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the integral group ring ZG of a finite group G and let TU1ZG be

the subset of torsion units. For two elements «a,B of the rational

Introduction. Let U,ZG be the group of units of augmentation one in

group algebra QG (or of ZG) we write a ~ B if there is a unit vy
of @G such that o = Y—1By . There is a well known conjecture of

Zassenhaus:

(zc) u € TU,ZG = 3 g€G such that wu~g .

This conjecture has been confirmed in [1) and [3] for groups G which
are nilpotent class 2 or are split metacyclic with A

G =<a>x<x>, 0(a) a prime power and O(x) relatively prime to
P TR o e e
0(a) .

It is the purpose of this paper to extend this to some more metacyclic

groups. We prove the

Theorem. Let G be the split metacyclic group, G = <a> » <x> ,

with 0(a) = n, O(x) =t and (n,t) = 1 . Then for any unit
!,-

u€TU1ZG there is a g € G such that u~g .

In the proof we need to use the main result of [3], namely that (ZC)

holds if. n 1is a prime power.

\

* -
This work has been supported by CNPQ of Brazil, DFG of W. Germany and ’///////

NSERC of Canada.



§ 2. Some Lemmas

We recall Lemma 2 of [1].

Lemma 2.1. Let G be a split extension A x X where A 1is an abelian

normal p-group and X any group. Let u € UIZG be written as

u=vw, v € U(1+A(G,A)), w E UZX . .I.f u has finite order not di-

visible bvy p , then u ~w .

Here, A(G,A) denotes the kernel of the natural map ZG — Z (G/a) .

Lemma 2.2. let G = <a> x <x> , 0(a) =n,0(x) =t with (n,t) =1 .

If u € TU12G has prime power order, then u ~g for some g € G .

Proof. Let O0(u) = pk . I1f p divides O0(x) , then we are done by re-
peated applications of the last lemma. Therefore, suppose

n=pmn , (o) =1, m>0.

m n

Then G = < a® > G1,G1

<a ! > x <x> . It follows by (2.1)

that u~v, v € UZ G1 . Thus the lemma is a consequence of the main

result of [3].

Lemma 2.3.

Let G = <a> % <x> with a =aJ,0(a)=pm,0(x)=t,(p,t)=1.

Then for an element a'x of G either xk is central or (alxk)t =1,

Proof. Let a =b,x =1y . Then

.k k(e=1)
t 1+ +...4)

(by) = b .



Now, (1—jk)(1+jk+...+jk(t-1)) = (I-jkt) £ 0 (mod pm) . Consequently,

m-1
either p | (1—jk) in which case jkp 2 1 (mod pm) implying that
ak .
i = 1 (mod p™) (because (0(j),p) = 1) and thus y to be central, or
.k ) ) = .
p{(i-37) and 1 + Jk + ...+ Jk(t » £ 0 (mod pm) which forces

(by)t = 1

Lemma 2.4. Let G =<a> »<x>, 0(a) =n, 0(x) =t,(t,n) =1 .

Suppose that u € TUIZG and that all primes dividing n divide O0(u) .

Then we can write u = U, s, Uy €1 + A(G,ca>) and u, central.

Proof. If n 1is a prime power,then the result is true by the main re-

sult of [3] and the last lemma. Let n = pmn1 , m>0, (p,n1) = 1 » 1, > 1.

We use induction on the number of primes dividing n .

Notice that u = xk mod A (G,<a>) for some k . Writing

G, =< a > XM <x>

m

we can express u = v,v,, vy €1+ A (G,< aP >) , v, € ZG1 .

m

P > and applying Corollary 1 of [1] we conclude that p

Going mod < a

divides the order of vy - It follows that

n

xk with v3€A(G1,<a1>).

n
Thus u = vlv3xk with (xk,a 1) =1 and VyVgy €1+ 4 (G,ca>) .
Repeating this argument for different prime divisors of n we come to

. k .
the conclusion that u = ulxk » U, € A (G,ca>) ,x central, as desired.



3. Proof of Theorem - Some reductions.

We have a group G = <a> % <x> , at = aj , 0(a) = nmn, O(x) =t with
(t,n) = 1 and are given a unit u € TU,ZG . We wish to show that

there is a g € G such that u~g . To that effect we use induction on
|G| and thus assume that the result is true for all metacyclic groups G

of this type of smaller order. We can restrict ourselves to the case that

n 1is divisible by at least two different primes.

(3.1) We may assume that all prime divisors of n divide 0(u) .

Proof. Suppose that p is a prime number with

n = pmn1 y (p,nl) =1, m>0 and (OW,p) =1.

n] m
Write G = < a >xG,, G <afP > % <x> .

Then it follows by (2.1) that u ~ v , vV EUZG and so by induction

1’
ve~g, g €G.

(3.2) We may assume that no Sylow p-subgroup of <a> is central in G.

Proof. Suppose that <a> has a central Sylow p-subgroup <a1> 0

Write

<a>=<a1>><A G=<a>>¢Gl,G=A n<x> .

1° 1

Then u = uu, Uy €1+ A (G, <al>) » U, € ZZG1 . Since a, 1s cen-

tral in G it follows by ([4], p. 34) that u, = a’; , a central ele-

ment of G



Moreover, u, ~ g, 8 € G1 by induction. Thus u -a7g and the asser-

tion follows.

(3.3) We may assume that j % 1 (mod p) for any prime p dividing n

and therefore, G' = <a> .

m—1{
Proof. j = 1 (mod p) = jp £ 1 (mod pm) = j =1 (mod pm) » @as

the order of j mod n , being a divisor of t , 1is relatively prime
to n . Therefore the Sylow p-subgroup is central and the assertion

follows.

We shall prove as in ([1] and [3]) that for every absolutely irreducible
representation T of G , T(u) ~ T(g) for some g € G . It is enough
to do this for rationally inequivalent representations. This will com-

plete the proof of the Theorem.

From [5, p. 62] we see that these representations up to rational equiva-

lence are given by

= B L =

Ty 0 100, alyfatl

J |
o z _ 0010 . .0
T, @ . T, (0 .

.td'-1 0....00 S

3 HMo.....0

|t xt t %

L Jd d » | *d7d

where, d runs over the divisors of n, f 1is a fixed primitive n-th

root of unity, Lq = ;d » ty4 is the order of j mod n/d , and n is

a primitive t/td-th root of unity; u = 0,1,2,...,t/td-1 5



It therefore remains to prove the following propositions.

Proposition 3.4. u € T(1+A(G,<a>)) = Td (u) ~T (a¥) for some
s H d:u i AR
r =r(d,u) .

Notice that for all abelian representations T we have T(u) = T(a®) = 1.

Proposition 3.5, We can choose an r = r(d,u) which is independent of \N

S T

For proving Proposition 3.4 we may assume that all prime divisors of
n divide 0(u) by (3.1) and moreover, by (3.3), that we are in the

situation G' = <a> and j % 1 mod p for every prime divisor p of =n.

4, Completion of Proof of Theorem

Lemma 4.1. T1 y is faithful on any cyclic group H of units of order
]

dividing 7 a

Proof. Use induction on [H| and (2.2), remembering that T, 9 is

faithful on <a> .

Lemma 4.2. Let u € T(1+4(G,<a>)) . Suppose p 1is a prime dividing

n . Then:

By -
T1,u(u ) =1 = Tp,u(u) =1.

The proof is the same as the one of (iii) on page 262 of [3] by writing

q =T,,

1u 1 =T . Notice that (ii) which is used in that proof
?

T
PsH P
can be replaced by (4.1) above.



(4.3) Proof of (3.4).

m m

Write n = P, p22

- P » 3 product of distinct primes. Then

We express u

"
c
]
o

O(ui) Y . Write T =T

RIS i "

Then we know by (2.2) that u, ~a ' for some Ai . Thus

A 4

T(ui) ~T(a ) = s, £ =0(]) mod n .

Now,

>‘i Aij >‘i B
0(¢g ) = 0(¢ ) = 0(a )=0(ui) =p

This is because (j,n) =1 and since T is faithful on <a> . As the
u.'s are powers of u , diagonalizing T(u) gives a diagonal form

for T(ui) as well; the eigenvalues of T(u) are products

Thus all eigenvalues of T(u) have order O(u) . Let A be an eigen-

value of T(u) . Then A} is also an eigenvalue of T(u) as conju-

]

gating T(u) by T(x) means applying the autormorphism [ — ¢ to

the entries of T(u)



.V B.
1f A =2x,then ;¥ = 1(0(u)) and so j' = 1(p,") for all i .

Because O0(j) mod n 1is relatively prime to n we conclude

a.
jv = 1(pil) for all i and therefore jv = 1(mod n) .

Thus we have

T(u) ~ ~ T(ar) for some r .

We wish to show that T (u) ~ T (ar) for a divisor d of n .

d,u d,u
) - d
an/d > is in the kernel of T . Write G = G/< an/ >

Clearly, < &

and Td " for the corresponding representations of G . We see that
k]

T1 (w) =T, (u) .
,u U

But from what we have already proved

This complefss the proof of (3.4).

(4.4) Proof of (3.5).

(a) We shall first show that r =r(d,u) is independent of d .

Write T =T, , T =T for a prime divisor p of n .
1,u 17 pyu P



It is enough to prove:
r t t r
T1(U) T](a ) Tp(U) ~ Tp(a ) - Tp(a ) ~'Tp(a ) .

We use induction on .0(u) and |G| . There are two cases:
. 2 .. . . !
(i) p"{n; (1) p2 |n . 1In the first case the dimension of T

may be smaller than that of T1 . In the second case they are the

same. We deal with the two cases separately.

Case (i), pln , pz‘fn . Then we can assume that p |O(u) as other-

wise u ~ a unit in a smaller group by the argument in (3.1). Thus
P rp P tp rp tp
T, ( ~ T, (a , TW)~T(a’) == T(a")~T ("),
1 (u) 1( ) plu b - .

by induction.

Comparing eigenvalues we get
rp2 = tpzjv(mod n) for some v .

. . . . J 2
Therefore, rp = thv(mod n/p) which implies r = tJV(n/p) as p“1n.

3 t q
It follows that rp = thv mod n  and thus Tp(ar) ~ Tp(a ) as desired.

Case (ii), p2 |n , dimension of T, = dimension of Tp . Let i
t-1 {
u = -2 fi(a)x
i=o

with integral polynomials fi(a) in a of degree = n-1. Then
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B 1
£-1 ™ £-1 " £-1 I
DR ARC L L faye (BN D RPN R
V=0 V=0 v=0
1 zi‘ £ ( j) uv
i veo VS Cd l
Tdsu(U) -
' £-1 .s—1
.' 3 Y
R S - e o o e Z £y Ip
i v=0 |
where s = t, = 0(j) mod n/d , £ = t/s , L] is an £th root of unity.

By Laking d = 1 and Py respectively, we obtain T1(U) and Tp(u) . We

introduce, as in [1] and [3], the matrix

£2-1 s £-1 ad £-1 5
v (n I of,,sn y S
V=0 V= v=
£-1 G (i
) fvs(y n
V=0
M(y) =
£-1 .S—
j pv-
| vzo £,y On
L , i =

where y 1is an indeterminate. This matrix has coefficients in Z [n][y] .

Write for the characteristic polynomials
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= 5=y
Chu(y)(Z) uzo wu(y)z
s=1 r.v
Ch,. (u)(Z) T (z-¢"1 )
1 V=0
5—

1 .V
- pt]
Cth(u)(z) = E (z-¢ )

Now we follow page 263 and 264 of [3] verbatim, only replacing q bys

I’

LV
and conclude cpt = gprJ for some v . Hence Tp(at) ~ Tp(ar) . (Observe
that the n-th cyclotomic polynomial wh(y) is also irreducible over the

ring Z [n] of coefficients of the wu(y).)

(b) We have seen that r(d,u) = r(p) 1is independent of d . It is

enough to show that T1 u(ar(u)) ~ Tl u(ar(o)) ]

We are using induction on |G| and O0(u) . Consequently we may assume
as in (3.1) that all primes dividing n divide 0(u) . Thus for any

proper divisor d of n

d r(u)d d
T1,U(u ) ~ TI, (a ), Tl,o(u ) T1’ ( )
implies that T, (ar(u)d) T, (ar(o)d) (*) )
Let us consider the traces of the matrices T1 (u) :
»
2-1
_ - uv r(w) r(u)
x1’u(u) = trT1,u(U) = VZO tr fvs(c)n tr.c 1’u( )
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where for an element o € Q(z) whe have denoted by trja the trace of

@ with respect to the automorphism group generated by oj: r — LJ .

Adding up the equations over all u we get

151 e " =T Y e (o™
= ] iy j vs

) (tr £, (D) ¥ ")
Vv

u
= £ trjfo(c)
£-1 5
as for v % 0 , E nu =0 .
V=0
Thus we have
£-1
2 tr.Lr(u) = 0 (mod £)
H=0 ]
Moreover, from (*) we have
trjcr(U)d = tr.cr(o)d for all u and all d|n s, d # 1 .
~ i . : r(w
Recall that t, = 0(j) mod n . Let us write the class sum of a
in G :
t1-1 Y
c = 2 ar(u)J ,
3 v=0
2-1
and a = 2 Cu . Then we have:

me
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2-1 £-1 £y~ v -1
o= § c( =73 J Wi Y tr. "™ = 0 (wod &) ,
H=0 H =0 vV=0 U=0 J
a, & dr () r(o)d
al(z) = ¥ trj; Yoeg tr.g = 0 (mod &) ,
p=o

a(1) =0 (mod £) .
Thus in the embedding

Z<a> —— z Z[cd] = R
d[n
the image of o is = 0 (mod £) . But we know by ([2], p. 379) that
0(a)R © Z<a> . Since we have (0(a),f) = 1, it follows that

a 0 (mod £) . Therefore, Cu =C, for all u .
We have proved that

tr_cr(u) r(o)

- trt C Xy, W) = x1’u(ar(°))

Thus x4 () = x4 u(ar(°)) for all d,u .
] ]

Repéating this for all powers uk of u we have

r(o)k

k
Xd’u(u ) = xd’u(a ) for all d,u .

r (o)

Hence u ~ a and the proof is complete.
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