o(S). Thus we have
o€G

pg}p(x) = 2 (2 po(z,))

0€G peG
= E trsr/nf(fﬂa) € trS’/R’(S)-
ceG

I

y

Thus tre/p (S') C treyr (S) and so (i) clearly follows. O

Corollary 2.2 Under the same assumptions as above trg /re Is onto R if
and only if trg/p is onto R.

Proof If there is ¢ € §’ with tre/r(c) = lg, then there exist an element
d € S such that trg/r(d) = 1s, by Lemma 2.1. Conversely, assume that
there exists ¢ € § with trs/r(c) = 1g. Thus tre/p(c)ls = 1g and we
have 15 = ¢(trS'/R' (c)ls) = trsr/Rl(C)'(ﬁ(ls) = trs/p (g = trgf/nr(c). The
result follows from Lemma 2.1(i). 0

Proposition 2.3 Assume that R, R,S,5,G and « are as above and that
trs,/p is onto. Then the restriction of the map v to R is a ring isomorphism

from R onto R’ whose inverse is the mapping ¢ sending r' to 1'1g, for any
rekRr.



Proof It is clear that ¢ is a homomorphism of rings. If r € R there exists
¢ € S such that trg/r(c) = r, by Corollary 2.2. Thus trg/p(c)ls = r and
hence (r) = P(trs/r(c)ls) = trsyr(c)¥(ls) = trsr(c) € R'. Therefore
Ylp: R— R. Also 9(r)ls = trg/p(c)ls = r. Finally ¢(r'ls) = rp(ls) =
7, for every ' € R'. |

3. Partial Galois Extensions

The definition of Galois extensions used in [3] was used later on also for
non-commutative rings in many papers. In this section we do not need the
commutativity of the rings and so we will use the same definition of Galois
extensions as given in ([3], Theorem 1.3) for arbitrary ring extensions.

Assume that 7T is a ring, B is a subring of T and G is a group acting on
T by B-automorphisms. Recall that T is said to be a Galois extension of B
with group G if B is equal to the fixed subring TG of T under the action of
G and there exist z;,3; in T, 1 < i < n, such that 3, ;. 2i0(3) = 61,6, for
every o € G. The elements z;, y; are called a Galois coordinate system of T'.

Now assume that « is a partial action of a group G on a k-algebra S.
The above definition induces the following:

Definition 3.1 S is said to be a partial Galois extension of R with partial
action a (an a-partial Galois extension, for short) if S* = R and there exist
elements z;,; € S, 1 < i < n, such that 3, ;e T (¥ilo-1) = d10, for
each o € G. ' T

As in the global case we say that the elements z;,y; are partial Galois
coordinates of S over R. The following proposition shows that examples of
partial Galois extensions appcar naturally.

Proposition 3.2 Assume that T' is a Gelois extension of a ring B with
Galois group G, S = Te is the ideal of T generated by a central idempotent
e and suppose that SN o(S) # 0, for any o € G. Then § is an a-partial
Galois extension of S, where « is the partial action induced on S by the
global action of G on T.

Proof. If z;,y; are Galois coordinates of 7' over B, then it can easily be
checked that ex;, ey; are partial Galois coordinates of S over S%. O



The main purpose of this section is to show that any partial Galois ex-
tension can be obtained in the way given in Proposition 3.2. For this we

will use the enveloping action of o which we denote as above by (§',G). We
prove the following main result:

Theorem 3.3 Assume that o is 4 partial action of G on S and (5, G) js.its
enveloping action, and as above R =38%and 8¢ = . Then the following
statements are equivalent:

(i) &' is a (global) Galois extension of R’ with Galois group G.
(i) S is an a-partial Galois extension of R.

Proof. (i)=(ii) holds by Proposition 3.2. Conversely, assume that (ii) holds.
Then there exist 7;,; € S,1 < i < m, such that 37, _, . 2,0, (1315-1) = O1,0»
for every o € G. Using the same notation as in the former section, consider
in 5" the elements z; = 0;(z;)e; and Y =0i(y)e, 1<i<m, 1<j<n

Then ,
%:xiﬂ = L 0i(@i)oi(y)e; = 2205 zyile;
» 47 7 T
2 05(Ls)e; = P(1s) = 1g.
J

AISO, putting g; = (13/ - 13) e (15' - 0'_7'..1(15)) and g1 = 0'_;'-10101' we

have
; Z5oU;) = X 0i(@)on(o;(m))e;onle;)
' = Y oS moatus)gec)
= z::ffj(ti TiQq,, (yilaj—,l))gjal(ej) =0,
for 2 <1< n, and the proof is complete. O

Remark 3.4 Under the same conditions as above, if S is a commutative
ring and an o-partial Galois extension of I, then by a well-known result
in commutative Galois theory, Theorem 3.3 and Corollary 2.2, it follows
immediately that there exists ¢ € S such that trg/p(c) = 1.

Remark 3.5 Some authors who have worked on QGalois theory of non-
commutative rings used the definition of Galois extensions as a ring exten-
sion A 5 B such that there exist Galois coordinates in 4 and furthermore
tra/B(A) = B (sce, for example [14], p. 310). We can usc also the corre-
sponding to this definition for partial actions in non-commutative rings. So
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a partial Galois extension in this sense would be a ring extension S D R to-
gether with a partial action of G on R such that the conditions of Definition
3.1 are satisfied and trg/r is onto R. We can conclude from Corollary 2.2
and Theorem 3.3 that also in this case S is a partial Galois extension of R if
and only if S’ is a Galois extension of R'.

4. Galois Extensions of Commutative Rings.

In this section we consider partial Galois extensions whose fixed subrings
are contained in the center. The main purpose here is to prove a result
corresponding to Theorem 1.3 of {3]. The proof follows the lines of the proof
of that theorem and so we will omit many details.

Throughout the section we assume that S is a ring, R is a subring of
the center of S and « is a partial action of G on the R-algebra S. The skew
group ring S*,G is defined as the set of all formal sums Y oeq Tolay To € So,
with the usual addition and the multiplication determined by (z,uq)(yrt;) =
0o (=1 (T )Y )Uor. Since each S, is an algebra with identity, then S, G is
an associative R-algebra ([5], Corollary 3.2).

A natural map j : S * G — Endg(S) is defined by j(3,eq Zotto)(2) =
Y oeq Toto(21,-1), for every z € S. It can easily be seen that j is a homo-
morphism of left S-modules and R-algebras.

Let M be a left S, G-module. We put

MC® = {me M : (1u,)m = 1,m,for all 0 € G},

the R-submodule of invariants of M under G. Note that M is a left S-module
via the embedding z + zu; from S into S+, G.

The algebra S can be considered as a left S, G-module via j, that
is, (Z,up)y = j(xouo)(y), for all y € S and ¢ € G. Then the subring of
invariants as defined above is S¢ = {z € §|@,(zls—) = xl,, for allg € G}
which coincides with the definition of S¢ given in Section 2.

Now we give the sketch of the proof of the following result, corresponding
to Theorem 1.3 of [3].

Theorem 4.1 Let « be a partial action of a (finite) group G on an R-algebra
S. Then the following statements are equivalent:

(1) S is an a-partial Galois extension of R.



(i) S is a finitely generated projective R-module and j : § %, G —
Endp(S) is an isomorphism of left S-modules and R-algebras.

(iii) S is a finitely generated projective R-module and for every left Sx,G-
module M the map p : S ® MC — M, given by p(x ® m) = zm, is an
isomorphism of left S-modules,

(iv) S is a finitely generated projective R-module and themap ¢ : S®S —
I ec o, defined by ¢(z ® y) = (2as (ylo-1))seq, is an isomorphism of left
S-modules.

Proof. (i)=(ii) Take z;,5; € S, 1 < i < n, with Picicn Tito(Yilg-1) = 81 5

and define f; € Homg(S, R) by fi(z) = trs/r(yiz), for all z € S. It follows

easily that 1<Z; z:fi(z) = z, for all z € S. Hence S is a finitely generated
13

projective R-module.

To show that j is an isomorphism, for h € Endg(S) take w € S%, G given
by w = 3 ,ca Dicicn M) (4i1,-1)uy. We can see that J(w)(z) = h(z),
for any € S. Thus j is surjective. Finally, suppose that v = 2 ec Tolla €
Ker(j). Then j(v)(z;) = 0, forall1 <i < n. An easy computation gives
0= ZTEG’ Z1_<_i5nj(v)(f’?i)ar(yilr-l)ur =

(ii)=>(iii) Since S is a finitely generated projective R-module there exist
z; € § and f; € Homp(S,R), 1 < i < I, such that z = Poi<iq fi(@)zi, for
alz € S. Wedefinev: M — S MG by v(m) =¥, .. ; ® v;m, where
v = j7Nf;) € S4 G. 1t follows that v is a well-defined homomorphism
which is the inverse of .

(i)=(v) Put F = {f : G - S| f(o) € S, for alls € G}. Then it
is clear that F is isomorphic to HaEG S, as left S-modules. Also, F has a
structure of a left Sx,G-module given by ((zus) f)(7) = Zoa0 (f(0~17)1,-1),
for every f € F and 0,7 € G. 1t follows from the assumption (iii) that the
map p1: §®FC = F e [], S, defined by p(z ® f) = (2f(0))oec is an
isomorphism of left S-modules.

Also the map § — ¢, 21— f,, where f, : G@ — § is defined by fo(7) =
a,(zl,-1), 7 € G, is an isomorphism of left R-modules. Consequently the
composition S®S — S®FC — [[, . S, is an isomorphism of left S-modules,
which is clearly equal to .

(iv)=(i) Take z € S It follows from (iv) that @1 = 1 ® 2. On
the other hand, since S is a faithfully projective R-module, R is a direct
summand of S. Hence z € R and so S = R follows.

10



To obtain the partial Galois coordinates take (1,0,...,0) € [T cq S,
whose first entry corresponds to o = 1. Since 4 is an isomorphism, there
exists w = Y, ;c, Ti ® ¥ € S ® § such that (w) = (1,0,...,0) and (i)
follows. The proof is complete. O

We say that two elements ¢ and 7 of G are strongly distinct, with respect
to the partial action & of G on S (a-strongly distinct, for short), if for any
non-zero idempotent e € S, U S; there exists z € S such that a,(z1,-:)e #

a,(zl-1)e

Theorem 4.2 Let a be a partial action of a group G on an R-algebra
S. If § is an a-partial Galois extension of R, then S is separable over R
and the elements of G are pairwise a-strongly distinct. If, in addition, S is
commutative and S* = R, the converse also holds.

Proof. Since S is a direct summand of its enveloping algebra S’ and §’ is a
Galois extension of R’ = §’¢, by Theorem 3.3, we have that S is R'-separable.
It follows easily that S is separable over R ~ R.

Now take 0,7 € G and suppose that ¢ € S,US; is a non-zero idempotent.
If a,(z1,-1)e = a-(zl,-1)e, z € S, we have o(z)lse = 7(z)lse and so
zo~Y(e) = o7 r(z)o" (e) in &'. Using Galois coordinates z;,;, 1 < i < n,
of §" over R’ and the last relation for z = y;, for every 4, we easily obtain
o =7, So the elements of G are pairwise a-strongly distinct.

Conversely, assume that S is a commutative separable algebra over R =
S and the elements of G are pairwise a-strongly distinct. For ¢ € G consider
the homomorphism of S-algebras (S acting on the left) 4, : S® S — S® S,
defined by 0,(z®y) = 2@ as(yl,-1). Denoteby e=3Y", ;.. 7@y € S®S
the idempotent of the separability of S over R and by y: S® S — S the
multiplication map. It is easy to verify that for any ¢ € G, the element e, =
1(0s(e)) = 3 zia(y1,-1) € S, is an idempotent. Also, ze, = a,{zl,-1)e,,
for any z € S. Since the elements of G are pairwise o-strongly distinct,
for o # 1 we obtain e, = 0 and so Y, ., Zi® (¥i1,-1) = 0. The proof is
complete. a

Remark 4.3 Note that if S is an a-partial Galois extension of a central
subring R, (S',G) is the enveloping action and R’ = S'C we can consider
S ®p S° as contained in S’ ®p S°. In fact, it is easy to sec that R’ ~ R
is a subring of the center of S’ and the remark follows since § is a direct
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summand of §’.

Corollary 4.4 Let S be an a-partial Galois extension of R. If 1g =
[l,ec 1o # 0, then Slg is a (global) Galois extension of Rlg with Galois
group G.

Proof. It is easy to sec that a,|s1; € Autri;(Slg), for all o € G. Also
(81¢)¢ = 8%1¢ = Rlg. Finally if z;,3; € S, 1 < i < n, are the partial Galois
coordinates of S over R, then z;1g,¥:l¢e, 1 < i < n, are Galois coordinates
of Slg over Rlg. O

Corollary 4.5 Let S be an o-partial Galois extension of R and T be a
commutative R-algebra. Then T @ S is a 1 ® a-partial Galois extension of
T ~ T ® R, where the partial action of G on T ® S is given by the maps
10, : T®S,-1 = T®S,, foranyo € G.

Proof. It iseasy to see that T®S,, 0 € G, are non-zero ideals of T® S and
that (T®S;, 1®a,) defines a partial action on T®S. Also T can be identified
with T® R C T ® S. Furthermore, a Galois coordinate system for S over R
easily gives a Galois coordinate system for T® S. Finally, T® R = (T'® 5)*
follows as in the global case using the partial trace map. (]

To finish this section we prove the following

Corollary 4.6 Let S be an a-partial Galois extension of R. Then, for any
prime ideal p of R, rankp,(S,) < |G|. Morcover, rankp, (S,) = |G|, for any
g, if and only if S is a (global) Galois extension of R with group G.

Proof. By Corollary 3.4 we can assume that R is a local ring. So each S,
is a finitely generated free R-module. Since S® § ~ [I,eq oy we have

(rankg(S))® = rankp(S ® S) = > _ rankg(S,) < |G|rankg(S)
oeQ@

and the first part follows.

For the second assertion assume that rankg(S) = |G|. Then rankg(Ss) =
rankg(S), for every o € G, and since S, is a direct summand of S it follows
that S = S,. O

5. The Galois Correspondence
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In this section we assume that S is a commutative partial Galois extension
of R with partial action o of G on S. For a subalgebra T of S we set
Hr = {0 € G| a,(z1,-1) = zl,, for allz € T'}. We say that T' is a-strong if
for every o, 7 € G, with =7 & Hy, and any non-zero idempotent e € S,US,
there exists an element ¢ € T such that a,(t1,-1)e # ar(t1,-1)e. If the action
of G on S is a global action, then we have the well-known notion of a G-strong
subalgebra (3].

We will see in Example 6.3 that the set Hyp is not always a subgroup of
G, even when T is R-separable and a-strong. The fundamental Theorem
of Galois theory we will prove here is the following result which extends
Theorem 2.3 of [3].

Theorem 5.1 Let S be a partial Galois extension of R with partial action «
of G on S. Then there is a one-to-one correspondence between the subgroups
of G and the separable subalgebras T of S which are a-strong and sucl that
Hy is a subgroup of G.

We begin with the following

Theorem 5.2 Let S be an a-partial Galois extension of R and H a subgroup
of G. Then ay = {a, : S;-1 — S, |0 € H} is a partial action of H on S
and S is an ay-partial Galois extension of T = S*¥. Also T is R-scparable
and a-strong and Hy = H.

Proof. Obviously the restriction ey of a to H is a partial action of H on S
and the first part follows directly from the definition.

Denote by (5, G) the cnveloping action of « and put $¢ = R’ . Since
S =3 cc0(S) it is casy to see that there exists a global actlon of H on
S= Y oerr 0(S) which is the enveloping action of ay.

The global action of G on ' induces a partial action 3 of G on S for
which it is also enveloping. Then Proposition 2.3 implies that R'lg = (S)B

and R'ls = R. Consequently (5)°1s = R'1zls = R'lg = R. Also, (.S’)”ls
sen.

On the other hand, §' = §'15® §'(Ls — 15) = §® §'(Lg: — 15). Clearly,
81y~ 1§)~is H-invariant, hence 7 = ($)7 @ (§'(1g — 15))" and 5715 =
(S)Hl‘" = (S) Thus T' = §oH = ( )Hls S sls = S'"ls

By Theorem 3.3 $ is a Galois extension of R’ w1th Galois group G. Hence
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by the results of (3] the R'-algebra S is separable, G-strong and H = Hgn.
It is easy to verify that if ¢’ € S @p S’ is the separability idempotent of
S over R/, thene = ¢€'(1s®1s) € SH1g@pn; S lg =S @ S =T QT
is the scparability idempotent of T' over R. Thus T is R-separable.

Now we prove that T' is a-strong. Take any 0,7 € G with o717 ¢
Hr and a non-zero idempotent e € S,(JS,. Since S is G-strong and
o't @ Hr D H = Hgm, if el,1, # 0 there exists z € S'H such that
o(z)el,1, # 7(z)el,1,. Consequently zlg € T and ay(zlsly~1)el, 1, =
o (rl-1)el 1, = a(z)el, 1, # T(z)el, 1, = a,(zlgl,-1)el,1,, and therefore
as(zlsl,-1)e # or(zlsl,~1)e. Finally, if el,1, = 0 and e € S, we have
oy(1slo-1)e=1l,e =e#0=el,l, = el, = a;(15l,~1)e. The case e € S, is
similar,

Finally, clearly Hr O H. Conversely, assume that o € Hp\ H, H = Hgn.
Since S is G-strong it follows that there is z € S'# with o(z)1, # zl,
(recall that 1, % 0). Hence a,(zlsl,-1) = 0(2)1, # 1, = zlgl, which is a
contradiction because o € Hr and z1g € S1g = T. Thus Hy = H and the
proof is complete. O

For the next result we need the following lemma. We omit its proof
because it is similar to the last part of the proof of Theorem 4.2.

Lemma 5.3 Let S be an a-partial Galois extension of R and T & separable
and o-strong R-subalgebra of S. Then there exist T, €T, 1 <7< m,
such that 35y ¢ @i = 1 and 3y ;o 2106 (yil,-1) = 0, for all o € G\ Hy.

The next theorem completes the proof of Theorem 5.1.

Theorem 5.4 Let S be an a-partial Galois extension of R and T be a
separable and a-strong R-subalgebra of S such that Hy is a subgroup of G.
Then S*# =T for H = Hr, where ay is the partial action of H on S defined
above.

Proof. Clearly T C S*#. Now we prove the converse inclusion. Let (S, G)
be the enveloping action of & and R’ = S'C. As in the proof of Theorem 5.2
we consider the subalgebra S = 37 . 0(S) on which H acts as a group
of automorphisms and (5, H ) is the enveloping action of the partial action
ay ={a;: 8,1 S, |0 € H} of Hon S.

By Proposition 2.3 there exists a ring isomorphism Y SOH - (§)”
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such that ¥y (z)ls = z, for all x € S*7. Write T= i (T).

Claim 1 There are elements %;,3; € T, 1 < i < m, such that D i<icm Tii =
1z and 3, i Zio (%) = 0, for every 0 € G\ H.

Indeed, by Lemma 5.3 there exist elements z;,; € T, 1 < ¢ < m, such
that 30, i Tati = 1s and 30, ;e Tite($ilo-1) = 0, for all 0 € G\ H.
Since EKKmx, o) € SNa(S) = S we have that 3, ;e Tio(3:) =

zl<z<m ng—(./l o El<z<m xtaa(yz o") =

Write T; = ¢¥y(z;) and §; = ¥u(y;) in T, 1 £ i < m, and denote by
71 =1,7y,...,7 the elements of H. As we saw in Section 2, for z € S¥ we
have 1,[)11(33) Y1<i<t Ti(®)ei, where ey, ..., € S are pairwise orthogonal
idempotents. Therefore 37, ¢, Zili = z,)H (Xicicm Titi) = Yu(ls) = 13
end for each o € G\ H we have

PiciemTio(@) = X 2 mlmeo(ry(viey)

1<iEm 155/

Y. eo(ep)mi( Z 27 oy (i) =0,

1<5,5'<1

which completes the proof of Claim 1.

Note that since H C Hz and the elements T;, 7j; of Claim 1 are in T, this
claim implies, in particular, that Hz = H.

As we pointed out in Theorem 5.2, the restriction of (S, G) to S gives a
partial action 3 of G on S for which it is also enveloping. Then it follows from

Proposition 2.3 that there is an isomorphism of rings S'¢ — (S)B sending x
to z1z. Also, the map z — zlg is an isomorphism from $'¢ onto R. Thus

we have an isomorphism (S)? — R defined by y — ylg, for any y € (5)?,
whose inverse is 1y restricted to R. Hence g (R) = (g‘)ﬁ and consequently
T = ¥y (T) is separable over (§)ﬂ

Note that S'H = S’Hl 3] Sl”(lsl — 1z ) (S/ )” ® S’H(lql -1 )
(S)? ® S (15 — 15). In partlcular $"H1g = (§)15 = Seu. Consider the
subalgebra T/ = T ® S'H(1g - 13).

Claim 2 T is separable over R’ and G-strong.

In fact, S'F is separable over R’ and so $"/(1s — 15) is separable over
R'(1g - 15). Since T is (S)P-separable and (5)? = $'615 = R'lg, it follows
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that T is separable over (5)% ® R'(1s — Iz)=R.

To prove that 7" is G-strong assume that c € G\ H and e € §' is
an idempotent, and suppose that o(z + y)e = (z + y)e, for all z € T and
Y€ SIH(ISI - lg).

Put e = e, +e; with e; = elz and e; = e(lg — 15). Then multiplying
o(z +y)e = (r + y)e by 1z we obtain o(z + y)ey = (¢ + y)ey, = zey, for
allz € T and y € SH(1y — 1). In particular, taking y = 0 we see that
o(z)e; = ze,, for every z € T.

By Claim 1 there exist ;,% € T, 1 <1 < m, with ¥, &if = 15
and Zlgiﬁm"fia(gi) = 0. Hence 0 = ZISiSm 550’(@)61 = Z_lsj—iS_m 5,'5,’61 =
1§€1 = €].

Thus e = e; and oz + y)ez = (z + y)ez = yey, for all z € T and
y € S"M(1g ~ 1g). Taking z = 0 and any y we obtain o(y)ez = yey. Since
S is G-strong and separable over R’, by Lemma 5.3 there exist uj,v; € S,
l<j<hLwithy o quw=lgand 3, . uo(v;) = 0. Consequently 0 =
Licia o ()o(ly=1g)er = 3, i usv; (s —1g)es = 1 (ly—1g)es = es,
which completes the proof of Claim 2.

Now we are able to complete the proof of the theorem. By Claim 2 and
the results in [3] T = S™' for H' = {0 € G| o(z) = «, forallz € T'}.
Also, by definition of 7", an element ¢ € G is in Hy = H' if and only
if o € Hz = H and thus H' = H. It follows that 7" = S’ and Sor =

(S)H1g = §H1g = T'lg = T1g = T. The proof is complete. O

6. Examples and Remarks
In this section first we give some examples which illustrate our results.

Example 6.1 Let R be a commutative ring and put S = Re; ® Re, ® Res,
where {e;, ez, €3} is a set of non-zero orthogonal idempotents whose sum is
one. We denote by G the cyclic group of order 4 generated by ¢, and define
a partial action of G on S taking S; = S, S, = Re; @ Re,, S,2 = Re; ® Res
and 5,3 = Rey ® Res, and defining oy = idg,

Qg @ 553 — Sy by ag(es) = €; and a,(e3) = ey,
Qo2 1 Sp2 — Sy2 by a,2(e1) = e3 and a,2(e3) = ey, and

Qo3 1 Sy — Sy3 by a,3(e1) = e; and a,3(es) = e;.
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Then it is easy to verify that S is an a-partial Galois extension of R. In
this case it is also clear that the enveloping action of a is the trivial extension
S' = S ® Re, of R, where the global action is given by o*(e;) = €;-imod4)-

Example 6.2 Let R be a commutative ring and put S = 3, ;.4 ®Re;,
where {ey, 2, €3, €4} is a set of non-zero orthogonal idempotents whose sum is
one. Denote by G the cyclic group generated by o of order 5. The mappings
defined on the idecals {S,S, = Res, S,2 = Rey, Sps = Res, S,+ = Rep} by
o1 = idg, a,(e1) = ea, Auales) = €4, ay3(es) = e3 and a,4(e2) = ey, give a
partial action @ of G on S.

It can casily be verified that S* = R(e; + e2) ® R(es + e4) and taking
z; =1y; = €;, 1 <i< 4, we have a Galois coordinate system for S over S5°.
Thus S is an a-partial Galois extension of 5. Also, it is not difficult to show
that the enveloping action is given by §' = S ® Y, ;s ®Rvj, where the set
{vil1<j S 6} is a set of orthogonal idempotents which are also orthogonal
with the e;’s and such that 3, e; + 3, v; = 1g. The action of o is given by
€] — €3 — U] — Vg — Uz — €] andeg—»v4—>e4—>v5—vv6—+es Here we
have S'¢ = R(e; + ey + v; + vz + v3) @ R(e3 + eq + vg + Vs + ).

Example 6.3 Let A be a cyclic (global) Galois extension of a commutative
ring R with Galois group G generated by o of order 6. Set §'= 3, ;s ®Ae;,
where {e; |1 < i < 5} is a set of non-zero orthogonal idempotents whose sum
is one. Define the partial action o of G on S taking A, = Aegy and
agi(ae;) = o'(a)eg-i, 1 < i < 5. Thus we have a partial actlon of Gon S
and S« = {ae; + be + ces + o2(b)es + o(a)es | a,b € A,c € A”'}.

Let a;,b; € A,1 < i < m, a Galois coordinate system for A over R and
consider the elements z; = y;e;,j = 1,2,4,5 together with the elements
Tiz = ai€3,Yiz = bies. It is easy to see that this gives a Galois coordinate
system for S over S Hence S is an a-partial Galois extension of 5%,

We have two non-trivial separable a-strong subalgebras T of S with Hr a
subgroup of G: Ty = {z1€; + 262 +.’1336’3+0' 2(z2)es+Tse5 |7 € A} and T =
{z1e1 + Toes + T3e3 + T404 + Txes | 23 € A7, 2; € Afori # 3}. Furthermore
the subalgebra T' = {z1e1 + Toe2 + Taez + 02(z0)es + o(z1)es | z; € A} is
S@-separable and a-strong but Hr = {id,0,0%,0%,0%} is not a subgroup of
G.

We can apply the results to reduced rings and its rings of quotients.
Assume that S is reduced and denote by @ the complete ring of quotients of
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S. Recall that Q can be obtained considering the filter F of essential ideals
of § and the set of all S-homomorphisms f : H — S, where H € F. Two
homomorphisms f : H — R and f': H' — R arc said to be equivalent if the
restrictions of f and f’' to H N H' are equal. Then Q is defined as the set of
all the equivalence classes of this homomorphisms with natural operations.
Also, S can be considered as a subring of Q.

Let a be a partial action of the group G on S and we denote, as in the
former sections, by (S,),ec the ideals involved in the action. There is a one-
to-one correspondence, via contraction, between the closed ideals of $ and
the closed ideals of Q. So for any ¢ € @ there exists a closed ideal S:of @
such that S; NS = [S,], where [S,] denotes the closure of S, in S. Also, S*
is the complete ring of quotients of the reduced ring (without identity) S,
see ([12], Section 1).

Thus the isomorphisms ¢, : §,-1 — 5, can be extended to isomorphisms
o : 83y — 57, which we will denote by a, again, and it can easily be seen
that this defines a partial action & of G on @ [13]. Note that this extended
action satisfies the assumption we used in the former sections, i.e., the ideals
S; have identity elements.

Let S be a reduced ring and a be a partial action of G on S. Denote by
@ the complete ring of quoticnts of S and again by o the extended partial
action of a to Q. As a consequence of Theorem 5.1 we obtain the following

Corollary 6.4 Under the above notation, assume that there exist elements
Ti,Yi € 5,1 < i <n, such that b= ¥, ;.. Tt is a non-zero divisor of S
and 3, .. T (yia) = 0, for any a € Sy-1 and id # o € G. Then Q is an
a-partial Galois extension of Q*. In particular, Theorem 5.1 can be applied
to the extension Q D Q°.

Proof. As b is a non-zero divisor, bS is an essential ideal of S and so b is
invertible in Q. Also, since S, is essential in Sy, for any o € G, it follows
easily that the elements b~1z;, 3,1 < i < n, give a Galois coordinate system

in Q. Consequently Q is an o-partial Galois extension of Q% and the result
follows, O

Remark 6.5 After a first version of this paper was finished Caenepeel and

Groot [2] extended some of our results to the context of Galois corings. On
the other hand, it can easily be seen that the algebra S %, G has a structure
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of a bialgebra which do not seem to be a Hopf algebra. This bialgebra acts
naturally on S, as we have seen in Section 3. So we think that it is possible
to extend the results also to the context of bialgebras acting on algebras.
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