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Abstract
This study aimed to develop ALS-based models for estimating stem, crown and 
aboveground biomass in three types of Mediterranean forest, based on low density ALS 
data. Two different modelling approaches were used: (i) linear models with different 
variable selection methods (Stepwise Selection [SS], Clustering/Exhaustive search [CE] 
and Genetic Algorithm [GA]), and (ii) previously Published Models (PM) applicable to 
diverse types of forest. Results indicated more accurate estimations of biomass components 
for pure Pinus pinea L. (rRMSE = 25.90-26.16%) than for the mixed (30.86-36.34%) and 
Quercus pyrenaica Willd. forests (32.78-34.84%). All the tested approaches were valuable, 
but SS and GA performed better than CE and PM in most cases.
Keywords: Biomass components, remote sensing, airborne laser scanning, mediterranean 
forest, feature selection approaches.

Introduction
Mediterranean forest ecosystems provide multiple wood and non-wood forest products 
and services that are important for the socioeconomic development of rural areas. Current 
methods of estimating the variables of interest in this type of forest must be improved to 
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meet new demands for the type of information required to enable effective and sustainable 
forest management practises.
In the last few decades, ALS systems have become a viable alternative to traditional field 
surveys [e.g. Næsset, 2004], which are extremely labour intensive and expensive [Hall et al., 
2005]. Countrywide collection of ALS data can reduce costs by encouraging multipurpose 
ALS flights (unit costs decrease as the scanned surface and number of goals for each flight 
increase), thereby reducing the overall costs of forest inventories [Nord-Larsen and Riis-
Nielsen, 2010; González-Ferreiro et al., 2014; Vauhkonen et al., 2014].
In 2009, the need to obtain an accurate digital elevation model (DEM) led to a national ALS 
survey being carried out in Spain to map the country with a theoretical average point density 
data equal to 0.5 points m-2 (Plan Nacional de Ortofotografía Aerea: PNOA project). The 
amount of data available from ALS surveys is expected to increase in the next few years, 
as the PNOA project has scheduled ALS flights every 6 years. This further drives the need 
for robust ALS-based models for use in different surveys and with different sensor systems.
Discrete return ALS systems have been successfully used to estimate aboveground biomass 
at stand level over a wide range of forest types: Temperate [e.g Hall et al., 2005], Boreal 
[e.g. Næsset, 2002, 2004; Treitz et al., 2012], Atlantic [e.g. González-Ferreiro et al., 2012, 
2014], Tropical [e.g. Asner et al., 2012; Cao et al., 2014], Alpine [e.g. Montaghi et al., 2013; 
Corona et al., 2014] and Mediterranean forests [García et al., 2010; González-Olabarria et 
al., 2012; Ruiz et al., 2014; Montealegre et al., 2016; Chirici et al., 2016]. Although several 
types of forest have been surveyed using ALS technology, this works present ALS-based 
models for estimating aboveground biomass that usually differ in terms of precision, form 
and the used ALS metrics [Li et al., 2008; Bouvier et al., 2015; Véga et al., 2016]. Some 
authors have suggested that most predictive ALS–based models should not include more 
than three variables that generally represent some form of three group metrics: (i) one 
related to height, (ii) one related to canopy cover, and (iii) one describing the variation 
in the height distribution [Lefsky et al., 2005; Li et al., 2008; White et al., 2013]. Recent 
ALS studies [Cao et al., 2014; Bouvier et al., 2015] also identified advantages over strata-
specific prediction models. These advantages are more obvious in the wall-to-wall mapped 
area–based predictions [Latifi et al., 2015] and must be checked for Mediterranean forest 
structures, of which relatively few studies have been carried out.
Two possible approaches can be used when no models are available for the particular type 
of forest under consideration. One approach is to develop specific models for each forest 
type. In the present study, we developed linear models by using three different variable 
selection methods: Stepwise Selection (SS), the Clustering/Exhaustive search procedure 
(CE), and Genetic Algorithm regression (GA). The other approach is to take advantage 
of the relationships already determined in previously Published Models (PM) and which 
should be applicable to diverse types of forest with some modifications in the parameters. 
We applied the models of Lefsky et al. [2002], Li et al. [2008] and Zonete et al. [2010].
In this study, we aimed to develop parsimonious and robust ALS-based models to estimate 
aboveground biomass components for three types of Mediterranean forest not previously 
studied: pure P. pinea forest, mixed P. pinea forest, and Q. pyrenaica forest. For this 
purpose, we compared the performance of four different methods (SS, CE, GA and PM) 
in order to select the best predictors extracted from low density ALS data obtained by the 
PNOA project.
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Materials and Methods
Study Site
This study was conducted in the ‘Tudia y sus Faldas’ forest (Fig. 1), located near the town 
of Monesterio in the province of Badajoz (southwest Spain). The forested area, classified as 
public utility forest number MUP1 (Monte de Utilidad Pública número 1), covers an area of 
748.20 ha. The forest is representative of P. pinea forest in SW Spain, i.e. it is characterized 
by the dominance of pure P. pinea stands and mixed forest of P. pinea stands associated 
with Pinus pinaster Ait. and Q. pyrenaica. The forest also includes a small proportion of 
pure Q. pyrenaica stands. The study area is characterized by very steeply sloping terrain 
(average slope 25.5%) at an elevation ranging from 300 to 1100 m above sea level (Fig.1).

Figure 1 - Boundary of the ‘Tudia y sus Faldas’ forest study site (blank line) and the 
locations of the different types of forest plots (black dots).

Field data
Field data were obtained from a forest inventory carried out by the Extremadura Forest 
Service for forest management purposes. In total, 178 circular sample plots of radius 11 m 
(approx. 380 m2) were measured in the study area, between July and August 2010. A LEICA 
GX1230 (dual frequency real time kinematic receiver with a planimetric precision of ±5 
mm + 0.5 ppm and an altimetric precision of ±10 mm + 0.5 ppm) was used, along with a 
metal detector, to relocate the centre of each plot (marked with iron poles). At each point, 
GPS signals were logged using a roving receiver with an external antenna (ATX1230 GG), 
and the recordings were post-processed with correction data retrieved from the fixed base 
station in Llerena (Badajoz) (station number 355919, latitude 4236374.101 m, longitude 
236491.045 m, ETRS89-30 Coordinate system and elevation 642.392 m), to yield the 
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plot positions. The average accuracy of the relative positioning of the field plots was 
approximately 0.32 m.
The forest type was considered dominant if the basal area of the dominant species 
represented more than 70% of the total basal area within the plot. Following this criterion, 
120 plots were classified as pure P. pinea stands, 39 plots as mixed forest stands and 19 
plots as pure Q. pyrenaica stands.
Species-specific allometric equations were used to estimate individual tree stem biomass, 
branch and foliage biomass, and aboveground biomass for P. pinea, P. pinaster [Ruiz-
Peinado et al., 2011] and Q. pyrenaica [Ruiz-Peinado et al., 2012]. The aboveground 
biomass, stem biomass and crown biomass (branches and foliage) were determined by 
adding the values obtained for the individual trees.
The field measurements (heights and diameters) were used to estimate the following stand 
variables for each plot (on a per hectare basis): mean height (Hm), dominant height (H0), 
stand basal area (G), stand volume (V), stand stem biomass (Ws), stand crown biomass 
(Wcw) and aboveground stand biomass (Wa) (Tab. 1).

Table 1 - Summary of the mean values and range of the main stand parameters and biomass 
components in the sample plots.

Pure P. pinea
n=120

Mixed forest
n=39

Pure Q. pyrenaica
n=19

Stand descriptive 
variables Range Mean Range Mean Range Mean

N 26 1026 225 53 1605 360 26 1368 486

G 1.1 28.8 14.0 0.9 37.6 12.3 0.3 19.2 7.6

Vcc 4.1 141.8 63.1 2.4 193.4 57.7 2.0 96.4 38.8

Vsc 3.1 102.4 45.5 2.2 138.4 44.7 1.9 91.9 35.8

Hm 3.8 13.3 9.0 2.1 13.3 7.7 5.6 8.8 7.2

H0 4.0 13.8 10.0 5.3 14.7 10.4 5.8 11.2 8.1

Stand biomass 
variables Range Mean Range Mean Range Mean

Ws 3.8 80.3 34.7 2.5 87.1 32.1 0.8 56.3 20.1

Wcw 2.2 62.5 28.9 2.4 43.4 19.3 0.4 21.9 10.2

Wa 4.1 142.9 63.6 4.8 126.8 51.4 1.1 75.2 30.3

N number of trees (trees ha-1); G, Basal area; (m2 ha−1); Vcc, Volume over bark (m3 ha-1); Vsc, Volume under bark 
(m3 ha-1); H0, Dominant height (m); Hm, Mean height (m); Ws, Stem biomass (Mg ha−1); Wcw, Crown biomass 
(Mg ha−1); Wa, Aboveground biomass (Mg ha−1).

The ALS data and explanatory variables
ALS data were acquired between July and August 2010 for the PNOA project, funded by 
the Spanish Ministerio de Fomento (Dirección General del Instituto Geográfico Nacional, 
IGN, and Centro Nacional de Información Geográfica, CNIG). The laser equipment used 
was a LEICA ALS50 sensor operated with pulse repetition rate of 83 kHz, maximum scan 
frequency of 32.1 Hz, maximum scan angle of ± 50º and an average flying height of 2,866 
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m above sea level, which yielded a theoretical density of 0.5 first returns per square metre. 
The equipment operates at a wavelength of 1064 nm and is capable of registering up to 4 
returns per pulse. Summary statistics of first return density per square metre within plots are 
as follows: average = 1.76, minimum = 1, maximum = 41 and standard deviation = 1.62.

Table 2 - Summary of ALS metrics extract by software FUSION for each plot. See McGaughey 
(2014) for more details of how to calculate each ALS metrics.

ALS metrics Description

(A) Height metrics
(A.1) metrics expressing the central trend in ALS height distribution

hmean mean 

hmode mode

(A.2) metrics expressing the dispersion of ALS height distribution

hSD standard deviation 

hVAR variance

hAAD absolute average deviation

hIQ interquartile range

hCV coefficient of variation

hmax, hmin maximum and minimum

(A.3) metrics expressing the shape of ALS height distribution

hSkw skewness 

hKurt kurtosis

CRR canopy relief ratio (((mean height- min height) / (max height– min height))

(A.4) percentiles of the ALS height distribution

h01, h10… h95, h99 1th,5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th percentiles

(B) Canopy cover metrics
(B.1) fixed HBT

CC percentage of first returns above 2.00/total all returns

PARA2 percentage of all returns above 2.00/total all returns

ARA2/TFR ratio between all returns above 2.00 and total of first returns

(B.2) variable HBT

PFRAM percentage of first returns above mean/total all returns

PARAM percentage of all returns above mean/total all returns

PARAMO percentage of all returns above mode/total all returns 

PFRAMO percentage of first returns above mode/total all returns

ARAM/TFR ratio between all returns above mean and total of first returns

ARAMO/TFR ratio between all returns above mode and total of first returns
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ALS metrics are descriptive structure statistics calculated from the raw ALS point cloud. 
The metrics for the 178 plots were calculated using the FUSION ALS Toolkit [McGaughey, 
2014]. Possible outliers were removed from the ALS point cloud by returns from the dataset 
on the basis of standard deviation of the elevations. The ALS point clouds were then filtered 
and interpolated to generate a Digital Terrain Model (DTM) of cell size 1 m. ALS metrics 
were computed for each circular plot after normalising the data by subtracting the DTM. 
The ALS metrics were computed considering the first returns and all returns independently 
[Naesset, 2002]. The minimum height threshold (MHT), which is commonly specified as 
the lower boundary for calculating height metrics (central tendency, dispersion, shape and 
percentile statistics), was established as 2 m. The height break threshold (HBT), which is 
the limit for separating the point cloud data into two sets to separate canopy returns from 
the under canopy returns, in order to compute canopy cover metrics, was also established 
as 2 m following Næsset [2002]. In total, 36 metrics (including height, and canopy cover) 
were extracted from ALS pulses and used as regressors for statistical analyses. For further 
details of the procedure used to obtain the ALS metrics, see the steps outlined in González-
Ferreiro et al. [2012]. The ALS metrics and the corresponding descriptions are summarised 
in Table 2.

Aboveground Biomass Modelling
The multiple linear regression model (MLR) used to establish empirical relationships 
between field measurements and ALS variables is defined as follows:

Y X X Xn n= + + + + + [ ]β β β β ε0 1 1 2 2 1...

where Y represents field variables, Wa (Mg ha-1), Ws (Mg ha1), Wcw (Mg ha1); X1, X2,…, Xn are 
metrics derived from ALS data set; and Ɛ is a vector of true but unknown residuals whose 
elements have zero expected value and are independently and identically distributed. Four 
methods were used to select the ALS metrics to be used as independent variables in Equation 
1: stepwise selection (SS), clustering and exhaustive search (CE), genetic algorithm (GA) 
and application of predictor metrics from three previously published general linear models 
(PM). A maximum of three explanatory variables was considered, in order to yield robust 
parsimonious models.
Comparison of the estimates for the selected models was based on the adjusted coefficient 
of determination (adj. R2) and the relative Root Mean Square Error (rRMSE, see Equation 
2). The residual normality was tested using the Shapiro-Wilk Test [Shapiro et al., 1968]. All 
statistical analyses were performed using R software [R Core Team, 2014], and the leaps 
package was also used for the SS and CE analyses.

rRMSE

y y
n
y

i i

==

−−

∗∗ [[ ]]
∑∑

∧∧
( )2

100 2

where yi is the observed value, yi
∧∧

 is the estimated value, y  is the mean observed value and 
n is the number of observations.
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Stepwise Selection (SS)
Stepwise selection is an automatic procedure commonly used to develop linear models 
based on ALS metrics [García et al., 2010; González-Ferreiro et al., 2012]. Stepwise 
selection fits the regression model by adding/dropping covariates one at a time on the basis 
of a specified criterion. At each stage, the improvement is tested by its significance in a 
sequence of tests, e.g. F-tests, t-tests, AIC and others. Collinearity between regressors was 
avoided by checking the condition index (CI) and the variance inflation factor (VIF) at the 
end of each stepwise procedure (Fig. 2). In this study, regressors with a CI above 30 or VIF 
above 10 were disregarded [Belsley et al., 2005; Stevens, 2012].

Figure 2 - Stepwise selection (SS) method for estimating biomass components at stand level.

Clustering and Exhaustive Search (CE)
This method was adapted from the statistical analysis carried out by Stephens et al. [2012]. 
Before fitting multiple regression models for biomass components and ALS metrics, the 
metrics were grouped into ten colinear groups on the basis of the correlation matrix. One 
variable from each group was selected as a regressor. The code performs an exhaustive 
search (or similar) for the best subsets of the variables in X for predicting Y, using the branch-
and-bound algorithm. All possible combinations of selected metrics are regressed against 
biomass variables (Fig. 3). Regressors with CI > 30 or VIF > 10 were also disregarded.

Figure 3 - Clustering/Exhaustive search method (CE) for estimating biomass components at 
stand level.

Genetic Algorithm (GA)
The third method used a genetic algorithm implemented with the Watchmaker framework 
[Dyer, 2006] to select the best metrics (Fig. 4). The GA started with a random population 
of possible individuals defined as a set of binary (0, 1) values associated with the possible 
predictors. For each generation, the algorithm selected the best individuals and combined 
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them to produce new individuals (offspring). A classical roulette selection technique 
[Holland, 1992] was used to choose two parents for each new individual, in order to generate 
each new offspring. This technique assigned a probability to every individual (potential 
parent) according to Equation [2], where is the fitness reached by the ith individual, and 
selected the first individual that caused the accumulated probability be greater than a 
random value between 0 and 1.

p fi

fi
i

i

N= [ ]
∑

3

This process was repeated until completion of the production of new offspring for each 
generation, taking into account that the two best individuals from the previous generation 
always survived (elitism). New individuals were the result of a uniform crossover 
operator [Holland, 1992]. After the crossover, a mutation operator was applied with a 
given probability, mutating or removing a randomly selected predictor. A fitness function 
evaluated each individual at the beginning of each generation. The fitness function assigned 
the goodness of fit of an individual according to the quality of an MLR model developed 
with the selected variables. Finally, collinearity between the explanatory variables was 
checked, and models with CI > 30 or VIF > 10 were disregarded.

Figure 4 - Genetic algorithm (GA) method for estimating biomass components at stand level.

Previously Published Models (PM)
The empirical relationship between ALS characteristics and stand biomass suggests that 
common models may be widely applicable to diverse forest types. We used the same 
relationships (i.e. ALS explanatory metrics) determined in previously published models, 



193

European Journal of Remote Sensing - 2016, 49: 185-204

but adjusted the coefficients to our dataset. We evaluated the following PM:
I) Lefsky model
Lefsky et al. [2002] studied three distinct sites: boreal coniferous forest (dominated by 
Picea mariana (Mill.) B.S.P.), temperate coniferous forest (dominated by Pseudotsuga 
menziesii (Mirb.) Franco) and temperate deciduous forest (mixed deciduous forest with 
an overstory dominated by Liriodendron tulipifera L.). The reported model for estimating 
biomass was expressed as follows:

W h CC hmean mean== ⋅⋅ (( )) ++ ⋅⋅ (( )) ++ [[ ]]β β ε1
2

2 4*

where is the mean canopy height and CC is a cover metric. CC is calculated as follows: ((Nv 
> HBT)/N )/100, where: Nv = Number of first vegetation returns above a specific HBT, N = 
total number of returns.
II) Li model
Li et al. [2008] selected hmean, hCV and CC as the best predictive variables for three different 
types of forest. The study sites were located in the west of the State of Washington (US) 
(dominated by Pseudotsuga menziesii and Tsuga heterophylla (Rat) Sarg.), the Eastern 
Cascade Mountains in the State of Washington (US) (dominated by Pinus ponderosa Dougl. 
ex Laws), and on the Kenai peninsula, Alaska (US) (dominated by Betula papyrifera Marshal. 
and P. mariana). The reported model for estimating biomass was expressed as follows:

W h h CCmean CV= ⋅ + ⋅ + ⋅ + [ ]ββ ββ ββ εε1 2 2 5

III) Zonete model
Zonete et al. [2010] proposed the use of h30 and h90 to simulate the biological condition 
concerning respectively site quality and stand density in a Eucalyptus spp. forest plantation 
in Brazil. The reported model for estimating biomass was expressed as follows:

W h h= ⋅ + ⋅ + + [ ]ββ ββ ββ εε1 30 2 90 2 6

Results
The models selected for each type specific regression model and forest type are shown in 
Tables 3, 4 and 5 respectively.

Pure P. pinea forests
Regression models for three biomass fractions (Ws, Wcw, Wa) in pure P. pinea stands yielded 
adj. R2 values ranging from 0.73 to 0.74, with the SS and GA methods, and from 0.70 
to 0.73, with the CE approach. In terms of rRMSE values, the range was slightly lower 
with the SS and GA approaches (25.89 to 26.16%) than with the CE procedure (27.02 to 
27.30%).
The models selected from literature (PM) yielded adj. R2 values ranging from 0.67 to 0.70 
for the Lefsky model, from 0.64 to 0.73 for the Li model, and from 0.46 to 0.64 for the 
Zonete model. For biomass estimation, the methods (SS and GA) yielded slightly better 
results (as indicated by adj. R2 and rRMSE) than the PM, except when using the Li model.
The same predictors were selected with SS, GA and CE for all biomass components. The 
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best predictors with SS and GA were the mean height of the vegetation returns (hmean), the 
proportion of first returns above 2 m (CC) and a metric expressing the shape of ALS height 
distribution (CRR). In Wcw modelling, the inclusion of hCV was statistically significant (p < 
0.01) and improved the goodness-of-fit. The model proposed by Zonete et al. [2010] proved 
to be the least precise under these conditions, although h30 was significant for all biomass 
components. In the model proposed by Lefsky et al. [2002], the quadratic term in hmean was 
also significant, suggesting a slightly nonlinear relationship between Ws and hmean.

Table 3 - Summary of the biomass component prediction models and plot-level accuracy assessment 
obtained for pure P. pinea forest in each modelling method.

Method Final model R2
adj

rRMSE
(%)

Shapiro
(p-value)

Dependent variable: Ws

SS/GA -34.43*** + 4.59*** hmean + 29.89** CRR + 0.31*** CC 0.74 26.16 0.146

CE -23.51*** + 5.55*** hmean + 0.18** PFRAMO + 0.39*** ARAM/TFR 0.73 27.30 0.178

Lefky 2.01* + 0.16**(hmean
2) + 0.051*** (CC*hmean) 0.71 27.67 0.043

Li -23.73*** + 5.82*** hmean - 5.68ns hcv + 0.30*** CC 0.73 26.94 0.227

Zonete -11.45ns + 4.20** h30 + 2.34* h90 0.59 32.90 0.289

Dependent variable: Wcw

SS/GA -21.57*** + 2.45*** hmean + 25.79** CRR + 0.28***CC 0.73 25.89 0.071

CE -10.71*** + 3.16*** hmean + 0.10** PFRAMO + 0.38*** ARAM/TFR 0.70 27.22 0.217

Lefsky 5.70*** + 0.058ns (hmean
2) + 0.042*** (CC*hmean) 0.71 27.03 0.057

Li -9.69*** + 3.46*** hmean  - 13.13* hcv+ 0.26*** CC 0.73 25.92 0.109

Zonete -0.068ns + 3.58*** h30 + 0.77 ns h90 0.57 32.76 0.541

Dependent variable: Wa

SS/GA -54.61*** + 7.18*** hmean + 51.87** CRR + 0.59*** CC 0.74 25.90 0.075

CE -34.46*** + 8.75*** hmean + 0.31** PFRAMO + 0.74*** ARAM/TFR 0.71 27.02 0.105

Lefsky 7.94* + 0.21* (hmean
2) + 0.093*** (CC*hmean) 0.70 27.54 0.026

Li -34.99*** + 9.29*** hmean - 13.15ns hcv + 0.57*** CC 0.72 26.73 0.095

Zonete -12.49 ns + 7.30*** h30 + 3.52* h90 0.57 33.12 0.349

Stepwise Selection (SS), Clustering/Exhaustive search (CE), Genetic Algorithm (GA); Ws (Mg ha−1): stem biomass; 
Wcw (Mg ha−1): crown biomass; Wa (Mg ha−1): aboveground biomass. Pr( > |t|) p = ≤ 0.0001 ‘***’ < 0.001 ‘**’ < 0.01 
‘*’ < ‘ns’

Mixed forest
The adj. R2 for mixed forest with the SS, GA and CE methods ranged from 0.68 to 0.79, from 
0.65 to 0.79 and from 0.69 to 0.72, respectively, whereas the rRMSE ranged from 30.86 to 
36.93%, from 30.83 to 38.72% and from 35.00 to 36.34%, respectively. The rRMSE of the 
fitted models was higher in mixed forest than in pure forest in all approaches. PM yielded 
adj. R2 values ranging from 0.52 to 0.70 for the Lefsky model, from 0.64 to 0.74 for the Li 
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model, and from 0.46 to 0.64 for the Zonete model. For biomass estimation, SS and GA 
methods yielded slightly better results (as indicated by adj. R2 and rRMSE) than PM.
In mixed forest, SS and GA indicated the same metrics for explaining Ws (h10, hIQ, PFRAM). 
As in pure stands, hmean was also the best predictor for estimating the biomass fractions (Ws, 
Wa) with the CE method. In Wcw modelling, GA and CE indicated that the best models were 
a combination of hmode with two variables related to a measure of height variation (hIQ, hAAD). 
SS and GA indicated that the best model for estimating Wa included a low height percentile 
(h10), the coefficient of Kurtosis (hKurt) and two canopy cover metrics (PARAM and CC). 
Only in the cases of Wcw and Wa modelling hCV was statistically significant (p < 0.001 and p 
< 0.01, respectively). PM showed that h30 (Zonete model) and CC*hmean (Lefsky model) were 
significant for all biomass components.

Table 4 - Summary of the models predicting biomass components and of the plot-level 
accuracy assessment obtained for mixed forest in each modelling method.

Method Final models R2
adj

rRMSE
(%)

Shapiro
(p-value)

Dependent variable: Ws

SS/GA -27.97*** + 7.02*** h10 + 4.19*** hIQ + 0.60*** PFRAM 0.78 32.50 0.523

CE -22.86*** + 5.90*** hmean+ 0.47** PFRAM 0.71 37.82 0.001

Lefsky -0.68ns + 0.157* (hmean
2) + 0.055*** (CC* hmean) 0.70 38.42 0.001

Li -20.01ns + 6.22*** hmean - 24.58ns hcv
 + 0.29** CC 0.72 36.74 0.005

Zonete -18.68 * + 4.16** h30 + 3.01ns h90 0.64 41.83 0.040

Dependent variable: Wcw

SS -7.51ns + 6.37*** h05 - 3.21** hkurt + 0.57*** PARAM 0.68 36.93 0.564

CE -18.41** + 1.78*** hmode - 59.38** hcv + 3.01** hIQ 0.69 36.34 0.395

GA -18.95** + 1.60** hmode - 61.85** hcv + 6.05* hADD 0.65 38.72 0.168

Lefsky 3.16 ns + 0.052ns (hmean
2) + 0.057** (CC* hmean) 0.52 43.61 0.720

Li -4.86ns + 2.34*** hmean - 41.78** hcv
 + 0.19** CC 0.64 39.59 0.124

Zonete -0.58ns + 3.02** h30 + 0.33ns h90 0.46 46.81 0.546

Dependent variable: Wa

SS -12.18* + 15.25*** h10 - 12.19*** hkurt + 0.60*** CC 0.79 30.86 0.313

CE -5.36** + 7.85*** hmean - 59.49* hcv + 0.72** PFRAM 0.72 35.00 0.099

GA -10.37** + 14.15*** h10 - 11.30*** hkurt + 1.49*** PARAM 0.79 30.83 0.265

Lefsky 2.48 ns + 0.21ns (hmean
2) + 0.083*** (CC* hmean) 0.67 38.51 0.011

Li -15.15ns + 8.56*** hmean - 66.36* hcv
 + 0.49** CC 0.74 33.66 0.018

Zonete -19.25ns + 7.18** h30 + 3.34ns h90 0.61 41.47 0.355

Stepwise Selection (SS), Clustering/Exhaustive search (CE), Genetic Algorithm (GA); Ws (Mg ha−1): stem 
biomass; Wcw (Mg ha−1): crown biomass; Wa (Mg ha−1): aboveground biomass. Pr( > |t|) p ≤ 0.0001 ‘***’ < 
0.001 ‘**’ < 0.01 ‘*’ < ‘ns’
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Q. pyrenaica forest
GA yielded higher correlations (adj. R2 = 0.82-0.83) in pure Q. pyrenaica forest than in 
mixed and pure P. pinea forests. GA and SS yielded improvements in adj. R2 and rRMSE 
values, relative to CE in Ws and Wa. The GA method yielded the model that performed best 
in terms of adj. R2 and rRMSE for Wcw. The PM yielded adj. R2 values ranging from 0.51 to 
0.54 for the Lefsky model, from 0.46 to 0.52 for the Li model, and from 0.55 to 0.62 for the 
Zonete model. The model proposed by Zonete et al. [2010] proved to be the most accurate 
for this type of forest.
Height metrics (h10, h25) calculated from the point cloud were best selected by GA for all the 
biomass components. Although hmean and h30 were significant using the models published 
by Li et al. [2008] and Zonete et al. [2010], the proportion of variation explained by the 
regressions was lower (around 31 and 21%, respectively) than in, for example, the models 
selected by SS and GA in Ws modelling.

Table 5 - Summary of the biomass components prediction models and of the plot-level 
accuracy assessment obtained for pure Q. pyrenaica forest in each modelling method.

Method Final models R2
adj

rRMSE
(%)

Shapiro
(p-value)

Dependent variable: Ws

SS/GA -2.52ns - 25.90*** h10 + 23.49*** h25 0.83 34.84 0.4044

CE 119.24*** - 69.65* hmin+ 10.00** h30 0.68 48.52 0.6195

Lefsky -2.51ns + 0.24ns (hmean
2) + 0.039*(CC* hmean) 0.54 57.81 0.2331

Li -21.86ns + 6.45** hmean - 5.82ns hcv
 + 0.12ns CC 0.52 59.46 0.227

Zonete -21.45 * + 8.52*** h30 + 0.41ns h90 0.62 52.78 0.2888

Dependent variable: Wcw

SS -3.76ns - 0.79* PARAM + 0.71*** ARAM/TFR 0.70 42.16 0.9814

CE 2.14* - 0.12** PARAMO + 0.28*** ARAM/TFR 0.72 38.65 0.2171

GA -2.63ns - 8.90** h10 + 8.08*** h25 0.82 32.78 0.0709

Lefsky -0.79ns - 0.045 ns (hmean
2) + 0.025** (CC* hmean) 0.51 53.24 0.9643

Li -3.11ns + 1.65* hmean - 9.61ns hcv
 + 0.09ns CC 0.46 56.36 0.983

Zonete -4.17ns + 3.74** h30 - 0.50ns h90 0.55 46.81 0.5412

Dependent variable: Wa

SS/GA -5.11ns - 34.80*** h10 + 31.58*** h25 0.83 33.92 0.5381

CE 7.95ns - 0.54 PARAMO** + 1.01*** ARAM/TFR 0.70 45.15 0.6393

Lefsky -1.71ns + 0.19ns (hmean
2) + 0.064* (CC* hmean) 0.54 55.70 0.5452

Li -24.97ns + 8.11** hmean - 15.44ns hcv + 0.21ns CC 0.50 57.70 0.7

Zonete -25.61* + 12.25*** h30 - 0.09ns h90 0.62 51.65 0.9245

Stepwise Selection (SS), Clustering/Exhaustive search (CE), Genetic Algorithm (GA); Ws (Mg ha−1): stem 
biomass; Wcw (Mg ha−1): crown biomass; Wa (Mg ha−1): aboveground biomass. Pr( > |t|) p ≤ 0.0001 ‘***’ < 
0.001 ‘**’ < 0.01 ‘*’ < ‘ns’
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Figure 5 shows the field-measured versus ALS-estimated (using the best linear model in 
terms of rRMSE) stem, crown, and aboveground biomass components.

Figure 5 - Scatterplots of the field-measured biomass components 
against the most accurate model-estimated values of the biomass 
components in the sample plots for the different types of forest. Ws, 
Stem biomass. Wcw, Crown biomass, Wa, Aboveground biomass.
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Discussion
The study findings show that biomass stocks in Mediterranean forest can be modelled using 
countrywide low density ALS data, with a precision comparable to that of other studies 
published in the relevant international literature. All models developed for estimating stand 
biomass performed similarly in terms of model precision in the case of pure P. pinea stands 
and mixed forest, except for the model proposed by Zonete et al. [2010], which performed 
less well. The study shows that in Q. pyrenaica stands, the use of PM representing all forest 
types may produce more bias than models developed for the specific forest types.
The SS and GA methods yielded the best model precision, although the differences between 
the latter approaches and the CE method were always equal or less than 5.32% in terms 
of rRMSE, for pure and mixed stands. García-Gutiérrez et al. [2014] showed that the non-
parametric method (GA) performs better than SS, but often selecting a larger number of 
variables, which although not collinear would make models more complex for the final 
users. Thus, although GA may finally yield better results, no substantial differences were 
found when the number of variables was limited to three independent variables.
Regarding the PM models, the model reported by Li et al. [2008] explained a similar amount 
of variation as explained by SS, GA and CE for pure and mixed stands. The results of our 
study are consistent with the approaches used by other authors [Lefsky et al., 2005], in 
which measures of position, canopy cover and height variation were found to be suitable for 
explaining most of the variability in forest attributes. However, PM such as those reported 
by Lefsky et al. [2002] and Li et al. [2008] failed the test of normality for Ws and Wa in 
mixed forest.
ALS studies for assessing biomass components in many types of forest ecosystems report 
reliable results with acceptable uncertainty estimates [Maltamo et al., 2014]. The accuracy 
of the results depends on the difference in the field of view of the sensor and the laser point 
density (among other factors), as well as the slope and vegetation structure [Valbuena et 
al., 2011] and also plot size [Zolkos et al., 2013; Ruiz et al., 2014], field measurements and 
allometric equations [Zhao et al., 2012]. 
For pure P. pinea forests, the Wa model precision yielded by the methods compared was 
similar, in terms of adj. R2 and rRMSE, to the levels of precision reported by González-
Ferreiro et al. [2012] for P. radiata in an Atlantic forest in Spain (adj. R2 = 0.75, rRMSE 
= 26.75%, plot size = 225 m2) and by Stephens et al. [2012] for P. radiata forests in New 
Zealand (R2 = 0.81, rRMSE = 22%, plot size = 600 m2). The values obtained in the present 
study were slightly lower, in terms of adj. R2 and rRMSE, than those reported by Treitz et 
al. [2012] for a range of boreal conifer forest types in Canada (adj. R2 = 0.93, rRMSE = 
11.05%, plot size = 400 m2) and by Cao et al. [2014] for conifer species including Pinus 
massoniana Lamb. and Cunninghamia lanceolata (Lamb.) Hook.) (adj. R2 = 0.84, rRMSE 
= 15.84%, plot size = 900 m2).
The results of the present study showed that a metric expressing the central tendency of 
ALS heights (hmean) was the best single predictor for all biomass components analysed. The 
CC also significantly improved the fit in two of the above-mentioned studies [Stephens 
et al., 2012, Cao et al., 2014]. Other authors [Lefsky et al., 2002; Lefsky et al., 2005; 
Ni‐Meister et al., 2010; Asner et al., 2012; Bouvier et al., 2015] eliminated the search 
step to identify the best metric, but included hmean, which is more sensitive to changes in 
both the vertical arrangement of canopy elements and the degree of canopy openness (tree 
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density). The inclusion of a third significant variable (CRR), related to the shape of ALS 
height distribution, explained 0.1% (Ws) or 0.2% (Wa) more of the variance than the model 
proposed by Li et al. [2008]. Our results demonstrate that no substantial improvement in fit 
was achieved by adding more than 2 variables in the final model for pure stands. According 
to the results obtained for other pure coniferous forests, the set of models confirmed that 
the combination of mean height and canopy cover represents a sufficient and concise 
quantitative description of a homogeneous vertical structure.
In the case of mixed forest, the best values for biomass component modelling, in terms of 
adj. R2 (0.69-0.79), were slightly higher than those obtained for mixed forests by Cao et al. 
[2014] (adj. R2 = 0.67-0.75, exclude root and foliage biomass). In Wa modelling, the adj. 
R2 values achieved were similar to those reported by Bouvier et al. [2015], who obtained 
an adj. R2 of 0.77 for mixed forests in north-eastern France, with a pulse density of 3.4 
pulses m-2 and plot size of 706.86 m2. Our models yielded similar values of adj. R2 to those 
obtained by Treitz et al. [2012] (adj. R2 = 0.71-0.78) for mixed boreal forest in Canada, 
with models fitted using small ALS datasets of 3.2, 1.6 and 0.5 returns m-2, respectively. 
In terms of rRMSE, the results were similar to those reported by Gleason and Im [2012] 
(rRMSE = 32%, plot size = 380 m2) for mixed forest (in the US). However, the results in 
these types of mixed forest [Treitz et al., 2012 (rRMSE = 15%); Cao et al., 2014 (rRMSE = 
18.33%); Bouvier et al., 2015 (rRMSE = 18.6%)] were slightly better than those obtained 
in the present study.
All fitted models (Table 4) included at least one variable related to a measure of height 
position (h05, h10, hmean, hmode), a metric expressing the dispersion of ALS height distribution 
(hCV, hIQ, hADD) or the shape of height distribution (hkurt), and most of the models include 
one variable related to cover metrics (PFRAM, CC, PARAM). The inclusion of variables 
that describe height variations (e.g. hCV) and lower percentile heights (e.g. h05, h10) accounts 
for intermediate tree crowns in the mid and understory. Our results also demonstrate that 
a specific second metric related to the shape of ALS height distribution (hkurt) is potentially 
useful for improving mixed forest models (Table 4).
As in other studies using low-density ALS data [Thomas et al., 2006; García et al., 2010; 
González-Ferreiro et al., 2012; González-Ferreiro et al., 2013], the crown component of 
biomass was the least accurately modelled of the components analysed. One of the reasons 
for this is the complexity of field estimation of foliage biomass and the limited penetrability 
of the low-density ALS in the canopy, particularly in mixed forest with relatively closed 
canopy.
The results obtained for pure Q. pyrenaica forest must be treated with caution, given the 
very small sample size, although they provide some information about the variables that 
potentially explain the biomass components. The values obtained (adj. R2 = 0.82-0.83 and 
rRMSE = 32.78-34.44%) were similar, in terms of adj. R2, to those obtained by Cao et al. 
[2014] (adj. R2 = 0.84-0.87, exclude root and foliage biomass); however, the range of values, 
in terms of rRMSE, was higher than the values obtained in that study (RMSE = 15.4-16.8%). 
The results of this study are similar to the accuracy of Wa estimates (an average error of 
31.0%) analysed by Zolkos et al. [2013] in 6 studies in temperate deciduous forests.
We suggest that the lower percentiles (h10, h25) should be included as explanatory variables 
in the models because of the former shape of the canopy, which starts close to the ground 
in Q. pyrenaica. Considering the physical model, the trees with lower branches displayed 
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substantially lower ALS returns than species trees with only canopy branches. This is 
consistent with findings reported by García et al. [2010] for Juniper thurifera L. forest 
and by Cao et al. [2014] for a deciduous forest in which the primary species are Quercus 
acutissima Carruth. and Liquidambar formosana Hance. In the present study, the model 
proposed by Zonete et al. [2010] showed that h30 was also a stable height metric for this type 
of forest and explained around 60% of the variability in biomass. CC was not significant 
in the model of Li, thus confirming the results obtained by Bouvier et al. [2015] for other 
deciduous forests in France.
Height and density metrics are commonly included in ALS-based models for estimating 
biomass; however, no consensus has been reached regarding their use [Görgens et al., 
2015]. According to our results, the height metrics derived from first returns provided the 
greatest stability when used in the ALS-based models [Lim and Treitz, 2004; Thomas et 
al., 2006; Zonete et al., 2010, González-Ferreiro et al., 2012; Görgens et al., 2015; Chirici 
et al., 2016]; however, the use of canopy height metrics alone may omit some information 
in profiles with more vertical heterogeneity, such as in natural Mediterranean mixed and 
even pure forest. Conversely, density metrics contributed to estimating the biomass in most 
models, as shown in previous studies [Stephens et al., 2012, Cao et al., 2014; Bouvier et al., 
2015; Montealegre et al., 2016; Véga el al., 2016], although we did not observe any great 
difference between using first-return and all-returns density metrics, as also reported by 
Hawbaker et al. [2010].
All methods compared enable confident and stable identification of ALS metrics, providing 
useful information for developing a more physically based approach for generalizing 
predictive models of biomass components in different types of forest. The present study 
findings also provide information about the biomass components in the Mediterranean 
forest structure, which has been lacking in previous discussions [García et al., 2010; 
González-Olabarria et al., 2012]. The methods applied in this study are effective tools 
for exploring regression relationships between ALS metrics and forest attributes and for 
improving biomass component estimates from ALS at stand level. Finally, this research 
also demonstrates that the relationships already published in previous models also produce 
similar estimation errors as models developed from scratch using training field data.
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