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Abstract
LetG be a graph andP be a set of pairwise vertex-disjoint paths inG.We say thatP is a
path cover if every vertex ofG belongs to a path inP . In theminimum path cover prob-
lem, one wishes to find a path cover of minimum cardinality. In this problem, known to
be NP-hard, the set P may contain trivial (single-vertex) paths. We study the problem
of finding a path cover composed only of nontrivial paths. First, we show that the cor-
responding existence problem can be reduced to a matching problem. This reduction
gives, in polynomial time, a certificate for both the yes-answer and the no-answer.
When trivial paths are forbidden, for the feasible instances, one may consider either
minimizing or maximizing the number of paths in the cover. We show that, the mini-
mization problem on feasible instances is computationally equivalent to the minimum
path cover problem: their optimum values coincide and they have the same approxima-
tion threshold. We show that the maximization problem can be solved in polynomial
time. We also consider a weighted version of the path cover problem, in which we
seek a path cover with minimum or maximum total weight (the number of paths do
not matter), and we show that while the first is polynomial, the second is NP-hard,
but admits a constant-factor approximation algorithm. We also describe a linear-time
algorithm on (weighted) trees, and mention results for graphs with bounded treewidth.
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1 Introduction

All graphs considered here are simple and undirected. The length of a path in a graph
is its number of edges. If a path has length k, we say that it is a k-path; and when its
length is zero, we say that it is trivial. Here, a path cover of a graph G means a set of
pairwise vertex-disjoint paths that collectively spans V (G).

The Minimum Path Cover (MinPC) problem asks for a path cover of mini-
mum cardinality. Clearly, MinPC is NP-hard on the classes of graphs for which the
Hamiltonian path problem is NP-complete. This is known to hold for cubic planar
3-connected graphs (Garey et al. 1976), circle graphs, split graphs, chordal bipartite
graphs (Müller 1996), etc. Polynomial-time algorithms have been designed forMinPC
on several classes of perfect graphs, such as interval graphs (Arikati and Pandu Rangan
1990), cocomparability graphs (Corneil et al. 2013), trees (Franzblau and Raychaud-
huri 2002), etc. No approximation algorithm has been designed for this problem. The
cardinality of a minimum path cover of a graph has been studied as a graph parameter
(Reed 1996; Magnant andMartin 2009; Yu 2017), and also used to study other param-
eters such as L(2,1)-labelling (Georges et al. 1994), domination number (Henning
and Wash 2017), etc. Some practical applications of MinPC include establishing ring
protocols in a network, code optimization and mapping parallel processes to parallel
architectures (Moran and Wolfstahl 1991).

We study the problem of finding a path cover without trivial paths. First, we con-
sider the existence problem, and then the corresponding optimization problems: the
Minimum Nontrivial Path Cover (MinNtPC) and theMaximum Nontrivial
Path Cover (MaxNtPC), both for the cardinality version (number of paths). Fur-
thermore, we study an optimization version of these problems in which we associate
weights to the edges of the graph. We consider the Maximum Weight Nontriv-
ial Path Cover (MaxWNtPC) and the Minimum Weight Nontrivial Path
Cover (MinWNtPC). In both cases our objective is to optimize the sumof theweights
of the edges in the path cover.

In Sect. 2 we show that the existence problem and MaxNtPC are closely related
to the maximum matchings of a graph. We show a new characterization of graphs
that have a nontrivial path cover, which allows us to obtain an algorithm that solves
the existence problem in an interesting way: it returns in polynomial time either (a)
a yes-answer which is an optimal solution to the MaxNtPC or (b) a no-answer
together with a certificate. We also show that MinNtPC on feasible instances is com-
putationally equivalent to MinPC: we show a polynomial-time algorithm that, from
a given minimum path cover, either finds a minimum nontrivial path cover or finds
a non-existence certificate. In Sect. 3 we describe a simple linear-time algorithm to
solve MinNtPC on trees. In Sect. 4, we show that MaxWNtPC is NP-hard, and that
MinWNtPC is solvable in polynomial time. In Sect. 5, we show that for the class of
graphs that have nontrivial path covers both problems MinPC and MinNtPC admit
the same approximation ratio.

A preliminary version of this work (Gómez and Wakabayashi 2018) was presented
at the 44th InternationalWorkshop onGraph-Theoretic Concepts in Computer Science
(WG 2018).
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2 Nontrivial path covers on arbitrary graphs

This section is devoted to the nontrivial path cover problem: both the existence and the
optimization version. While every graph admits a path cover, not every graph admits
a nontrivial path cover. For example, a star with at least four vertices does not admit
a nontrivial path cover. One may naturally ask whether minimum degree two would
suffice for a graph to admit a nontrivial path cover. This is not the case, even when we
ask for a higher constant degree.

The nontrivial path cover existence problem is, in fact, a special case of classical
and intensively studied problems in graph theory. We say that an [a, b]-factor of
a graph G is a spanning subgraph H of G such that each vertex in H has degree
at least a and at most b, where a and b are constants. Thus, asking for a [1, 2]-
factor of a graph is equivalent to asking for a nontrivial path cover. Kano and Saito
(1983) proved that, for r ≥ 1, if a graph G has δ(G) ≥ r and Δ(G) ≤ r + s,
where s ∈ {1, . . . , r}, then it contains a [1, 2]-factor. This means that all regular
graphs contain [1, 2]-factors. These authors also showed classes of complete bipartite
graphs that do not contain [1, 2]-factors (Kr ,r+s , with s > r ≥ 1). A result of Li
and Mao-cheng (1998), when specialized to [1, 2]-factors guarantees that: if G is
an n-vertex-graph of order at least 4 such that max{deg(x), deg(y)} ≥ n/3, for all
non-adjacent vertices x and y, then G has a [1, 2]-factor. A natural generalization of
the concept of [a, b]-factor is the concept of (g, f )-factor, in which we replace the
constants a and b by integer functions g and f . As in the case of [a, b]-factors, there
is a large number of structural results on the existence of (g, f )-factors in graphs. In
1952, Tutte characterized graphs that have an ( f , f )-factor. Lovász (1970) generalized
this result characterizing graphs that have a (g, f )-factor. Later, some results on the
algorithmic aspect of this problemwere obtained.Anstee (1985) showed a polynomial-
time algorithm that finds a (g, f )-factor, if it exists, or a (g, f )-barrier. Heinrich
et al. (1990) showed a faster algorithm that finds a (g, f )-factor when g(x) ≤ 1
and g(x) < f (x) for every vertex x in G. Thus, the nontrivial path cover existence
problem has been shown to be solvable in polynomial time.

In what follows, we show that the existence of a nontrivial path cover in a graph
is closely related to the structure of its maximum matchings. Clearly, if a graph has
a perfect matching, it has a nontrivial path cover consisting solely of 1-paths. And, if
a graph has a nontrivial path cover but does not have a perfect matching, we need at
least one k-path with k ≥ 2 to cover it. In fact, we do not need k > 2, as such k-paths
can be broken into paths of length one or two. This observation indicates that we may
focus only on the problem of deciding whether a graph G admits a nontrivial path
cover consisting solely of 1-paths or 2-paths.

We denote byP1,2(G), or simplyP1,2, the class of these special types of nontrivial

path covers in G, and byP1
1,2 the subclass ofP1,2 consisting of path covers with the

largest possible number of 1-paths.

Proposition 1 If a graph G admits a nontrivial path cover, then the cardinality of any
path cover inP1

1,2(G) coincides with the cardinality of a maximum matching in G.
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Proof Consider a path cover P ′ ∈ P1
1,2(G), and let P ′

2 be the set of 2-paths in P ′.
Let M ′ be a matching of G obtained by choosing one edge from every path in P ′. We
claim that M ′ is a maximum matching of G. Suppose, on the contrary, that this claim
does not hold. Let P be an M ′-augmenting path that intersects a minimum number of
paths in P ′

2, and let u and v be its endvertices. Let Pu and Pv be the paths in P ′
2 whose

endvertices are u and v, respectively. Next, we show that Pu and Pv are the unique
paths in P ′

2 that intersect P .
Suppose, by contradiction, that there exists a path Q ∈ P ′

2, distinct from Pu and Pv ,
that intersects P . Consider that Q := 〈x, y, z〉, and that z is the endvertex of Q
not covered by M ′. (The proof for the case x is the endvertex of Q not covered by
M ′ is analogous.) Since every internal vertex of P is incident to an edge in M ′, it
follows that z /∈ V (P). Therefore, x and y are adjacent vertices in P . Suppose first
that P = 〈u, . . . , x, y, w, . . . , v〉. In this case, since yw /∈ M ′, and w �= z, the
path 〈u, . . . , x, y, z〉 is an M ′-augmenting path that contradicts the choice of P . If
P = 〈u, . . . , y, x, w, . . . , v〉, then the path 〈z, y, x, . . . , v〉 is an M ′-augmenting path
that contradicts the choice of P .

Since P is an M ′-augmenting path from u to v, then Pu and Pv are subpaths (the
initial and final part) of P . Now, to conclude the proof, let E(P ′) be the set of edges of
the path coverP ′. Then, the edges in (E(P ′)\(M ′∩E(P))∪(E(P)\M ′) define a path
cover of G by 1-paths and 2-paths, containing more 1-paths than P ′, a contradiction.
This concludes the proof that M ′ is a maximum matching of G, as we claimed. ��

Proposition 1 tells us that if a graph G admits a nontrivial path cover, then any
path cover inP1

1,2(G) contains a maximum matching. However, not every maximum

matching can be extended to a path cover in P1
1,2 (see Fig. 1).

Aswe shall see, using thewell-knownEdmonds–Gallai decomposition (Lovász and
Plummer 1986) ofG, we can determine whetherG admits a nontrivial path cover. This
decomposition is defined by the following partition [D(G), A(G),C(G)] of V (G):

• D(G) is the set of vertices in G which are not covered by at least one maximum
matching;

• A(G) is the set of vertices in V (G) \ D(G) adjacent to at least one vertex in DG);
and

• C(G) is the set V (G) \ (A(G) ∪ D(G)).

A near-perfect matching of a graph G is one covering all but one vertex of G. A
graph G is called hypomatchable if G − v has a perfect matching for every vertex v

in G. The next theorem describes the structure of every maximum matching in G.

Theorem 1 (Edmonds–Gallai 1965) If G is a graph and [D(G), A(G),C(G)] is the
decomposition of G previously defined, then

Fig. 1 A maximum matching that cannot be extended to a path cover in P1
1,2
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(a) The components of the subgraph induced by D(G) are hypomatchable;
(b) The subgraph induced by C(G) has a perfect matching;
(c) Every maximum matching of G contains a near-perfect matching of each com-

ponent of D(G), a perfect matching of each component of C(G) and matches all
the vertices of A(G) with vertices in different components of D(G).

Next, from a path cover P inP1
1,2(G), we define a partition of V (G), as follows:

L(P) := {v ∈ V (G) : v is an endvertex of a 2-path in P};
R(P) := {v ∈ V (G) : v is an internal vertex of a 2-path in P};
S(P) := V (G) \ (L(P) ∪ R(P)).

Considering this partition, we prove how it is related to the Edmonds–Gallai decom-
position of G.

Proposition 2 Let G be a graph that admits a nontrivial path cover, and let P be a
path cover in P1

1,2(G). Moreover, let [D(G), A(G),C(G)] be the Edmonds–Gallai
decomposition of G. Then, the following hold:

(a) L(P) ⊆ D(G);
(b) If u ∈ S(P) ∩ A(G), then the neighbor of u in P belongs to D(G);
(c) Let u, v ∈ R(P) ∪ S(P) (possibly, u = v). Let N be the set of neighbors of u and

v in P . If u, v ∈ A(G), then, each vertex in N belongs to a different component
in D(G).

Proof Denote by Pu the path in P that contains the vertex u ∈ V (G). First, we show
that (a) holds. Let u be a vertex in L(P). Note that, for every edge in Pu we can find
a maximum matching that does not contain that edge, therefore u ∈ D(G). Now, we
prove that (b) and (c) hold. Let M be a maximummatching of G obtained by choosing
one edge from every path in P .

Let u ∈ S(P) ∩ A(G). Since u ∈ S(P) ∩ A(G), the unique edge of Pu belongs
to M . Furthermore, by Theorem 1, the other endvertex of Pu must belong to D(G).
Finally, let u and v be vertices in S(P) ∪ R(P). To show (c), we consider three cases
depending on whether u or v belong to S(P) or R(P).

Case 1 u, v ∈ S(P).
In this case, Pu and Pv are 1-paths of P . Let u′ and v′ be the neighbors of u and v,

respectively, in P . Since uu′, vv′ ∈ M and u, v ∈ A(G), then u′ and v′ must belong
to D(G). If u = v, then u′ = v′ and there is nothing to prove. So, suppose that u �= v.
Since M is a maximum matching, by Theorem 1, u and v are matched to vertices in
different components of D(G). Therefore, u′ and v′ belong to different components
of D(G).

Case 2 u ∈ S(P) and v ∈ R(P).
Let u′ be the neighbor of u in Pu . Since v ∈ R(P), it is an internal vertex of a

2-path in P . Let v′ and w′ be the neighbors of v in Pv , such that vv′ ∈ M . We can
show that u′ and v′ belong to different components of D(G) in an analogous way to
Case 1. Now, we shall prove that v′ and w′ belong to different components of D(G).
Let K be the component of D(G) that contains v′. Since vv′ ∈ M , by Theorem 1, M
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contains a near-perfect matching of K−v′. This implies thatw′ must belong to another
component of D(G), as w′ is not matched in M . Note that an analogous argument
shows that v′ and w′ belong to different components of D(G).

Case 3 u, v ∈ R(P).
Let u′ and t ′ be the neighbors of u in Pu , such that uu′ ∈ M . Also, let v′ and w′ be

the neighbors of v in Pv , such that vv′ ∈ M . Using a similar argument as in Case 1,
we can show that u′ and v′ belong to different components of D(G). Also, if we con-
sider a pair of vertices such that one is matched and the other unmatched in M , then
we can show that those vertices belong to different components of D(G) using similar
arguments as in Case 2. In particular, this shows the case in which u = v. Suppose
that u �= v. Now, let us prove that t ′ and w′ belong to different components of D(G).
Note that, by Theorem 1, there is at most one M-unmatched vertex in each component
of D(G). Since w′ and t ′ are unmatched, it follows that they must belong to different
components of D(G). ��

Proposition 2 shows how the vertices in A(G) ∪ D(G) are covered by a path cover
in P1

1,2(G). Next, we show how to reduce the problem of deciding the existence
of a nontrivial path cover to a maximum matching problem in a bipartite graph. Let
[D(G), A(G),C(G)] be the Edmonds–Gallai decomposition of G. Also, let T ⊆
D(G) be the vertices corresponding to trivial components in D(G). Furthermore,
consider a set of vertices, say S, that represent the nontrivial components in D(G)\T .
Consider the bipartite graph G ′ = (U ∪ W , F) defined in the following way.

U = A(G) ∪ A′ ∪ S′,
W = S ∪ T ,

where A′ and S′ are copies of the sets A(G) and S, respectively. For every vertex
a ∈ A(G) (resp. s ∈ S), we denote by a′ (resp. s′) its copy in G ′. The set F consists
precisely of the following edges: (a) an edge between a vertex a ∈ A(G) ∪ A′ and a
vertex w ∈ W if there is an edge, in G, incident to a and to a vertex in the component
represented by the vertex w; (b) an edge linking s to s′, for every s ∈ S. In Fig. 2, we
show an example of a graph G ′ obtained from A(G) ∪ D(G).

Now, we state a result from Dulmage and Mendelsohn (1958) that will be useful to
prove our reduction.

Theorem 2 (Dulmage and Mendelsohn 1958) Let G be an (X ,Y )-bipartite graph. If
there exist two matchings, one that covers A ⊆ X and another that covers B ⊆ Y ,
then there exists a matching that covers A ∪ B.

A(G)

D(G)

(a) (b)

A′ A(G) S′

T S

Fig. 2 a The subgraph A(G) ∪ D(G); b the graph G′

123



Journal of Combinatorial Optimization

Finally, we show that the existence of a nontrivial path cover in a graph G is
characterized by the existence of a specific matching in the graph G ′.

Theorem 3 Let G be a graph and let G ′ = (U ∪W , F) be the bipartite graph defined
fromG as above. Then, G has a nontrivial path cover if, and only if, there is a matching
that covers W in G ′.

Proof First, suppose thatG has a nontrivial path cover. Take a path coverP inP1
1,2(G).

Now, using the structure of P , revealed by Proposition 2, we exhibit a matching M
in G ′ that covers W . We note first that, by this proposition, the 2-paths in P have
both endvertices in D(G). In G ′, denote by wK the vertex in W that represents the
component K of D(G). Take wK in W .
Case (1): InP there is a (unique) 1-pathwith an endvertex in K and the other endvertex,
say a, in A(G). In this case, set wK a to M . Case (2): In P there is a 2-path Q that
ends in a vertex in K . If Q is entirely contained in K , then set wkw

′
k to M . If the

internal vertex of Q, say a, belongs to A(G), then the other endvertex of Q belongs
to a component R of D(G) that is distinct from K . In this case, set wK a and wRa′
to M . Note that, no other 2-path in P ends in K ∪ R. Thus, M is a matching in G ′ that
covers W .

Conversely, we show that, if there is a matching in G ′ that covers W , then there
is a nontrivial path cover of G. By Theorem 1, every maximum matching covers the
vertices of A(G) with edges whose other endvertices belong to different components
of D(G). Note that, these edges induce a matching in G ′ that covers A(G). Then, by
Theorem 2, there exists a matching that covers A(G) ∪ W in G ′. Let M be such a
matching.

Next, we construct a set of edges F ′ ⊆ E(G) that induces a nontrivial path cover
of G. First, let F ′ be any perfect matching of C(G). Now, let wK be a vertex of W .
We consider two cases.

Case 1 wK ∈ S is matched to its copy in S′.
In this case, K is a nontrivial component of D(G). Take a near-perfect matching

N of K , and an edge e ∈ E(K ) that is incident to the vertex not covered by N . Add
N ∪ {e} to F ′.

Case 2 wK is matched to a vertex in A(G) ∪ A′.
Take u ∈ A(G) ∪ A′ such that wK u ∈ M . Let v be a vertex in K that is adjacent

to u in G. In this case, consider a perfect matching N of K − v (possibly empty), and
add N ∪ {uv} to F ′.

Since M is a matching in G ′ that covers A(G) ∪ W , it follows that F ′ induces a
nontrivial path cover of G. ��

In Fig. 3, we show a path cover in P1
1,2(G) obtained from a matching that covers

A(G)∪W inG ′. Observe thatP1
1,2(G) consists of path covers ofG with themaximum

number of paths. Thus,MaxNtPC onG reduces to the problem of finding a path cover
inP1

1,2(G). Theorem 3 shows that the latter can be reduced to a maximum matching
problem in a bipartite graph that is obtained using the Edmonds–Gallai decomposition
of G. Since both, the Edmonds–Gallai decomposition and a maximum matching, can
be computed in polynomial time, we obtain the following result.

123



Journal of Combinatorial Optimization

A(G)

D(G)

(a) (b)

A′ A(G) S′

T S

Fig. 3 a a nontrivial path cover of A(G) ∪ D(G) obtained from b a matching in G′

Theorem 4 The MaxNtPC problem can be solved in polynomial time.

Classical results characterizing graphs containing (g, f )-factors, when specialized
to [1, 2]-factors, give the following result (see Las Vergnas (1978)).

Theorem 5 (Lovász1970)AgraphG hasa [1, 2]-factor if, andonly if, i(G−S) ≤ 2 |S|
for every S ⊆ V (G), where i(G − S) is the number of isolated vertices in G − S.

Most of the characterization results, except for Anstee (1985), were not concerned
with an efficient way to find a no-certificate (a set S that does not satisfy the condition
stated in Theorem 5). Interestingly, our approach of searching for a path cover inP1

1,2
gives an efficient way to find a [1, 2]-factor, when it exists, or to find a no-certificate.
The next theorem tells how the latter can be achieved.

Theorem 6 Let G be a graph, D(G) be the set given by the Edmonds–Gallai decom-
position of G, and T ⊆ D(G) be the set of vertices corresponding to the trivial
hypomatchable components in D(G). Then the following hold:

(i) G has a [1, 2]-factor if and only if |X | ≤ 2 |NG(X)|, for every X ⊆ T .
(ii) If G does not have a [1, 2]-factor, and X is a set that violates the condition stated

in (i), then S = NG(X) is a set that violates the condition stated in Theorem 5.
Moreover, S can be found in polynomial time.

Proof First, we prove (i). LetG ′ be the bipartite graph defined fromG as in Theorem 3.
By that theorem, it suffices to show that G ′ has a matching that covers W if and only
if |X | ≤ 2 |NG(X)|, for every subset X of T . First, suppose that G ′ has a matching
that covers W in G ′. By Hall’s Theorem, for every subset X ⊆ W , we have that
|X | ≤ |NG ′(X)|. This implies that |X | ≤ |NG ′(X)|, for every X ⊆ T , since T ⊆ W .
By the definition of G ′, we have that |NG ′(X)| = 2 |NG(X)|, for every X ⊆ T . Now,
suppose that |X | ≤ 2 |NG(X)| = |NG ′(X)|, for every X ⊆ T . By Hall’s Theorem, G ′
has a matching that covers T . Since NG ′(T ) ⊆ A(G) ∪ A′, in G ′ we can match every
vertex s ∈ S to its copy in S′ to obtain a matching that covers W .

Now, to show (ii), note that every subset X ⊆ T is an independent set in G. If
we consider S = NG(X), then the graph G − S has at least |X | isolated vertices.
Therefore, if X violates (i), we have that

i(G − S) ≥ |X | > 2 |NG(X)| = 2 |S| .
To find a set X that violates (i), we take a maximum matching M ′ in G ′, which

clearly does not cover some vertex t ∈ T , and construct in G ′ an M ′-alternating tree
rooted at t . ��
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V3

V2

V1

V0

(a)

L

V2

V0

(b)

Fig. 4 a a graph G and P , and b the P-digraph D

Now,we prove an interesting relation betweenMinPC andMinNtPC. More specif-
ically, given a graphG and a path coverP ofG, we show a polynomial-time algorithm
that either obtains a nontrivial path cover ofG, if it exists, or finds a set of vertices ofG
that violates the condition stated in Theorem 5. Moreover, in the former case, the non-
trivial path cover obtained by the algorithm has cardinality at most |P|, implying that
ifP is a minimum path cover then the nontrivial path cover obtained is also minimum.

If P denotes a path cover of a graph G, then for every integer k ≥ 0, we denote
by Pk the set of k-paths in P; and by Vk , the set of vertices spanned by the paths in
Pk . In our algorithm, the paths in P2 play a special role, in particular their internal
vertices. The set of such vertices will be denoted by B (as we think of such paths as
being of the form 〈a, b, c〉).

We say that a path cover P is good if no path in P has an endvertex that is adjacent
to an endvertex of another path in P . Clearly, given a path cover that is not good, by
joining endvertices of different paths, we can obtain in polynomial time another path
cover (with fewer paths) that is good.

Given a graph G and a good path cover P of G, we will define a directed graph D,
called P-digraph associated with G, which will help us obtain a nontrivial path cover
of G, if it exists.

First, consider the graphG ′ = (V ′, E ′) that results fromG by removing the vertices
in V1 and contracting each path in

⋃
k≥3 Pk into a single vertex. Let L be the set of

vertices that result from the contraction of those (long) paths. Now, letG∗ be the graph
obtained from G ′ by removing all edges with both ends in L and also all edges with
an end in B and the other in B ∪ L .

Now we are ready to define the P-digraph D. It is an orientation of G∗ defined in
the following way. First, for every vertex v ∈ V0, orient the edges incident to v as
going out from that vertex. Second, for every edge uv ∈ E(G∗) such that u ∈ B and
v ∈ V2 \ B, orient that edge from v to u if u and v belong to different paths in P2,
otherwise orient it from u to v. Third, orient every edge with one end in V2 \ B and the
other in L as going from V2 \ B to L . Finally, orient arbitrarily every edge with both
ends in V2 \ B. For each vertex v ∈ V , we denote by Pv the path in P that contains v.
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We show in Fig. 4 the P-digraph D obtained from a path cover P represented by a
trivial path and the paths consisting of solid edges.

The orientation of the arcs in the P-digraph D is defined in such a way that, the
directed paths in D starting at V0 and ending in a vertex in B ∪ L , may help finding
another path cover of G with fewer trivial paths or confirm the non-existence of such
a path cover.

Lemma 1 Let G be a graph, P be a good path cover of G, and D be the P-digraph
associatedwithG. Let 〈a, b, c〉beapath inP2 such that ac ∈ E(G). If D has adirected
path from V0 to b, then G has a path cover P ′ such that

∣
∣P ′∣∣ < |P| and ∣

∣P ′
0

∣
∣ < |P0|.

Proof Let P = 〈u = r1, r2, . . . , rk = b〉 be a shortest path in D from V0 to b. We
claim that the following hold.

(a) k = 2m for some m ≥ 1; and
(b) r2i ∈ B, r2i+1 ∈ V2 \ B, for i = 1, 2, . . . ,m − 1;
(c) r2i and r2i+1 belong to the same path in P2, for i = 1, . . . ,m − 1.

In fact, considering the construction of D, we have that

(i) N+(v) = ∅, for v ∈ L;
(ii) N+(v) ⊆ B ∪ L , for v ∈ V0;
(iii) N+(v) ⊆ V2 ∪ L , for v ∈ V2 \ B;
(iv) N+(v) = V (Pv) \ {v}, for v ∈ B.

Since P begins at V0 and ends at B, by (i), we have that V (P) ∩ L = ∅. Therefore,
by (ii), r2 ∈ B. Moreover, by (iii) and (iv), if an internal vertex of P belongs to V2 \ B,
then the next vertex in P belongs to B and vice versa, so the claim follows.

Now, we will construct a path cover of G that has fewer paths than P . Let Qi ∈ P2
be the path that contains r2i , and let si be the endvertex of Qi which is different from
r2i+1, for i = 1, . . . ,m−1. Thus, Qm = 〈a, b, c〉. Without loss of generality, suppose
that the edge ac ∈ E(G) is oriented from a to c in D. Consider the paths Q∗

i defined
in the following way,

Q∗
i :=

{ 〈r2i−1, r2i , si 〉, for 1 ≤ i ≤ m − 1,
〈r2m−1, b, a, c〉, for i = m.

Let P ′ be obtained from P by replacing the paths Q1, Q2, . . . , Qm, Pu with the
paths Q∗

1, Q
∗
2, . . . , Q

∗
m . Clearly, P ′ is a path cover of G with

∣
∣P ′∣∣ < |P| and ∣

∣P ′
0

∣
∣ <

|P0|. ��
The proof of the next theorem contains the description of the steps of the algorithm

that either returns a nontrivial path cover of a graph or a non-existence certificate.

Theorem 7 Let G be a graph and let P be a path cover of G containing trivial
paths. Then, we can obtain in polynomial time either a nontrivial path cover P ′ such
that

∣
∣P ′∣∣ ≤ |P|, if it exists, or a certificate that G does not have a nontrivial path

cover.
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Proof We assume thatP is a good path cover (as it suffices to prove for this case). Now,
consider the P-digraph D associated with G (that can be constructed in polynomial
time). Check whether there is path 〈a, b, c〉 in P2 such that ac ∈ E(G) and D has a
directed path from V0 to b. If this happens, by Lemma 1, we can obtain (in polynomial
time) a path cover of G with fewer paths and fewer trivial paths. If the new path
cover is nontrivial, the proof is complete; otherwise, we repeat this procedure until we
obtain a good path cover, say P̂ , that has no 2-path whose endvertices are adjacent,
and whose internal vertex b is the endvertex of a directed path starting at V0 in the
P̂-digraph D associated with G. We say that such a path cover is very good. Clearly,
it can be obtained in polynomial time. For ease of notation, let us call P the very good
path cover obtained this way, and consider the P-digraph D associated with G. If P
contains trivial paths, then one of the following two cases must occur.

Case 1 there exists a directed path from V0 to L in D.
Let P be such a path with minimum length. By arguments similar to those used in

the proof of Lemma 1, we can consider that

P := 〈u, x1, y1, . . . , xm, ym, v〉,

where u ∈ V0, v ∈ L , xi ∈ B, yi ∈ V2 \ B and m ≥ 0. Without loss of generality,
consider that m ≥ 1 (the case in which m = 0 can be dealt in a similar way). We
recall that Pv denotes the path in P that was contracted to v. Let w be a vertex of Pv

that is a neighbor of ym in G. Since ym is an endvertex of a path in P , and P is good,
we conclude that w is an internal vertex of Pv . Let P ′

v be a shortest subpath of Pv

containing w and an endvertex of Pv . Also, consider that Q′
v = Pv \ V (P ′

v). Since|Pv| ≥ 3, we have that
∣
∣Q′

v

∣
∣ ≥ 1.

Let Qi ∈ P2 be the path that contains xi , and let zi be the endvertex of Qi which is
different from yi , for i = 1, 2, . . . ,m. Now, we define the paths Q∗

i in the following
way,

Q∗
i =

⎧
⎨

⎩

〈u, x1, z1〉, if i = 1,
〈yi−1, xi , zi 〉, if 1 < i ≤ m,

〈ym〉 · P ′
v, if i = m + 1.

Let Q be the path cover of G obtained from P when we replace the paths
in {Pu, Q1, . . . , Qm, Pv} by the paths in {Q∗

1, . . . , Q
∗
m+1, Q

′
v}. Note that |Q| = |P|

and |Q0| = |P0| − 1. In Fig. 5 we show an example considering the path cover P and
the P-digraph D shown in Fig. 4.

Case 2 there is no directed path from V0 to L in D.
Let u be a vertex in V0. If NG(u) = ∅, then S = ∅ violates the condition stated in

Theorem 5. So, suppose that NG(u) �= ∅. Since there is no directed path from V0 to
L , and P is good, we have that N+

D (u) ⊆ B. Let Bu be the set of vertices of B that are
reachable by a directed path from u.

Let S := Bu . In what follows, we show that S violates the condition stated in
Theorem 5. First, note that u is an isolated vertex in G − S. Now, let Tu be the set of
the endvertices of the paths in P2 whose internal vertex belongs to Bu . We will show
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L

V2

V0

(a)

V3

V2

V1

V0

(b)

Fig. 5 a a path P; and b the resulting path coverQ

that Tu is an independent set in G − S. Let t be any vertex in Tu . Since there is no
directed path from u to L in D, we have that t is not adjacent, in G, to any vertex in
Vk , k ≥ 3. Since P is very good, we have that t is not adjacent, in G, to any vertex in
V2 \ S. (Note that, if t is adjacent to an internal vertex b of another path in P2, then b
is also reachable by a directed path from u, and thus, b belongs to S.)

Moreover, since P is good, the vertex t is not adjacent to any vertex in V0 ∪ V1.
Therefore, t is an isolated vertex in G − S. Since G − S has at least 2 |S| + 1 isolated
vertices, by Theorem 5, the graph G does not have a nontrivial path cover.

If Case 1 occurred, and the new path cover still contains trivial paths, we repeat the
procedure. As, each time this procedure is repeated we obtain a path cover with fewer
trivial paths, we either find a nontrivial path cover of G, or Case 2 occurs and we find
a non-existence certificate. All these steps can be done in polynomial time. ��

Let us denote by μ(G) the cardinality of a minimum path cover of G. Also, if
G admits a nontrivial path cover, then let μnt (G) be the cardinality of a minimum
nontrivial path cover of G. By Theorem 7, the following results follow.

Corollary 1 If a graph G admits a nontrivial path cover, then μnt (G) = μ(G).

Corollary 2 Let G be the class of graphs that admit a nontrivial path cover. The prob-
lems MinPC and MinNtPC have the same computational complexity in G.

Corollary 1 implies a result on the approximability ofMinPC andMinNtPC, which
we state in Sect. 5.

3 Minimum nontrivial path covers on trees

Aswementioned,MinPC on trees can be solved in linear time. Thus, given a graphG,
we can take a minimum path cover of G and use Theorem 7 to either transform it into
a minimum nontrivial path cover of G, if it exists; or exhibit a no-certificate. Instead
of using such a procedure, we show a simpler linear-time algorithm for MinNtPC
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on trees, which can be easily extended for the edge-weighted version of the problem
(presented in the next section).

To understand the idea behind the algorithm, given a tree T , suppose that T has a
minimum nontrivial path coverP . Consider that T ′ is the arborescence obtained when
we root T at a vertex r in T . Let T ′

u be the subtree of T ′ rooted at u. Note that, when
we consider the subgraph of T ′ spanned by the edges of P , the vertex u has degree
0, 1 or 2 in T ′

u .
Let f (u, d) be the cardinality of a minimum nontrivial path cover of Tu , in which

the vertex u has degree d. Algorithm 1, described below, computes the values f (u, d)

in post-order using a DFS traversal of T . We choose r to be any leaf of T , and call
DFS(r , nil). At the end, if T has a nontrivial path cover, then f (r , 1) < +∞, and
it indicates the cardinality of a minimum nontrivial path cover. We may retrieve the
edges of such a cover by modifying slightly this algorithm.

Algorithm 1 DFS(v, parent)
Input: A tree T
Output: Values f (v, d) for every vertex v in T and integer d in {0, 1, 2}
1: deg ← 0
2: m1 ← +∞
3: m2 ← +∞
4: sum ← 0
5: for u ∈ N (v) :
6: if u �= parent :
7: DFS(u, v)

8: Y ← min( f (u, 1), f (u, 2))
9: X ← min( f (u, 1), f (u, 0))
10: sum ← sum + Y
11: deg ← deg + 1
12: if m1 > X − Y :
13: m2 ← m1
14: m1 ← X − Y
15: else if m2 > X − Y :
16: m2 ← X − Y

17: for d = 0 to 2 :
18: f (v, d) ← +∞
19: if deg ≥ 0 :
20: f (v, 0) ← sum + 1
21: if deg ≥ 1 :
22: f (v, 1) ← sum + m1

23: if deg ≥ 2 :
24: f (v, 2) ← sum + m1 + m2 − 1

Theorem 8 Algorithm 1 correctly computes the values f (v, d) for every vertex v in
T and d ∈ {0, 1, 2}.
Proof Let v be any vertex in T . We prove the statement by induction on n := |V (Tv)|.
If n = 1, then v is a leaf of the tree. In this case, at the end of the loop starting at line 5,
we have that sum = deg = 0. Therefore, at the end of the algorithm f (v, 0) = 1 and
f (v, 1) = f (v, 2) = +∞.
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Now, suppose that n ≥ 2. Let v1, v2, . . . , vk be the neighbors of u in T ′
u . First, if

d > k, then there is no solution to f (u, d). Therefore, in line 17,we set f (u, d) = +∞,
and this value is not changed afterwards. So, let us suppose that d ≤ k. Since we are
restricting the path covers to those in which u has degree d in T ′

u , we have to choose
d edges incident to u and vi , 1 ≤ i ≤ k, to belong to the path cover. Observe that for
the vertices vi such that uvi belongs to the path cover, the degree in its corresponding
subtree T ′

vi
can be zero or one. In case this edge does not belong to the cover, its degree

in T ′
vi
must be one or two. For i = 1, 2, . . . , k, let Xvi := min{ f (vi , 1), f (vi , 0)} and

let Yvi := min{ f (vi , 1), f (vi , 2)}. Now, we show how to express f (u, d) in terms of
Xvi and Yvi .

First, let us suppose that d = 2, and let va and vb be neighbors of u in a minimum
path cover where u has degree two in T ′

u . By the previous arguments, we have that

f (u, 2) =
k∑

i=1
i �=a,b

Yvi + Xva + Xvb − 1.

Adding and subtracting Yva and Yvb , we get the following expression

f (u, 2) =
k∑

i=1

Yvi + (Xva − Yva ) + (Xvb − Yvb ) − 1.

Since
∑k

i=1 Yvi is a constant, to compute the value of f (u, 2), we need to find two
neighbors of u that minimize Xvi − Yvi . Observe that at the end of the loop starting at
line 5, the variable sum is equal to

∑k
i=1 Yvi , andm1 andm2 hold the desired minima.

By induction hypothesis our algorithm correctly computes the values of f (vi , d) for
1 ≤ i ≤ k, 1 ≤ d ≤ 2. Therefore, the algorithm correctly computes the value f (u, 2).
The cases in which d ∈ {0, 1} can be shown by analogous arguments. ��
Sinceweprocess each vertexu of the tree just once, andwe iterate through its neighbors
to compute the values of f (u, d), the complexity of our algorithm is O(n), where n
is the number of vertices of the tree. Thus, we obtain the following result.

Corollary 3 MinNtPC on trees can be solved in linear time.

4 Weighted path covers

We now focus on the weighted versions of the path cover problems. In these problems,
a graph with nonnegative weights on the edges is given, and we seek for a path cover
with maximum or minimum total weight.

We note that MinPC is equivalent to the problem of finding a path cover with
maximum total weight on a graph with uniform (or unit) weights. To see this, consider
a graph G = (V , E) with weight w(e) = 1, for all e ∈ E . If P is a path cover of G,
then
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∑

P∈P
w(E(P)) =

∑

P∈P
(|V (P)| − 1) = |V | − |P| .

Thus, the weighted maximization version, called MaxPC, is also NP-hard on the
classes of graphs for whichMinPC isNP-hard.Moreover, this fact also implies that the
MaxWNtPC problem isNP-hard on these classes. Now,we consider theminimization
version.

Theorem 9 MinWNtPC can be solved in polynomial time.

Proof Let G = (V , E) be a graph that admits a nontrivial path cover. Also, let w ∈
R

E+ be the nonnegative weights associated with the edges of G. Let G1 = (V1, E1)

and G2 = (V2, E2) be copies of G such that vi ∈ Vi is the copy of vertex v ∈ V .
From G1 and G2, we define the graph G ′ = (V ′, E ′) in the following way:

V ′ = V1 ∪ V2,

E ′ = E1 ∪ E2 ∪ {v1v2 : v ∈ V }.

Also, consider the following weights on the edges of G ′

w′
e =

{
0, if e = v1v2 for some v ∈ V ,

we, otherwise.

Now, we prove that finding a minimumweight nontrivial path cover in G is equivalent
to finding a 2-factor of minimum weight in G ′. First, we show that G ′ has a 2-factor.
LetP be a nontrivial path cover ofG. ConsiderPi as the copy ofP inGi , for i = 1, 2.
To obtain a 2-factor of G ′, we take each path in P1 and its copy in P2 and use the two
edges linking its corresponding endvertices. In what follows, P∗ (resp. C∗) denotes a
minimum weight nontrivial path cover (resp. 2-factor) of G (resp. G ′). The previous
construction shows that

w′(C∗) ≤ 2w(P∗). (1)

Now, we show that w′(C∗) ≥ 2w(P∗). Let C∗
1 and C∗

2 be the subgraphs induced by
the edges of C∗ in G1 and G2, respectively. Observe that

w′(C∗) = w′(C∗
1 ) + w′(C∗

2 ).

It is immediate that w′(C∗
1 ) = w′(C∗

2 ). Otherwise, using the lightest of C∗
1 and C∗

2 ,
we could construct a 2-factor Ĉ with w′(Ĉ) < w′(C∗).

Since C∗ is a 2-factor, and each vertex in G1 is adjacent to only one vertex in G2,
we have that C∗

1 is a collection of cycles and nontrivial paths. Therefore, if we remove
one edge from every cycle contained in C∗

1 , then we obtain a nontrivial path cover of
G1, say P ′. Since the weights are nonnegative, this implies that

2w(P∗) ≤ 2w′(P ′) ≤ 2w′(C∗
1 ) = w(C∗). (2)
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From (1) and (2), we have that w(C∗) = 2w(P∗). Furthermore, when we remove one
edge from each cycle of C∗

1 , we obtain a minimum weight nontrivial path cover of G.
As we can find a 2-factor of minimum weight in polynomial time (Schrijver 2003),
the result follows. ��

Observe that, in the proof of Theorem 9, the subgraph C∗
1 is a minimum-weight

[1, 2]-factor of G. Moreover, an analogous claim is valid for C∗
1 in the maximization

case. Therefore, the following result follows.

Corollary 4 Let G be a graph with nonnegative weights associated with its edges.
Then, an optimum weight [1, 2]-factor of G can be found in polynomial time.

5 Approximability

We present now some approximability results for MinPC, MinNtPC, MaxPC and
MaxWNtPC (defined in Sect. 4). First, since the cardinality of any path cover is an
integer number, then for any ε > 0, there cannot exist a (2 − ε)-approximation for
MinPC or MinNtPC, otherwise, such algorithm would solve the Hamiltonian path
problem in polynomial time. Therefore, we have that

Corollary 5 For every ε > 0, there is no (2 − ε)-approximation for MinPC and
MinNtPC, unless P �= NP.

Now, consider a special variant of theMinimum Traveling Salesman problem,
inwhich the edge-weights are 1 or 2, denoted asMinTSP-(1,2), known to beMaxSNP-
hard (Papadimitriou and Yannakakis 1993). Vishwanathan (1992) showed a relation
between the approximation ratios of MaxPC and MinTSP-(1, 2).

Proposition 3 (Vishwanathan 1992) If there exists an α-approximation algorithm for
MaxPC, then there is a (2 − α)-approximation algorithm for MinTSP-(1, 2).

In a similar way, we show an analogous relation between MinPC and MinTSP-
(1, 2).

Proposition 4 If there is an α-approximation algorithm for MinPC, then there is a
(1 + α)/2-approximation algorithm for MinTSP-(1, 2).

Proof Let (K , c) be a complete graph on n vertices whose edge-weights are 1 or 2. Let
G be the spanning subgraph of K that contains only the edges of weight one. Let A
be an α-approximation for MinPC, α ≥ 1, and let P be a path cover of G returned by
Algorithm A. Thus,

|P| ≤ α |O| , (3)

where O is a minimum path cover of G. Linking the paths of P (resp. O) we can
obtain a cycle in K of weight at most n + |P| (resp. n + |O|). From (3), we have
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that n + |P| ≤ n + α |O|. Finally, the approximation ratio of such algorithm is given
by the following expression.

inf

{

r ≥ 1 : n + α |O|
n + |O| ≤ r , 1 ≤ |O| ≤ n

}

,

whose optimal value is attained when r = (1 + α)/2. ��
Now, we show an interesting relation between the approximability of MinPC and

MinNtPC.

Corollary 6 Let G be the class of graphs that admit a nontrivial path cover. There is
an α-approximation for MinPC in G, if and only if, there is an α-approximation for
MinNtPC in G.
Proof First, observe that if there is an α-approximation for MinNtPC, then by Corol-
lary 1, this is also an α-approximation for MinPC. Now, letA be an α-approximation
forMinPC, and letP be a path cover returned byAwhen applied to a graphG ∈ G. By
Theorem 7, we can obtain in polynomial time a nontrivial path coverP ′ ofG, such that
|P ′| ≤ |P|. LetO be a minimum nontrivial path cover of G. By Corollary 1, we have
that |P| ≤ α|O|. Therefore, |P ′| ≤ α|O|, and henceA is also an α-approximation for
MinNtPC. ��

Finally, let G = (V , E) be a graph with nonnegative weight we, for every edge e ∈
E . By Corollary 4, we can find a [1, 2]-factor of G of maximum weight, say C, in
polynomial time. Note that, if we remove an edge of minimum weight from every
cycle in C, we loss at most 1/3 of w(C). This implies the following result.

Corollary 7 There is a (2/3)-approximation algorithm for MaxWNtPC.

6 Path cover problems on graphs with bounded treewidth

Many hard problems when restricted to graphs with bounded treewidth can be solved
in polynomial time. Thus, it is natural to ask whether this is the case for the hard
path cover problems that we have considered here. The answer is yes, and in fact,
these problems can be solved in linear time: a result more of theoretical interest, as
large constant factors (exponential growth in terms of treewidth) are hidden in the
O-notation.

Let G = (V , E) be a graph. We show that the property “G has a nontrivial path
cover” can be formulated in monadic second order logic (MSOL). Roughly speaking,
for graphs, in second order logic we can use quantifications on the vertices and the
edges (or subsets of them), and the relation is the incidence relation of the graph.
The monadic second order logic is a restriction of the second order logic in which
quantifications are allowed only on first order variables and on unary relations. We
will not elaborate more on this, but we refer the reader to Courcelle and Engelfriet
(2012), for a comprehensive work on this subject.

The following theorem, shown byCourcelle (1990), states an important algorithmic
consequence for such properties.
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Theorem 10 Courcelle (1990) Every graph property definable in monadic second
order logic can be decided in linear time on the class of graphswith bounded treewidth.

We observe that the property “G has a nontrivial path cover” is equivalent to “G has
a subset F ⊆ E that induces an acyclic [1, 2]-factor”. We give below a formula ϕ that
describes this property in MSOL. It is composed of other formulas that are expressed
subsequently. All of them use the incidence relation inc, where inc(a, b) is true if and
only if b is an endpoint of a or a is an endpoint of b.

ϕ � ∃F ⊆ E,

∀v ∈ V [deg1(v, F) ∨ deg2(v, F)] ∧
∀Y ⊆ V [conn(Y , F) ⇒ ∃y ∈ Y [deg1(y, F)]],

where conn(Y , F), deg1(v, F) and deg2(v, F) are defined as follows:

conn(Y , F) � ∀Z ⊆ V [(∃u ∈ Y [u ∈ Z ] ∧ ∃v ∈ Y [v /∈ Z ]) ⇒
(∃e ∈ F ∃u ∈ Y ∃v ∈ Y [inc(u, e) ∧ inc(v, e) ∧ u ∈ Z ∧ v /∈ Z ])].

deg1(v, F) � ∃e1 ∈ F[inc(v, e1) ∧ (∀e2 ∈ F[inc(v, e2) ⇒ (e2 = e1)])].
deg2(v, F) � ∃e1, e2 ∈ F[(e1 �= e2) ∧ inc(v, e1) ∧ inc(v, e2)∧

(∀e3 ∈ F[inc(v, e3) ⇒ (e3 = e1) ∨ (e3 = e2)])].

Since MinNtPC (resp. MaxNtPC) is equivalent to MaxWNtPC (resp. Min-
WNtPC) on unit-weight graphs, by a variant of Courcelle’s Theorem (see Rao 2007,
Theorem 6), we obtain the following result.

Corollary 8 MinNtPC, MaxNtPC, MinWNtPC and MaxWNtPC can be solved in
linear time on the class of graphs with bounded treewidth.

We note that the property “G has a path cover” can also be formulated in MSOL.
One can use an expression similar to the one we have exhibited above, and include
the possibility of having vertices of degree zero. SinceMinPC is equivalent to finding
a maximum weight path cover in a unit-weight graph, this means that these problems
can also be solved in linear time on the class of graphs with bounded treewidth.

7 Concluding remarks

As far as we know, the MinNtPC and MaxNtPC problems have not been treated
in the literature. To deal with these optimization problems, we considered first the
corresponding existence problem, which turns out to be a special case of the well-
studied (g, f )-factor problem. Our result showing the close relation of the existence
problemwith themaximummatchings of the graph, contributeswith a characterization
that gives a polynomial-time algorithm that either finds a nontrivial path cover in a
graph or finds a no-certificate. The proof of this characterization (Theorem 6) can also
be seen as an alternative proof of Theorem 5.
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We showed that MinNtPC on feasible instances is computationally equivalent to
MinPC: their optimum values coincide and they have the same approximation thresh-
old. We also studied a weighted version of the problems MinNtPC and MaxNtPC
(in which the number of paths do not matter): for the minimization version we showed
a polynomial-time algorithm on arbitrary graphs, a constant-factor approximation for
the maximization version, and a linear-time algorithm on trees.

We are currently testing some integer programming formulations we have proposed
for MinNtPC. The computational results are preliminary, but seem very promising.
The design of approximation algorithms for MinNtPC (possibly for special class of
graphs) is a challenging problem, as no such results are known.

Acknowledgements We thank the referees for the valuable suggestions.
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