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Abstract

This study aimed to develop ALS-based models for estimating stem, crown and
aboveground biomass in three types of Mediterranean forest, based on low density ALS
data. Two different modelling approaches were used: (i) linear models with different
variable selection methods (Stepwise Selection [SS], Clustering/Exhaustive search [CE]
and Genetic Algorithm [GA]), and (ii) previously Published Models (PM) applicable to
diverse types of forest. Results indicated more accurate estimations of biomass components
for pure Pinus pinea L. (RMSE = 25.90-26.16%) than for the mixed (30.86-36.34%) and
Quercus pyrenaica Willd. forests (32.78-34.84%). All the tested approaches were valuable,
but SS and GA performed better than CE and PM in most cases.

Keywords: Biomass components, remote sensing, airborne laser scanning, mediterranean
forest, feature selection approaches.

Introduction

Mediterranean forest ecosystems provide multiple wood and non-wood forest products
and services that are important for the socioeconomic development of rural areas. Current
methods of estimating the variables of interest in this type of forest must be improved to
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meet new demands for the type of information required to enable effective and sustainable
forest management practises.

In the last few decades, ALS systems have become a viable alternative to traditional field
surveys [e.g. Nasset, 2004], which are extremely labour intensive and expensive [Hall et al.,
2005]. Countrywide collection of ALS data can reduce costs by encouraging multipurpose
ALS flights (unit costs decrease as the scanned surface and number of goals for each flight
increase), thereby reducing the overall costs of forest inventories [Nord-Larsen and Riis-
Nielsen, 2010; Gonzalez-Ferreiro et al., 2014; Vauhkonen et al., 2014].

In 2009, the need to obtain an accurate digital elevation model (DEM) led to a national ALS
survey being carried out in Spain to map the country with a theoretical average point density
data equal to 0.5 points m? (Plan Nacional de Ortofotografia Aerea: PNOA project). The
amount of data available from ALS surveys is expected to increase in the next few years,
as the PNOA project has scheduled ALS flights every 6 years. This further drives the need
for robust ALS-based models for use in different surveys and with different sensor systems.
Discrete return ALS systems have been successfully used to estimate aboveground biomass
at stand level over a wide range of forest types: Temperate [e.g Hall et al., 2005], Boreal
[e.g. Naesset, 2002, 2004; Treitz et al., 2012], Atlantic [e.g. Gonzalez-Ferreiro et al., 2012,
2014], Tropical [e.g. Asner et al., 2012; Cao et al., 2014], Alpine [e.g. Montaghi et al., 2013;
Corona et al., 2014] and Mediterranean forests [Garcia et al., 2010; Gonzalez-Olabarria et
al., 2012; Ruiz et al., 2014; Montealegre et al., 2016; Chirici et al., 2016]. Although several
types of forest have been surveyed using ALS technology, this works present ALS-based
models for estimating aboveground biomass that usually differ in terms of precision, form
and the used ALS metrics [Li et al., 2008; Bouvier et al., 2015; Véga et al., 2016]. Some
authors have suggested that most predictive ALS—based models should not include more
than three variables that generally represent some form of three group metrics: (i) one
related to height, (ii) one related to canopy cover, and (iii) one describing the variation
in the height distribution [Lefsky et al., 2005; Li et al., 2008; White et al., 2013]. Recent
ALS studies [Cao et al., 2014; Bouvier et al., 2015] also identified advantages over strata-
specific prediction models. These advantages are more obvious in the wall-to-wall mapped
area—based predictions [Latifi et al., 2015] and must be checked for Mediterranean forest
structures, of which relatively few studies have been carried out.

Two possible approaches can be used when no models are available for the particular type
of forest under consideration. One approach is to develop specific models for each forest
type. In the present study, we developed linear models by using three different variable
selection methods: Stepwise Selection (SS), the Clustering/Exhaustive search procedure
(CE), and Genetic Algorithm regression (GA). The other approach is to take advantage
of the relationships already determined in previously Published Models (PM) and which
should be applicable to diverse types of forest with some modifications in the parameters.
We applied the models of Lefsky et al. [2002], Li et al. [2008] and Zonete et al. [2010].

In this study, we aimed to develop parsimonious and robust ALS-based models to estimate
aboveground biomass components for three types of Mediterranean forest not previously
studied: pure P. pinea forest, mixed P. pinea forest, and Q. pyrenaica forest. For this
purpose, we compared the performance of four different methods (SS, CE, GA and PM)
in order to select the best predictors extracted from low density ALS data obtained by the
PNOA project.

186



European Journal of Remote Sensing - 2016, 49: 185-204

Materials and Methods

Study Site

This study was conducted in the ‘Tudia y sus Faldas’ forest (Fig. 1), located near the town
of Monesterio in the province of Badajoz (southwest Spain). The forested area, classified as
public utility forest number MUP1 (Monte de Utilidad Publica niimero 1), covers an area of
748.20 ha. The forest is representative of P. pinea forest in SW Spain, i.e. it is characterized
by the dominance of pure P. pinea stands and mixed forest of P. pinea stands associated
with Pinus pinaster Ait. and Q. pyrenaica. The forest also includes a small proportion of
pure Q. pyrenaica stands. The study area is characterized by very steeply sloping terrain
(average slope 25.5%) at an elevation ranging from 300 to 1100 m above sea level (Fig.1).

Figure 1 - Boundary of the ‘Tudia y sus Faldas’ forest study site (blank line) and the
locations of the different types of forest plots (black dots).

Field data

Field data were obtained from a forest inventory carried out by the Extremadura Forest
Service for forest management purposes. In total, 178 circular sample plots of radius 11 m
(approx. 380 m?) were measured in the study area, between July and August 2010. A LEICA
GX1230 (dual frequency real time kinematic receiver with a planimetric precision of +5
mm + 0.5 ppm and an altimetric precision of £10 mm + 0.5 ppm) was used, along with a
metal detector, to relocate the centre of each plot (marked with iron poles). At each point,
GPS signals were logged using a roving receiver with an external antenna (ATX1230 GG),
and the recordings were post-processed with correction data retrieved from the fixed base
station in Llerena (Badajoz) (station number 355919, latitude 4236374.101 m, longitude
236491.045 m, ETRS89-30 Coordinate system and elevation 642.392 m), to yield the
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plot positions. The average accuracy of the relative positioning of the field plots was
approximately 0.32 m.

The forest type was considered dominant if the basal area of the dominant species
represented more than 70% of the total basal area within the plot. Following this criterion,
120 plots were classified as pure P. pinea stands, 39 plots as mixed forest stands and 19
plots as pure Q. pyrenaica stands.

Species-specific allometric equations were used to estimate individual tree stem biomass,
branch and foliage biomass, and aboveground biomass for P. pinea, P. pinaster [Ruiz-
Peinado et al., 2011] and Q. pyrenaica [Ruiz-Peinado et al., 2012]. The aboveground
biomass, stem biomass and crown biomass (branches and foliage) were determined by
adding the values obtained for the individual trees.

The field measurements (heights and diameters) were used to estimate the following stand
variables for each plot (on a per hectare basis): mean height (/7 ), dominant height (),
stand basal area (G), stand volume (V), stand stem biomass (W), stand crown biomass
(W) and aboveground stand biomass (W) (Tab. 1).

CW-

Table 1 - Summary of the mean values and range of the main stand parameters and biomass
components in the sample plots.

Pure P. pinea Mixed forest Pure Q. pyrenaica
n=120 n=39 n=19
Stand dfsscriptive Range Mean Range Mean Range Mean
variables
N 26 1026 | 225 53 1605 | 360 26 1368 | 486
G 1.1 28.8 | 140 |09 376 123 |03 192 7.6
Vee 4.1 141.8 | 63.1 |24 1934 | 577 |2.0 96.4 | 38.8
Vsc 3.1 1024 | 455 |22 1384 (447 |19 919 |358
Hm 3.8 133 9.0 2.1 133 |77 5.6 8.8 7.2
H, 4.0 13.8 |[10.0 |53 147 |104 |58 11.2 | 8.1
Stand .biomass Range Mean Range Mean Range Mean
variables
Ws 3.8 803 [347 |25 87.1 321 |08 56.3 ]20.1
Wew 2.2 625 |289 |24 434 1193 |04 219 110.2
Wa 4.1 1429 1 63.6 |4.8 126.8 | 514 | 1.1 752 303

N number of trees (trees ha''); G, Basal area; (m? ha™!); Vee, Volume over bark (m? ha'!'); Vsc, Volume under bark
(m? ha'); H;, Dominant height (m); Hm, Mean height (m); Ws, Stem biomass (Mg ha™); Wcw, Crown biomass
(Mg ha™'); Wa, Aboveground biomass (Mg ha™).

The ALS data and explanatory variables

ALS data were acquired between July and August 2010 for the PNOA project, funded by
the Spanish Ministerio de Fomento (Direccion General del Instituto Geogrdfico Nacional,
IGN, and Centro Nacional de Informacion Geogrdfica, CNIG). The laser equipment used
was a LEICA ALS50 sensor operated with pulse repetition rate of 83 kHz, maximum scan
frequency of 32.1 Hz, maximum scan angle of + 50° and an average flying height of 2,866
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m above sea level, which yielded a theoretical density of 0.5 first returns per square metre.
The equipment operates at a wavelength of 1064 nm and is capable of registering up to 4
returns per pulse. Summary statistics of first return density per square metre within plots are
as follows: average = 1.76, minimum = 1, maximum = 41 and standard deviation = 1.62.

Table 2 - Summary of ALS metrics extract by software FUSION for each plot. See McGaughey
(2014) for more details of how to calculate each ALS metrics.

ALS metrics Description

(A) Height metrics
(A.1) metrics expressing the central trend in ALS height distribution
o mean
e mode
(A.2) metrics expressing the dispersion of ALS height distribution
hy, standard deviation
hyue variance
hoo absolute average deviation
hy, interquartile range
he, coefficient of variation
v, i maximum and minimum
(A.3) metrics expressing the shape of ALS height distribution
hg., skewness
Ry kurtosis
CRR canopy relief ratio (((mean height- min height) / (max height— min height))

(A.4) percentiles of the ALS height distribution

g Bigeee Bos By | 10,50, 107, 20, 25%, 30™, 40, 50, 60™, 70™, 75%, 801, 90, 95™, 99™ percentiles
(B) Canopy cover metrics
(B.1) fixed HBT

012

cC percentage of first returns above 2.00/total all returns

PARA2 percentage of all returns above 2.00/total all returns

ARA2/TFR ratio between all returns above 2.00 and total of first returns
(B.2) variable HBT

PFRAM percentage of first returns above mean/total all returns

PARAM percentage of all returns above mean/total all returns

PARAMO percentage of all returns above mode/total all returns

PFRAMO percentage of first returns above mode/total all returns

ARAM/TFR ratio between all returns above mean and total of first returns

ARAMO/TFR | ratio between all returns above mode and total of first returns
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ALS metrics are descriptive structure statistics calculated from the raw ALS point cloud.
The metrics for the 178 plots were calculated using the FUSION ALS Toolkit [McGaughey,
2014]. Possible outliers were removed from the ALS point cloud by returns from the dataset
on the basis of standard deviation of the elevations. The ALS point clouds were then filtered
and interpolated to generate a Digital Terrain Model (DTM) of cell size 1 m. ALS metrics
were computed for each circular plot after normalising the data by subtracting the DTM.
The ALS metrics were computed considering the first returns and all returns independently
[Naesset, 2002]. The minimum height threshold (MHT), which is commonly specified as
the lower boundary for calculating height metrics (central tendency, dispersion, shape and
percentile statistics), was established as 2 m. The height break threshold (HBT), which is
the limit for separating the point cloud data into two sets to separate canopy returns from
the under canopy returns, in order to compute canopy cover metrics, was also established
as 2 m following Nasset [2002]. In total, 36 metrics (including height, and canopy cover)
were extracted from ALS pulses and used as regressors for statistical analyses. For further
details of the procedure used to obtain the ALS metrics, see the steps outlined in Gonzalez-
Ferreiro et al. [2012]. The ALS metrics and the corresponding descriptions are summarised
in Table 2.

Aboveground Biomass Modelling
The multiple linear regression model (MLR) used to establish empirical relationships
between field measurements and ALS variables is defined as follows:

Y=B,+BX +B,X,+..+B,X, +¢ [1]

where Y represents field variables, W (Mgha'), W (Mgha'), W (Mgha'); X, X,..., X are
metrics derived from ALS data set; and € is a vector of true but unknown residuals whose
elements have zero expected value and are independently and identically distributed. Four
methods were used to select the ALS metrics to be used as independent variables in Equation
1: stepwise selection (SS), clustering and exhaustive search (CE), genetic algorithm (GA)
and application of predictor metrics from three previously published general linear models
(PM). A maximum of three explanatory variables was considered, in order to yield robust
parsimonious models.

Comparison of the estimates for the selected models was based on the adjusted coefficient
of determination (adj. R?) and the relative Root Mean Square Error (rRMSE, see Equation
2). The residual normality was tested using the Shapiro-Wilk Test [Shapiro et al., 1968]. All
statistical analyses were performed using R software [R Core Team, 2014], and the leaps
package was also used for the SS and CE analyses.

Z(yi _3\/,’)2
rRMSE = +———— %100 [2]

y

AN
where y, is the observed value, y; is the estimated value, y is the mean observed value and
n is the number of observations.
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Stepwise Selection (SS)

Stepwise selection is an automatic procedure commonly used to develop linear models
based on ALS metrics [Garcia et al., 2010; Gonzalez-Ferreiro et al., 2012]. Stepwise
selection fits the regression model by adding/dropping covariates one at a time on the basis
of a specified criterion. At each stage, the improvement is tested by its significance in a
sequence of tests, e.g. F-tests, z-tests, AIC and others. Collinearity between regressors was
avoided by checking the condition index (CI) and the variance inflation factor (VIF) at the
end of each stepwise procedure (Fig. 2). In this study, regressors with a CI above 30 or VIF
above 10 were disregarded [Belsley et al., 2005; Stevens, 2012].

Select best 1st Reswdua\ dlstrlPuF\ons
violated statistical
NO) model -
1) assumptions(Shapiro
Test)

Figure 2 - Stepwise selection (SS) method for estimating biomass components at stand level.

Biomass
Fractions
Data

VIFand CI
Regsubsets _ (Multicollin
(nbest=2, | (pf | TEhod= | Ll | carity test
nvmax=3) arep best 1st

model)
ar i
Metrics
Data Running
model,2sd

best model

Yes(>10)/

Imput data No(<10)

Clustering and Exhaustive Search (CE)

This method was adapted from the statistical analysis carried out by Stephens et al. [2012].
Before fitting multiple regression models for biomass components and ALS metrics, the
metrics were grouped into ten colinear groups on the basis of the correlation matrix. One
variable from each group was selected as a regressor. The code performs an exhaustive
search (or similar) for the best subsets of the variables in X for predicting Y, using the branch-
and-bound algorithm. All possible combinations of selected metrics are regressed against
biomass variables (Fig. 3). Regressors with CI > 30 or VIF > 10 were also disregarded.

Figure 3 - Clustering/Exhaustive search method (CE) for estimating biomass components at
stand level.

Genetic Algorithm (GA)

The third method used a genetic algorithm implemented with the Watchmaker framework
[Dyer, 2006] to select the best metrics (Fig. 4). The GA started with a random population
of possible individuals defined as a set of binary (0, 1) values associated with the possible
predictors. For each generation, the algorithm selected the best individuals and combined
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them to produce new individuals (offspring). A classical roulette selection technique
[Holland, 1992] was used to choose two parents for each new individual, in order to generate
each new offspring. This technique assigned a probability to every individual (potential
parent) according to Equation [2], where is the fitness reached by the ith individual, and
selected the first individual that caused the accumulated probability be greater than a
random value between 0 and 1.

=

X

This process was repeated until completion of the production of new offspring for each
generation, taking into account that the two best individuals from the previous generation
always survived (elitism). New individuals were the result of a uniform crossover
operator [Holland, 1992]. After the crossover, a mutation operator was applied with a
given probability, mutating or removing a randomly selected predictor. A fitness function
evaluated each individual at the beginning of each generation. The fitness function assigned
the goodness of fit of an individual according to the quality of an MLR model developed
with the selected variables. Finally, collinearity between the explanatory variables was
checked, and models with CI > 30 or VIF > 10 were disregarded.

Figure 4 - Genetic algorithm (GA) method for estimating biomass components at stand level.

Previously Published Models (PM)

The empirical relationship between ALS characteristics and stand biomass suggests that
common models may be widely applicable to diverse forest types. We used the same
relationships (i.e. ALS explanatory metrics) determined in previously published models,
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but adjusted the coefficients to our dataset. We evaluated the following PM:

I) Lefsky model

Lefsky et al. [2002] studied three distinct sites: boreal coniferous forest (dominated by
Picea mariana (Mill.) B.S.P.), temperate coniferous forest (dominated by Pseudotsuga
menziesii (Mirb.) Franco) and temperate deciduous forest (mixed deciduous forest with
an overstory dominated by Liriodendron tulipifera L.). The reported model for estimating
biomass was expressed as follows:

W =B, (B ) + B> -(CC*hp)+6  [4]

where is the mean canopy height and CC is a cover metric. CC is calculated as follows: ((Nv
> HBT)/N )/100, where: Nv = Number of first vegetation returns above a specific HBT, N =
total number of returns.

IT) Li model

Li et al. [2008] selected &, , h,., and CC as the best predictive variables for three different
types of forest. The study sites were located in the west of the State of Washington (US)
(dominated by Pseudotsuga menziesii and Tsuga heterophylla (Rat) Sarg.), the Eastern
Cascade Mountains in the State of Washington (US) (dominated by Pinus ponderosa Dougl.
ex Laws), and on the Kenai peninsula, Alaska (US) (dominated by Betula papyrifera Marshal.
and P. mariana). The reported model for estimating biomass was expressed as follows:

Wzﬁl‘hmean+ﬂ2'hCV+ﬂ2'CC+8 [5]

) Zonete model

Zonete et al. [2010] proposed the use of 4,, and 4, to simulate the biological condition
concerning respectively site quality and stand density in a Eucalyptus spp. forest plantation
in Brazil. The reported model for estimating biomass was expressed as follows:

W= hy+B, hyy+ B, +e [6]

Results
The models selected for each type specific regression model and forest type are shown in
Tables 3, 4 and 5 respectively.

Pure P. pinea forests

Regression models for three biomass fractions (W, W, , W) in pure P. pinea stands yielded
adj. R? values ranging from 0.73 to 0.74, with the SS and GA methods, and from 0.70
to 0.73, with the CE approach. In terms of rRMSE values, the range was slightly lower
with the SS and GA approaches (25.89 to 26.16%) than with the CE procedure (27.02 to
27.30%).

The models selected from literature (PM) yielded adj. R? values ranging from 0.67 to 0.70
for the Lefsky model, from 0.64 to 0.73 for the Li model, and from 0.46 to 0.64 for the
Zonete model. For biomass estimation, the methods (SS and GA) yielded slightly better
results (as indicated by adj. R? and rRMSE) than the PM, except when using the Li model.
The same predictors were selected with SS, GA and CE for all biomass components. The
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best predictors with SS and GA were the mean height of the vegetation returns (4, ), the
proportion of first returns above 2 m (CC) and a metric expressing the shape of ALS height
distribution (CRR). In W_ modelling, the inclusion of /., was statistically significant (p <
0.01) and improved the goodness-of-fit. The model proposed by Zonete et al. [2010] proved
to be the least precise under these conditions, although 4, was significant for all biomass
components. In the model proposed by Lefsky et al. [2002], the quadratic term in &, was
also significant, suggesting a slightly nonlinear relationship between W and

mean”

Table 3 - Summary of the biomass component prediction models and plot-level accuracy assessment
obtained for pure P. pinea forest in each modelling method.

rRMSE | Shapiro

. 2
Method Final model R, (%) | (p-value)

Dependent variable: W,

SS/GA | -34.43""+4.59""h, +29.89"CRR+0.31"" CC 0.74 | 26.16 0.146
CE -23.51"™+ 555" h, . +0.18" PFRAMO + 0.39"" ARAM/TFR | 0.73 27.30 0.178
Lefky 2.01"+0.16"(h,, %) +0.051" (CC*n,, ) 0.71 27.67 0.043
Li -23.73""+582""h, . -5.68" hev+0.30" CC 0.73 26.94 0.227
Zonete | -11.45"+4.20™ h, +2.34" h,, 0.59 32.90 0.289
Dependent variable: W,
SS/GA | -21.57"+2.45™"h, . +2579"CRR+0.28"°CC 0.73 25.89 0.071
CE -10.71"™+3.16"" h , +0.10" PFRAMO + 0.38"" ARAM/TFR | 0.70 | 27.22 0.217
Lefsky 5.70"" +0.058™ (h,,.2) +0.042"" (CC*h, ) 0.71 27.03 0.057
Li -9.69""+3.46""h, . -13.13"h +026™" CC 0.73 25.92 0.109
Zonete | -0.068™ +3.58"" h, +0.77 ™ hy, 0.57 32.76 0.541
Dependent variable: W,
SS/GA | -54.61""+7.18""h,  +51.87"CRR+0.59"" CC 0.74 | 25.90 0.075
CE -34.46""+8.75""h,,.. +0.31" PFRAMO + 0.74"™" ARAM/TFR | 0.71 27.02 0.105
Lefsky 7.94"+0.21% (h,, 2 +0.093" (CC*h,, ) 0.70 | 27.54 0.026
Li -34.99""+9.29""h, . -13.15%h_+0.57"" CC 0.72 26.73 0.095
Zonete | -12.49+7.307 b, +3.52" hy, 0.57 33.12 0.349

Stepwise Selection (SS), Clustering/Exhaustive search (CE), Genetic Algorithm (GA); W (Mg ha™): stem biomass;
W, (Mg ha™'): crown biomass; W, (Mg ha™'): aboveground biomass. Pr( > |#]) p = < 0.0001 “***> < (0.001 “***<0.01

ow

k0 < g’

Mixed forest

The adj. R? for mixed forest with the SS, GA and CE methods ranged from 0.68 to 0.79, from
0.65 to 0.79 and from 0.69 to 0.72, respectively, whereas the rRMSE ranged from 30.86 to
36.93%, from 30.83 to 38.72% and from 35.00 to 36.34%, respectively. The rRMSE of the
fitted models was higher in mixed forest than in pure forest in all approaches. PM yielded
adj. R? values ranging from 0.52 to 0.70 for the Lefsky model, from 0.64 to 0.74 for the Li
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model, and from 0.46 to 0.64 for the Zonete model. For biomass estimation, SS and GA
methods yielded slightly better results (as indicated by adj. R? and rRMSE) than PM.

In mixed forest, SS and GA indicated the same metrics for explaining W, (h,, h,,, PFRAM).
As in pure stands, - was also the best predictor for estimating the biomass fractions (W,
W) with the CE method. In W modelling, GA and CE indicated that the best models were
a combination of 4, ,, with two variables related to a measure of height variation (%, 4,,,).
SS and GA indicated that the best model for estimating W included a low height percentile
(h,,), the coefficient of Kurtosis (%,,,,) and two canopy cover metrics (PARAM and CC).
Only in the cases of W and W modelling A, was statistically significant (p <0.001 and p
<0.01, respectively). PM showed that /,,(Zonete model) and CC*h,  (Lefsky model) were
significant for all biomass components.

mean

Table 4 - Summary of the models predicting biomass components and of the plot-level
accuracy assessment obtained for mixed forest in each modelling method.

rRMSE | Shapiro

Method Final models R, (%) )
Dependent variable: W,
SS/GA 27.97"" +7.02"" hyy +4.19"" hy, + 0.60"" PFRAM 0.78 32.50 0.523
CE -22.86""+5.90"" h, +0.47" PFRAM 0.71 37.82 0.001
Lefsky -0.68*+0.157" (h,,,.2) +0.055" (CC*h,, ) 0.70 38.42 0.001
Li -20.01%+6.22"" h, , -24.58"h_+0.29" CC 0.72 36.74 0.005
Zonete -18.68" +4.16™ hyy +3.01™ hy, 0.64 41.83 0.040

Dependent variable: W

ow

SS -7.51+6.37"" hy -3.21" h,, + 0.57" PARAM 0.68 36.93 0.564
CE -18.417+1.78""h, - 59.38"h  +3.01" 0.69 36.34 0.395
GA -18.95"+1.60"h, , -61.85"h +6.05h,, 0.65 38.72 0.168
Lefsky 3.16™+0.052 (h, )+ 0.057" (CC*h,,,) 0.52 43.61 0.720
Li -4.86m+234"h -41.78" h_+0.197 CC 0.64 39.59 0.124
Zonete -0.58% + 3.02" h, + 0.33™ Ay, 0.46 46.81 0.546
Dependent variable: W,
SS -12.18"+15.25" h, - 12.19"" h, .+ 0.60™ CC 0.79 30.86 0313
CE -5.36"+7.85""h, -59.49"h + 0.72" PFRAM 0.72 35.00 0.099
GA -10.37 + 14.15"" h - 11.30"" h,  + 1.49™" PARAM 0.79 30.83 0.265
Lefsky 2.48m+0.21™ (h, 2)+0.083" (CC*h,,) 0.67 38.51 0.011
Li -15.15"+8.56"" h, . -66.36"h +0.49™ CC 0.74 33.66 0.018
Zonete -19.25M + 718" hy + 3.34™ hy, 0.61 41.47 0.355

Stepwise Selection (SS), Clustering/Exhaustive search (CE), Genetic Algorithm (GA); W (Mg ha'): stem
biomass; W, (Mg ha™): crown biomass; W (Mg ha™): aboveground biomass. Pr( > [#]) p < 0.0001 “*** <

0.001 “***<0.01 “** < ‘ns’
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Q. pyrenaica forest

GA yielded higher correlations (adj. R? = 0.82-0.83) in pure Q. pyrenaica forest than in
mixed and pure P. pinea forests. GA and SS yielded improvements in adj. R? and rRMSE
values, relative to CE in W _and W . The GA method yielded the model that performed best
in terms of adj. R* and rRMSE for W_ . The PM yielded adj. R? values ranging from 0.51 to
0.54 for the Lefsky model, from 0.46 to 0.52 for the Li model, and from 0.55 to 0.62 for the
Zonete model. The model proposed by Zonete et al. [2010] proved to be the most accurate
for this type of forest.

Height metrics (4, h,5) calculated from the point cloud were best selected by GA for all the
biomass components. Although #  and &, were significant using the models published
by Li et al. [2008] and Zonete et al. [2010], the proportion of variation explained by the
regressions was lower (around 31 and 21%, respectively) than in, for example, the models
selected by SS and GA in W modelling.

Table 5 - Summary of the biomass components prediction models and of the plot-level
accuracy assessment obtained for pure Q. pyrenaica forest in each modelling method.

rRMSE Shapiro

Method Final models R, (%) o
Dependent variable: W,

SS/GA -2.527-25.90"" h,, +23.49"" h,, 0.83 34.84 0.4044

CE 119.24" - 69.65" b, +10.00™ h,, 0.68 48.52 0.6195

Lefsky -2.51™+0.24 (b, 2)+0.039°(CC*h,, ) 0.54 57.81 0.2331

Li -21.86+6.45"h,  -582"h +0.12" CC 0.52 59.46 0.227

Zonete -21.45" + 8.52™" hy + 0.41™ hy, 0.62 52.78 0.2888

Dependent variable: W,

W

ss -3.76" - 0.79" PARAM + 0.71""* ARAM/TFR 0.70 42.16 0.9814
CE 2.14°-0.12" PARAMO + 0.28'* ARAM/TFR 0.72 38.65 02171
GA -2.63%-8.90™ h,, + 8.08" h,, 0.82 32.78 0.0709
Lefsky -0.79™ - 0.045 ™ (h,  2) +0.025" (CC*h, ) 0.51 53.24 0.9643
Li 31+ 1,65 h,,, - 9.61™ b +0.09 CC 0.46 56.36 0.983
Zonete 4177+ 3.747 hy - 0.50% hy, 0.55 46.81 0.5412

Dependent variable: W,

SS/GA -5.11% - 34.80° A, +31.58" h,, 0.83 33.92 0.5381
CE 7.95% - 0.54 PARAMO™ + 1.01°"* ARAM/TFR 0.70 45.15 0.6393
Lefsky L7014+ 0.19% (h, 2) +0.064" (CC* ) 0.54 55.70 0.5452
Li 2497+ 811", - 15.44% b +0.21% CC 0.50 57.70 0.7

Zonete 25617+ 12.257 hy - 0.09™ hy, 0.62 51.65 0.9245

Stepwise Selection (SS), Clustering/Exhaustive search (CE), Genetic Algorithm (GA); W (Mg ha™): stem
biomass; W_ (Mg ha™'): crown biomass; W, (Mg ha™'): aboveground biomass. Pr( > [f|) p < 0.0001 “**** <
0.001 “***<0.01 “*’ < ‘ns’
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Figure 5 shows the field-measured versus ALS-estimated (using the best linear model in
terms of rRMSE) stem, crown, and aboveground biomass components.

Figure 5 - Scatterplots of the field-measured biomass components
against the most accurate model-estimated values of the biomass
components in the sample plots for the different types of forest. W,
Stem biomass. W_ , Crown biomass, W, Aboveground biomass.

o
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Discussion

The study findings show that biomass stocks in Mediterranean forest can be modelled using
countrywide low density ALS data, with a precision comparable to that of other studies
published in the relevant international literature. All models developed for estimating stand
biomass performed similarly in terms of model precision in the case of pure P. pinea stands
and mixed forest, except for the model proposed by Zonete et al. [2010], which performed
less well. The study shows that in Q. pyrenaica stands, the use of PM representing all forest
types may produce more bias than models developed for the specific forest types.

The SS and GA methods yielded the best model precision, although the differences between
the latter approaches and the CE method were always equal or less than 5.32% in terms
of rRMSE, for pure and mixed stands. Garcia-Gutiérrez et al. [2014] showed that the non-
parametric method (GA) performs better than SS, but often selecting a larger number of
variables, which although not collinear would make models more complex for the final
users. Thus, although GA may finally yield better results, no substantial differences were
found when the number of variables was limited to three independent variables.
Regarding the PM models, the model reported by Li et al. [2008] explained a similar amount
of variation as explained by SS, GA and CE for pure and mixed stands. The results of our
study are consistent with the approaches used by other authors [Lefsky et al., 2005], in
which measures of position, canopy cover and height variation were found to be suitable for
explaining most of the variability in forest attributes. However, PM such as those reported
by Lefsky et al. [2002] and Li et al. [2008] failed the test of normality for W and W in
mixed forest.

ALS studies for assessing biomass components in many types of forest ecosystems report
reliable results with acceptable uncertainty estimates [Maltamo et al., 2014]. The accuracy
of the results depends on the difference in the field of view of the sensor and the laser point
density (among other factors), as well as the slope and vegetation structure [Valbuena et
al., 2011] and also plot size [Zolkos et al., 2013; Ruiz et al., 2014], field measurements and
allometric equations [Zhao et al., 2012].

For pure P. pinea forests, the W, model precision yielded by the methods compared was
similar, in terms of adj. R? and rRMSE, to the levels of precision reported by Gonzalez-
Ferreiro et al. [2012] for P. radiata in an Atlantic forest in Spain (adj. R? = 0.75, rRMSE
=26.75%, plot size = 225 m?) and by Stephens et al. [2012] for P. radiata forests in New
Zealand (R? = 0.81, rRMSE = 22%, plot size = 600 m?). The values obtained in the present
study were slightly lower, in terms of adj. R? and rRMSE, than those reported by Treitz et
al. [2012] for a range of boreal conifer forest types in Canada (adj. R?> = 0.93, rRMSE =
11.05%, plot size = 400 m?) and by Cao et al. [2014] for conifer species including Pinus
massoniana Lamb. and Cunninghamia lanceolata (Lamb.) Hook.) (adj. R? = 0.84, rRMSE
= 15.84%, plot size = 900 m?).

The results of the present study showed that a metric expressing the central tendency of
ALS heights (4, ) was the best single predictor for all biomass components analysed. The
CC also significantly improved the fit in two of the above-mentioned studies [Stephens
et al., 2012, Cao et al., 2014]. Other authors [Lefsky et al., 2002; Lefsky et al., 2005;
Ni-Meister et al., 2010; Asner et al., 2012; Bouvier et al., 2015] eliminated the search
step to identify the best metric, but included %, , which is more sensitive to changes in
both the vertical arrangement of canopy elements and the degree of canopy openness (tree
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density). The inclusion of a third significant variable (CRR), related to the shape of ALS
height distribution, explained 0.1% (W) or 0.2% (W) more of the variance than the model
proposed by Li et al. [2008]. Our results demonstrate that no substantial improvement in fit
was achieved by adding more than 2 variables in the final model for pure stands. According
to the results obtained for other pure coniferous forests, the set of models confirmed that
the combination of mean height and canopy cover represents a sufficient and concise
quantitative description of a homogeneous vertical structure.

In the case of mixed forest, the best values for biomass component modelling, in terms of
adj. R? (0.69-0.79), were slightly higher than those obtained for mixed forests by Cao et al.
[2014] (adj. R* = 0.67-0.75, exclude root and foliage biomass). In W modelling, the adj.
R? values achieved were similar to those reported by Bouvier et al. [2015], who obtained
an adj. R? of 0.77 for mixed forests in north-eastern France, with a pulse density of 3.4
pulses m and plot size of 706.86 m?. Our models yielded similar values of adj. R? to those
obtained by Treitz et al. [2012] (adj. R? = 0.71-0.78) for mixed boreal forest in Canada,
with models fitted using small ALS datasets of 3.2, 1.6 and 0.5 returns m?, respectively.
In terms of rRMSE, the results were similar to those reported by Gleason and Im [2012]
(rRMSE = 32%, plot size = 380 m?) for mixed forest (in the US). However, the results in
these types of mixed forest [Treitz et al., 2012 (rRMSE = 15%); Cao et al., 2014 (rfRMSE =
18.33%); Bouvier et al., 2015 (rRMSE = 18.6%)] were slightly better than those obtained
in the present study.

All fitted models (Table 4) included at least one variable related to a measure of height
position (A, h,, h, .. h, .), a metric expressing the dispersion of ALS height distribution
(hey hyy h,pp) or the shape of height distribution (4,,,), and most of the models include
one variable related to cover metrics (PFRAM, CC, PARAM). The inclusion of variables
that describe height variations (e.g. 4..,) and lower percentile heights (e.g. 4, 4,,) accounts
for intermediate tree crowns in the mid and understory. Our results also demonstrate that
a specific second metric related to the shape of ALS height distribution (%,,,) is potentially
useful for improving mixed forest models (Table 4).

As in other studies using low-density ALS data [Thomas et al., 2006; Garcia et al., 2010;
Gonzalez-Ferreiro et al., 2012; Gonzalez-Ferreiro et al., 2013], the crown component of
biomass was the least accurately modelled of the components analysed. One of the reasons
for this is the complexity of field estimation of foliage biomass and the limited penetrability
of the low-density ALS in the canopy, particularly in mixed forest with relatively closed
canopy.

The results obtained for pure Q. pyrenaica forest must be treated with caution, given the
very small sample size, although they provide some information about the variables that
potentially explain the biomass components. The values obtained (adj. R? = 0.82-0.83 and
rRMSE = 32.78-34.44%) were similar, in terms of adj. R?, to those obtained by Cao et al.
[2014] (adj. R?> = 0.84-0.87, exclude root and foliage biomass); however, the range of values,
in terms of TRMSE, was higher than the values obtained in that study (RMSE = 15.4-16.8%)).
The results of this study are similar to the accuracy of W, estimates (an average error of
31.0%) analysed by Zolkos et al. [2013] in 6 studies in temperate deciduous forests.

We suggest that the lower percentiles (%, 4,) should be included as explanatory variables
in the models because of the former shape of the canopy, which starts close to the ground
in Q. pyrenaica. Considering the physical model, the trees with lower branches displayed
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substantially lower ALS returns than species trees with only canopy branches. This is
consistent with findings reported by Garcia et al. [2010] for Juniper thurifera L. forest
and by Cao et al. [2014] for a deciduous forest in which the primary species are Quercus
acutissima Carruth. and Liquidambar formosana Hance. In the present study, the model
proposed by Zonete et al. [2010] showed that /,, was also a stable height metric for this type
of forest and explained around 60% of the variability in biomass. CC was not significant
in the model of Li, thus confirming the results obtained by Bouvier et al. [2015] for other
deciduous forests in France.

Height and density metrics are commonly included in ALS-based models for estimating
biomass; however, no consensus has been reached regarding their use [Gorgens et al.,
2015]. According to our results, the height metrics derived from first returns provided the
greatest stability when used in the ALS-based models [Lim and Treitz, 2004; Thomas et
al., 2006; Zonete et al., 2010, Gonzalez-Ferreiro et al., 2012; Gorgens et al., 2015; Chirici
et al., 2016]; however, the use of canopy height metrics alone may omit some information
in profiles with more vertical heterogeneity, such as in natural Mediterranean mixed and
even pure forest. Conversely, density metrics contributed to estimating the biomass in most
models, as shown in previous studies [Stephens et al., 2012, Cao et al., 2014; Bouvier et al.,
2015; Montealegre et al., 2016; Véga el al., 2016], although we did not observe any great
difference between using first-return and all-returns density metrics, as also reported by
Hawbaker et al. [2010].

All methods compared enable confident and stable identification of ALS metrics, providing
useful information for developing a more physically based approach for generalizing
predictive models of biomass components in different types of forest. The present study
findings also provide information about the biomass components in the Mediterranean
forest structure, which has been lacking in previous discussions [Garcia et al., 2010;
Gonzalez-Olabarria et al., 2012]. The methods applied in this study are effective tools
for exploring regression relationships between ALS metrics and forest attributes and for
improving biomass component estimates from ALS at stand level. Finally, this research
also demonstrates that the relationships already published in previous models also produce
similar estimation errors as models developed from scratch using training field data.
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