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ABSTRACT

Wood anatomy is one of the most important methods for timber identification.
However, training wood anatomy experts is time-consuming, while at the same
time the number of senior wood anatomists with broad taxonomic expertise is de-
clining. Therefore, we want to explore how a more automated, computer-assisted
approach can support accurate wood identification based on microscopic wood
anatomy. For our exploratory research, we used an available image dataset that
has been applied in several computer vision studies, consisting of 112 — mainly
neotropical — tree species representing 20 images of transverse sections for each
species. Our study aims to review existing computer vision methods and compare
the success of species identification based on (1) several image classifiers based
on manually adjusted texture features, and (2) a state-of-the-art approach for im-
age classification based on deep learning, more specifically Convolutional Neural
Networks (CNNs). In support of previous studies, a considerable increase of the
correct identification is accomplished using deep learning, leading to an accuracy
rate up to 95.6%. This remarkably high success rate highlights the fundamental po-
tential of wood anatomy in species identification and motivates us to expand the
existing database to an extensive, worldwide reference database with transverse
and tangential microscopic images from the most traded timber species and their
look-a-likes. This global reference database could serve as a valuable future tool for
stakeholders involved in combatting illegal logging and would boost the societal
value of wood anatomy along with its collections and experts.

© The authors, 2020 DOI 10.1163/22941932-bja10029
This is an open access article distributed under the terms of the CC BY-NC 4.0 license.

Downloaded from Brill.com07/21/2020 01:38:17PM
via University of Sao Paulo (USP)

mailto:frederic.lens@naturalis.nl
http://dx.doi.org/10.1163/22941932-bja10029


2 IAWA Journal 0 (0), 2020

Keywords: Computer vision; computational phenotyping; convolutional neural
networks; illegal logging; microscopic wood anatomy; species identification.

INTRODUCTION

Progress in computer and internet technology is advancing next-generation phenomics,
with innovations in computer science augmenting expert-based description, analysis, and
comparison of phenotypes (Houle et al. 2010; MacLeod et al. 2010; Jordan &Mitchell 2015;
Havlíček et al. 2019). During the last couple of years, computer vision technologies have
boosted the development of tools for the automated description and identification of a
wide array of biological objects, including amongst others the shape of leaves (Kumar et
al. 2012; Wilf et al. 2016; Barré et al. 2017), herbarium specimens (Unger et al. 2016), wings
of insects (Favret & Sieracki 2016), flying birds (Antanbori et al. 2016), shark fins (Hughes
& Burghardt 2016) and animals caught in camera-traps (Gomez Villa et al. 2017). In this
paper, we focus on a computer-assisted approach for the identification of wood samples
from trees and suggest that this identification tool could help protect forests in the future.

Forests cover 30% of the land area on Earth, representing ca. four billion hectares and
three trillion trees (Crowther et al. 2015; FAO 2015). The impact on forest net loss during
the last 15 years — comparable to the area of France, Spain and the UK combined — has
aroused great concern due to the potential loss of a range of ecosystem services, amongst
others carbon storage and associated climatic feedbacks, conservation of biodiversity, pub-
lic recreation, and medicinal products (Bonan 2008; FAO 2015). A detailed assessment of
global forest change based on high-resolution satellite imaging shows that deforestation is
occurring at an even more disturbing speed, especially in the tropics (Hansen et al. 2013;
Finer et al. 2018). Unsustainable agriculture, mining, and illegal logging contribute to these
alarming deforestation rates, representing a massive threat to global biodiversity. It is es-
timated that more than 100 million m3 of timber are harvested illegally each year, worth
between US $30 and $100 billion per year (Nelleman 2012; UNODC Committee 2016), but
prosecution of illegal logging crimes is hampered by the limited availability of forensic
timber identification tools (Dormontt et al. 2015). This is especially true for DNA-based
methods, because wood mainly consists of dead fibres and hollow conduits that have lost
their living cell contents during cell maturation, and various wood-based treatments like
heating, drying and ageing break down the DNA content of the remaining living wood cells
(Jiao et al. 2012, 2015). Nevertheless, it remains possible to extract DNA from the sapwood of
trees to sequence DNA barcodes for species identification (Jiao et al. 2014, 2018; Nithaniyal
et al. 2014), assess geographic provenance (Jolivet & Degen 2012; Vlam et al. 2018), and to
reconstruct DNA fingerprints verifying the intact chain of custody for routine trade (Lowe
et al. 2010).

There is a considerable body of literature on non-genetic methods which have been
successfully applied to identifywood samples: wood anatomy (InsideWood 2004–onwards;
Hermanson&Wiedenhoeft 2011; Koch et al. 2011; Sarmiento et al. 2011; Helmling et al. 2018),
chemical profiling based on mass spectrometry (Espinoza et al. 2015; McClure et al. 2015;
Evans et al. 2017), near-infrared spectroscopy (Russ et al. 2009; Braga et al. 2011; Pastore et
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al. 2011; Bergo et al. 2016), and detector dogs (Braun 2013). Of these non-genetic tools, wood
anatomy remains the most frequently used method for taxonomic identification, as high-
lighted in the recent UN report on the Best Practice Guide on Forensic Timber Identification
(UNODC Committee 2016). However, years of wood anatomical training are required to
become an expert, and the number of senior wood anatomists with vast taxonomic knowl-
edge is declining. Likewise, wood anatomy generally allows identification of woods at the
genus— not species — level (Gasson 2011), while CITES regulations often require species
identification. For instance, only the Malagasy species of the ebony wood genus Diospyros
are CITES protected, but wood anatomists are not able to distinguish the protected from
the non-protected ebony woods. In an attempt to solve these problems, wood anatomists
and computer scientists have been joining forces during the last decade, to come up with
ways to strengthen thepower of identification throughwoodanatomy to combat illegal log-
ging (Hermanson &Wiedenhoeft 2011). Some computer-assisted identification tools based
on wood anatomy — such as InsideWood, macroHolzdata, CITESwoodID, Pl@ntWood
and a new softwoods identification system — are already available (InsideWood 2004–
onwards; Hermanson & Wiedenhoeft 2011; Koch et al. 2011; Sarmiento et al. 2011; Richter
& Dallwitz 2016), and the first portable applications based on macroscopic imaging have
been developed to assist customs officers in the field, such as xylotron (https://www.fs.
fed.us/research/highlights/highlights_display.php?in_high_id=585), xylorix (https://www.
xylorix.com/), and MyWood-ID (http://mywoodid.frim.gov.my/). However, more sophisti-
cated systems, based on morphometric analyses of cell shapes and mathematical analysis
of texture patterns based on an extensive worldwide wood image reference dataset must
be further developed in order to allow global species identification in ways unavailable so
far.

There have been several studies focusing on computer-assisted wood identification
based on transverse macroscopic wood images from a broad taxonomic set of timber
species using an array of classical computer vision algorithms. For instance, Khalid et al.
(2008) showed a high rate of image accuracy (> 95%) based on 20 different Malaysian for-
est species, and Paula Filho et al. (2014) found a recognition rate of up to 88% based on a
single texture descriptor using 41 neotropical timber species. Amore recent study applied a
Convolutional Neural Network approach to macroscopic wood images from 10 species be-
longing to six genera of the Meliaceae family, with an image recognition success rate from
87% (at species level) to 97% (at genus level; Ravindran et al. 2018).

For our research, we have taken advantage of themost extensive, freely available dataset
of light microscopic images of transverse wood sections with a sufficient number of repli-
cates per species. This dataset consists of 112—mainly neotropical— tree species inwhich
each species is represented by 20 microscopic images from transverse sections (Martins
et al. 2013). We prefer microscopic over macroscopic images because the former includes
much more detail that is required to fully explore the value of wood anatomy as an iden-
tification tool. We compare different image classifiers based on manually adjusted texture
features with a more advanced method based on Convolutional Neural Networks (CNNs)
to evaluate computer-assisted microscopic wood anatomy for species identification, and
to discuss its potential in the fight against illegal logging. Our results are compared with
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results from previous computer vision studies that used the same database to classify all
the 2240 images in the Martins database.

MATERIALS ANDMETHODS

Martins et al. (2013) database
We have used the Martins et al. (2013) database, based on pictures from wood anatomi-

cal slides generated in the Laboratory of WoodAnatomy at the Federal University of Parana
(UFPR) in Curitiba, Brazil. The wood sections were made following the standardized slid-
ing microtome technique, coloured with a solution of acridine red, chrysoidine and astra
blue, mounted between glass slides, and subsequently photographed with an Olympus
Cx40 microscope equipped with a digital camera generating pictures with a resolution of
1024 × 768 pixels. The database includes 20 transverse microscopic pictures from 37 gym-
nosperm species (softwoods) and 75 angiosperm species (hardwoods), in total amounting
to 2240 pictures for 112 species. The 20 images per species come from different individu-
als, but whether or not each sample is derived from another individual, covering the entire
distribution range of the species, could not be traced (Luiz Eduardo S. Oliveira, personal
communication). Therefore, it is possible that the intraspecific variation captured by the
20 images per species is underestimated for someof the species. The taxonomically cleaned
species list is shown in Appendix A, with reference to the phylogenetic position, and its in-
clusion in CITES and the top 100 most traded timbers (UNODC 2016, Annex 11).

Since the original images of the Martins database are not very high quality, we decided
to include a small side project to provisionally assess the impact of better-quality images on
the performance of the texture features. Therefore, wemade 162 original, higher quality im-
ages from transverse sections of 20 tree species in theMartins dataset forwhich aminimum
number of slides per species were available in the wood slide collection of Naturalis Biodi-
versity Center (see species marked with an asterisk in Appendix A). Most Naturalis images
were acquired with a 10× lens (NA 0.75). This results in 24-bit colour images of 2592 × 1944
pixels representing a field of view of 1.3 × 1mmof wood tissue. These Naturalis images were
only used to test the classifiers that we produced. The number of species and images in this
additional Naturalis test set was used to investigate how well these higher quality images
would perform in the classifier, while the original dataset was used to build the classifiers.

Wood identification based on five classifiers and four sets of features
In the jargon of machine learning and especially computational classifiers, we refer to

tools based on supervised statistical methods that can be used to segregate a set of images
into two or more categories, i.e. species. These species are represented by images of their
wood anatomy, and a classifier categorises in such a way that features of different images
within each species have similar values, while features of images belonging to different
species have contrasting values. To enable classifying the images into the different species,
a classifier needs to be trained. This is done by developing a function that optimises the seg-
regation of these images based on features that are extracted from these images. Once the
classifier is trained, it presents high precision —meaning accurate recognition of species
—when new images are submitted to the trained classifier. This works under the assump-
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tion that these new images belong to the same universe of images compared to the images
used in the training dataset. It is therefore essential for a good species recognition classi-
fier that the training dataset embodies the natural intraspecific variation of mature wood,
which is covered here by 20 images per species.

To develop an idea about the performance of species classification based on the Mar-
tins et al. (2013) wood dataset, we tested five common classifier strategies together with
four manually selected types of features (Table 1). The five classifiers employ different
strategies to build the segregating function based on the extracted features: (1) Support
Vector Machines identify the function that maximises the distance between dissimilar im-
ages; (2) Nearest Neighbour classifiers identify the function that minimises the distance
between similar images; (3) Random Forests are based on the construction of multiple
classifiers (decision trees aka the forest) using different subsets of the available features

Table 1.
Systematic test of the performance of four different texture features for five different classifiers on all
112 species.

Feature/strategy Classifier % recognition

LBP SVM 89.3
GLCM SVM 21.4
HOG SVM 19.3
Gabor SVM 54.8
LBP kNN 76.3
GLCM kNN 35.9
HOG kNN 8.7
Gabor kNN 47.2
LBP RF 76.5
GLCM RF 40.4
HOG RF 27.8
Gabor RF 67.6
LBP MLP 84.9
GLCM MLP 37.7
HOG MLP 13.3
Gabor MLP 15.1
LBP LR 89.1
GLCM LR 29.1
HOG LR 13.1
Gabor LR 53.9

In the table, the accuracy per feature set/classifier is given. The Local Binary Pattern (LBP) feature
with the Support Vector Machine classifier (first row) clearly presents the best score. Gabor, Gabor feature;
GLCM, Grey-level Co-occurrence Matrix; HOG, Histogram of Oriented Gradient feature; LBP, Local Binary
Patterns; SVM, SupportVectorMachine (linear); kNN, k-NearestNeighbour; RF, RandomForest;MLP,Multi-
Layer Perceptron; LR, Logistic Regression. For all cases tested, 112 classes (species) were in the training and
the test set.
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extracted from images; the obtained classifiers are then applied to a new image, and a fi-
nal decision about the classification of the new image is built based on the aggregation
of the results of the different classifiers — for example, by selecting the classification that
is produced equally by the largest number of classifiers; (4) Multi-layer Perceptrons em-
ploy a stacked collection of linear segregators, aka perceptrons, in order to simulate pos-
sibly non-linear segregators; and (5) Logistic Regression classifiers identify the likelihood
of an image belonging to a category based on sigmoid non-linear functions. For each clas-
sifier, we extracted four features. These features correspond to different image properties:
(1) Local Binary Patterns (LBP) correspond to colour and grey-level fluctuations found in
a predefined window, i.e. neighbourhood, within a given image (Fig. 1C–D); (2) Grey-Level
Co-occurrence Matrices (GLCM) correspond to grey-level fluctuations found in an image
as a whole, thus characterising textures; and (3) Gabor features (Fig. 1E–F) and (4) His-
togram of Oriented Gradients (HOG; Fig. 1G–H) characterise the gradient of variation in
grey-level and colour in image pixels belonging to delimited regions within an image (pic-
tures of Fig. 1 and additional images can also be consulted via http://bio-imaging.liacs.nl/
galleries/IAWA-WoodClassification/).

The aim of a classifier is to predict the species identity of an “unseen” sample. Therefore,
the classifier needs to be validated in order to prevent overfitting or selection bias.We have
made randomly generated training sets with 10-fold cross-validation for all classifiers. In
other words, the image dataset was randomly split into 10 subsets, and for each classifier,
the following procedure was used to optimise its performance: (1) one subset was selected,
(2) the classifier was trained to segregate the target classes (i.e. wood images) using images
in the remaining 9 subsets, (3) the performance of the optimised classifier was tested on
the selected subset, (4) steps (1)–(3) were repeated for all of the 10 subsets, in order to ob-
tain an average performance of the classifier when applied to subsets that were not used
for training, and (5) the calibration of the classifier was incrementally adjusted to reach
optimal average performance.

Average values for accuracy from this cross-validation are reported. The accuracy rates
resulting from our classifiers (Table 1) can be compared with the rates in Table 2 that sum-
marises results of previously publishedpapers based on the sameMartins dataset, enabling
us to evaluate the accuracy of comparable classifiers applying manually adjusted texture
features.Details of the computational classifiers used, and their extracted features are avail-
able upon request.

Wood identification based on Convolutional Neural Networks
Recent developments in pattern recognition have brought about new evolution to neu-

ral networks in the form of Convolutional Neural Networks (CNNs). CNNs advance on
multi-layer perceptrons by employing (1) a large collection of layers of perceptrons, such
that in each layer the connections betweenperceptrons are different, and (2) information is
transferred between layers based on the mathematical notion of convolution, which com-
bines the output of selected layers in order to build the input for a following layer. With
this organisation of perceptrons based on structured connections within layers and convo-
lutions to transfer information across layers, it is possible to combine supervised and un-
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Table 2.
Summary of the results based on computer vision publications that used the Martins et al. (2013)
dataset of 112—mainly neotropical— timber species.

Number of classes Features/strategy Classifier Recognition
rates (%)

References

Training Testing

112 112 LBP SVM 80.7 Martins et al. (2012)
112 112 LBP + LPQ SVM 86.5 Martins et al. (2012)
68 44 Ensemble Texture Features DSC 93 Martins et al. (2015)
112 112 LPQ + GLCM SVM 93.2 Cavalin et al. (2013)
112 112 LPQ-Blackman SVM 95 Kapp et al. (2012)
112 112 CNN CNN 95 Hafemann et al. (2014)

Only the last row refers to a deep learning study, the other studies only have used texture-based fea-
tures. CNN, Convolutional Neural Networks; DSC, Dynamic Selection of Classifier; GLCM, Grey-level Co-
occurrence Matrix; LBP, Local Binary Patterns; LPQ, Local Phase Quantization; SVM, Support Vector Ma-
chine (Gaussian Kernel).

supervised classification by aggregating images in classes, i.e. unsupervised classification,
and then segregating classes according to observed features, i.e. supervised classification.
Thus, a CNN can consist of different layers and each of these layers can be connected in
different ways. The layers and the connections are the mark-up of the “net” and this struc-
ture is referred to as the architecture. So, different architectures can be used to organise
perceptrons in CNNs, and each of these architectures has specific characteristics that work
well only for specific datasets and require the data to be prepared in specific ways.

Thepreparationof thedata before classification is an important step inCNN.Thenotion
of transfer learning (Pan & Yang 2010), which corresponds to bootstrapping the training
steps using images from a different domain— i.e. not related to wood anatomy but featur-
ing similar structure when compared with the anatomical images—has greatly enhanced
the learning outcome of the training of classifiers with CNN in our experiments. Using this
technique,wehave pre-trained theCNN inour experimentswith amuch larger dataset that
is available in ImageNet (Russakovsky et al. 2013), a publicly available resource of labelled
images which is often used for benchmarking of algorithms (http://www.image-net.org/).
This helps to avoid training the CNN from scratch with a dataset that is relatively small.
In addition, there are strategies in CNN to prevent overfitting by tuning the weights in the

Figure 1. (A) Cross-section of Grevillea robusta (angiosperm) and (B) Taxodium distichum (gym-
nosperm), two species included in theMartins database, with visualization of some of the computer
extracted features used to classify the timbers. All images are generated using theMatLab Image Pro-
cessing Toolbox. (A–B) Original cross-sections. (C–D) The Local Binary Pattern (LBP) texture feature
maps from A–B; the window size for the LBP computation was 3 × 3 pixels. (E–F) Gabor file with 4
orientations and a scale of 4; the 4 orientations are assembled in one 4 × 4 panel (0, 45, 90, 135 ori-
entation, respectively). (G–H) The Histogram of Oriented Gradient feature for A–B; a window size of
8 × 8 pixels was used to assemble the orientation of the gradients.
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Table 3.
Systematic test of the performance of Convolutional Neural Networks based on four different archi-
tectures (GoogLeNet, Alexnet, VGG16, ResNet101).

GoogLeNet Alexnet VGG16 ResNet101

Gymno vs angio 96.3 99.2 99.8 99.7
species 80.1 85.9 90.7 96.4

First, a two-class problem (gymnosperms vs angiosperms) was evaluated. Second, all images were eval-
uated at the species level (112 species). In terms of accuracy, we observed that ResNet101 is the best
performer, while GoogLeNet is the worst.

layers of the CNN. These strategies structurally enhance the learning outcome of the CNN,
and the performance can still increase further when adding more labelled data. Details of
the deep learning analyses are provided in Appendix B.

The results obtained with CNN have been outstanding; however, the deployment of a
CNN is not out-of-the-box. We have investigated four popular CNN architectures, namely
GoogLeNet, AlexNet, VGG16 andResNet101, and explored their accuracywith respect to the
Martins database. For Alexnet the images were resampled (256 × 256 pixels), but original
images were used for the other architectures. The results of our experiments for the four
CNN architectures are listed in Table 3.

RESULTS AND DISCUSSION

Wehave evaluated the performance of computer vision classification for tree species at the
species level based on the largest available database of microscopic images from transverse
sections, covering 20 images for 112 timber species (Martins et al. 2013). Using a combina-
tion of five different classifiers extracting four features each, we conclude that the Support
VectorMachine (SVM), using the Local Binary Pattern feature (LBP; Fig. 1C–D), has the best
performance to identify thewood images, leading to 89.3% accuracy (Table 1). This surpris-
ingly high recognition rate based on only transverse sections outperforms the LBP analysis
in the initial Martins et al. (2012) experiments (89.3 vs 80.7%; Tables 1 and 2). This is due to
the experimentation with the parameters of the LBP method: given the resolution of the
image, there is an optimum that can be accomplished for the feature to come out best.

In the past, theMartins dataset has been subjected to the extraction of combinations of
additional features to further increase the species recognition rate (Table 2). For instance,
the combination of Local Binary Patterns and Local Phase Quantization features initially
yielded a recognition rate of 86.5% (Martins et al. 2012). Martins et al. (2015) applied a large
collection of texture-based features to explore local patterns found in images, namely Ga-
bor filters and Local Phase Quantization, and point-based features to explore individual
pixel values — namely scale-invariant feature transform (SIFT) and speed-up robust fea-
ture (SURF)— resulting in a similar recognition score of 93%. Another approach, referred
to as the quadtree approach resulting in a regular subdivision in square regions within the
image (Samet 1984), was applied by Cavalin et al. (2013). Computing an ensemble of fea-
tures in these subdivisions resulted in a boosting of the recognition rate to 93.2%. Kapp et
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al. (2012) also used a quadtree-based approach to assess multiple sets of features on the
same dataset and reported recognition scores of 95%. Finally, Hafemann et al. (2014) com-
pared textural descriptors with classical classifiers to the performance of a Convolutional
Neural Network (CNN), which yielded an accuracy of 95% (Table 2).

Based on CNN with ResNet101 architecture in our study, we could further improve this
high species recognition rate in our study up to 96.4%, while at the gymnosperm versus
angiosperm level a recognition rate of over 99% could be accomplished for all three CNN
architectures in our evaluation (Table 3). Misidentification at the species level may have
been caused by the striking resemblance between transverse sections of the same species,
poor quality of some of the sections, limits to image quality in the dataset, or by taxonomic
synonymy issues. For example, the original Martins dataset included Cephalotaxus dru-
pacea and C. harringtonia as separate species, while these are now considered as synonyms
(Appendix A). This implies that the species recognition rates in Tables 1–3 should be even
higher because some of the mismatches (false negatives) are actually classified correctly
(true positives). The fewmisidentifications at the higher gymnosperm vs angiosperm level
is due to the inclusion of Ephedra, which is one of the few vessel-bearing gymnosperms
that resemblemore the vessel-bearing angiosperms compared to the typical tracheid-based
gymnospermwood in transverse sections. Further insight in classification performance re-
quires the images to be of excellent quality, which is not the case for the original images in
theMartins database.We have learned fromour preliminary analysis based on the original,
higher resolution Naturalis images that the texture features studied resulted in higher per-
formance scores over the complete spectrum of features. However, for a classifier to work
well with the self-generated images, we could not add a sufficient number of images to sup-
port this. Thismeans thatweonly used theNaturalis images in testing. Further experiments
are required to define how many images per species need to be added to get a stable and
accurate prediction from the trained classifier, based on the quality of the images. In fu-
ture work, we will also combine our results with ongoing research about the combination
of knowledge-based reasoning and machine learning to improve the performance of the
classifiers, enabling us to account explicitly for expert knowledge together with knowledge
synthesis obtained through machine learning.

The high species recognition scores presented inTables 1–3 support the validity of wood
anatomy in species identification and encourage us to further expand the existing Martins
dataset with extra microscopic images. As a first step, it would be interesting to evalu-
ate how the species recognition rates would be further improved when a complementary
dataset of tangential wood images (20 per species, preferably from 20 mature individuals
covering the entire range of the species) is added. As a second step, building a more com-
plete reference database, including also transverse and tangential images from the top 100
traded timber species (annex 11 in UNODC Committee 2016) and all the CITES-listed tim-
bers and their look-a-likes, is desired to further finetune existing computer-assisted tools to
deal with more challenging classifying problems. Adding radial sections is not desired as
the length of the rays in radial sections heavily relies on the exact radial orientation plane
and the waviness of the rays, thereby jeopardizing the accuracy of the classifier.
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In terms of the workflow for the extension of the dataset, it is of vital importance that a
wood anatomistmakes a first assessment on the representativeness of awood sample or an
available glass slide. The online informationprovided by scientificwood collections around
the world summarised in Index Xylariorum (Stern 1988) and continuously updated under
the guidance of IAWA (http://www.iawa-website.org/en/Wood_collection/Overview_of_
Wood_Collection.shtml) and GTTN (https://globaltimbertrackingnetwork.org/products/
iawa-index-xylariorum/), is helpful in this regard. Once collected and approved, the wood
sample can be further processed (sections and images), and subsequently added to the
dataset. In order to understand texture features, the resolving power of the image should be
properly addressed and taken into account at the acquisition. For example, the underper-
formance of some of the features (Tables 1 and 2) can be partially understood by the lack of
resolution— and thus detail — of some of the images. Therefore, the process of selecting
wood samples and making high-quality images should be carried out in close collabora-
tion between a wood anatomist and a computational scientist with thorough knowledge
in imaging and machine learning. In this manner, we can produce a high-quality dataset
for the training of the classifier.

If these global wood databases would be matched with complementary databases
(anatomy, chemical profiling, DNA) representing the same species, wood scientists can
develop a robust tool that facilitates (1) identification of traded woods in an efficient and
accurateway, (2) enables fine-scale assessment of geographic provenance of imported logs,
and (3) allowsDNA fingerprinting.These complementary toolswouldboost forensic timber
research and permit courts to prosecute wood trading companies for smuggling illegal tim-
ber. Examples of detrimental fines have already been imposed by the court towood trading
companies (e.g., LumberLiquidators,GibsonGuitars), proving that implementationof tim-
ber laws (e.g., EUTR, Lacey act) can be successful. To make the anatomy tool generally
accessible, the trained computer algorithms can be implemented in a cloud-based, com-
puter vision tool enabling everyone to identify illegally traded timbers. However, this can
only work when front-line officers and other stakeholders in the field know how to prepare
(unstained) wood sections with sufficient quality and upload pictures to the wood iden-
tification web server. Also, here wood anatomists can play an important role in training
stakeholders using proper basic tools (cooking pot, sliding microtome, sharp disposable
blades, standard light microscope with camera). Evidently, before deciding to make wood
sections, stakeholders can do a preliminary screening using one of the available portable
devices to identify woods based on a cut surface (e.g. xylotron, xylorix), and then continue
making wood sections of the suspicious samples.

CONCLUSIONS

The use of traditional wood anatomical descriptions following standardized features
(IAWA Committee 1989, 2004) has been successfully applied to characterize and compare
angiosperm and gymnosperm genera, but we are facing its limits with respect to tim-
ber identification at the species level. Computer-assisted classification based on texture
features takes into account the standardized anatomical features and at the same time in-
tegrates other features like colour variation and acuteness of edges. We, therefore, believe
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that the use of computer vision techniques presents a powerful tool to boost the accuracy
of timber recognition based on microscopic wood anatomy. In this paper, we found a re-
markably high success rate in computer-assisted identification using only transverse wood
sections from 112 species (Tables 1–3). However, we must stress that this Martins database
is far from complete as a test database to rigorously assess the value of computer vision
algorithms in timber identification. Therefore, we encourage expanding this database by
adding wood samples from the top 100 most traded timber species, along with the CITES-
listed timber species and their look-a-likes. Using close interaction between computational
scientists and wood anatomists, our community can compile an extensive, worldwide ref-
erence database including a sufficient number of transverse and tangential microscopic
images from the species of interest. Whether or not 20 images per species will suffice, is
a topic for further investigation and will probably also depend on various image-related
aspects, such as image resolution, biological and staining variation amongst the images,
and section artefacts.

In the short term, itwill be important to develop this global reference database of micro-
scopic wood images representing all relevant traded timber species. In addition, training of
classifiers should be benchmarked on a large image dataset in combination with analyses
of the mismatches, as only then the true benefits of the classification procedure emerge.
In the longer term, a global concerted effort between wood anatomists and computer sci-
entists should be able to implement an open-access, cloud-based, computer-vision-based
classification tool enabling a more efficient and more accurate identification process of
wood. This wood identification tool would benefit scientists, customs officers, and other
stakeholders who are confronted with identification of wood samples, including bona fide
wood trading companies that are eager to receive more support in efficient identification
protocols for their shipments. Moreover, we envision that the accuracy of this online tool
will be robust enough to support prosecutions of wood trading companies in court that
violate (inter)national regulations, and evidently these online identifications must be vali-
dated in a court of law by wood anatomy experts. It would be a great opportunity for IAWA
to play a leading role in facilitating both the short- and longer-term goals, and to ideally
also act as a coordinator to help building complementary reference datasets based onDNA
basedmethods and chemical profiling. Only a collaborative effort amongst wood biologists
will be able to contribute to the conservation of our forests and itswildlife andwill generate
an increasing awareness of the societal relevance of scientific wood collections and wood
anatomical expertise worldwide.
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APPENDIX B: DETAILS OF THE DEEP LEARNING ANALYSES

The different nets for the deep learning classification were implemented in Caffe (https://
caffe.berkeleyvision.org/). In addition,weusednumpy, scikit-learn, andOpenCV-python in
the experiments. For convergent nets, we have used deploy.prototxt to do inference work.
The deep nets, i.e., VGGnets, Residual Nets and GoogLeNet, were all run with the same
training parameters. Both the Martins and the Naturalis-extended data set were used in
the training. The netswere trained on anUbuntu-based Linuxworkstation that is equipped
with two TITAN GPU NVidia cards.

Within the Caffe environment the following settings are used:

>net: ”Users/. . . ” # Path to the training network architecture file, specifically train_val.prototxt.
>test_iter: 50 # Number of test/validate iteration. To be noticed, test_size == test_iter *

test_batch_size.
test_interval: 500 # Every 500 training iterations, forward one test validation.
base_lr: 0.001 # The original learning rate.
lr_policy: ”step” # The adjustment strategy of learning rate. If set as “step”, then base_lr *

gamma ̂ (floor(iter / stepsize)), iter here refers to the current iteration
number.

gamma: 0.1 # Hyperparameter in the learning rate updating.
stepsize: 1000 # Hyperparameter in the learning rate calculation.
display: 50 # Display training loss and accuracy every 50 iterations.
max_iter: 20000 # The maximum number of training iterations.
momentum: 0.9 # Optimization hyperparameter in weighted gradient descent.
weight_decay: 0.0005 # Hyperparameter in preventing from overfitting.
snapshot: 2000 # In order to restart the training process quickly, weights and network status

are saved as a snapshot every 2000 iterations.
snapshot_prefix: ”. . . ” # Prefix of saved snapshot models.
solver_mode: GPU # Using GPUs as computing resources.

Detailed information is available on request.Wedo realize that the current approach for
deep learning has been moved to Tensorflow (https://www.tensorflow.org/) and other en-
vironments. However, our original experiments were performed with Caffe, and therefore
we present specifically these parameters.
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