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Abstract

Given graphs G, H1 and H2, let G
mr−−→ (H1,H2) denote the property that in every edge-colouring of G there is a monochromatic

copy of H1 or a rainbow copy of H2. The constrained Ramsey number, defined as the minimum n such that Kn
mr−−→ (H1,H2), exists

if and only if H1 is a star or H2 is a forest. We determine the threshold for the property G(n, p)
mr−−→ (H1,H2) when H2 is a forest.
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1. Introduction

Given graphs G, H1, and H2, we write G
mr−−→ (H1,H2) if in every colouring of E(G) (with no restriction on the

number of used colours) there is a monochromatic copy of H1 or a rainbow copy of H2, that is, a copy of H1 with all
edges having the same colour or a copy of H2 with no two edges of the same colour. Here we investigate the property
G

mr−−→ (H1,H2) when G is the binomial random graph G(n, p).
The constrained Ramsey number rc(H1,H2), sometimes called rainbow Ramsey number, is defined as the minimum

n ∈ N such that Kn
mr−−→ (H1,H2). In [8] it is proved that the number rc(H1,H2) exists if and only if H1 is a star or H2
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aDepartamento de Matemática, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
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is a forest (for results concerning constrained Ramsey numbers, see [1, 2, 5, 6, 7, 9, 8, 12, 15]). Therefore, assuming
that H1 is a star or H2 is a forest, since the property G(n, p)

mr−−→ (H1,H2) is increasing, it admits a threshold function
(see [4]). We recall that a function p̂ : N → [0, 1] is called a threshold function for a graph property P in G(n, p)
if limn→∞ P[G(n, p) ∈ P] = 1 for p � p̂ and limn→∞ P[G(n, p) ∈ P] = 0 for p � p̂. Such limits are called the
1-statement and 0-statement respectively. We call any p′ = Θ(p̂) ‘the threshold’ for P.

Definition 1.1. Given graphs H1 and H2 for which rc(H1,H2) exists, we denote the threshold for G(n, p)
mr−−→ (H1,H2)

by p̂(H1,H2).

In this paper we determine p̂(H1,H2) when H2 is a forest. The 2-density of a graph G, denoted by m2(G), is defined
as follows, where we denote by v(G) and e(G), respectively, the number of vertices and edges of G.

m2(G) =


max
{

e(J)−1
v(J)−2 : J ⊂ G, v(J) ≥ 3

}
if v(G) ≥ 3,

1/2 if G = K2.

We will also use the concept of maximum subgraph density of a graph G, denoted by m(G), which is defined as

m(G) = max
{

e(J)
v(J)

: J ⊂ G, v(J) ≥ 1
}
.

We now discuss the thresholds for G
mr−−→ (H1,H2), which depend on the structure of H1 and H2. Let us first discuss

the easy cases. If H1 or H2 has only one edge, then the threshold is given by the appearance of an edge in G(n, p),
which gives p̂(H1,H2) = n−2. If H2 is a forest with e(H2) = 2 and H1 is any graph with e(H1) ≥ 2, then we can easily
check that p̂(H1,H2) = n−1/m(H1) (see Proposition 1.3).

In the remainder of the introduction, assume that e(H1) ≥ 2 and e(H2) ≥ 3. From the celebrated result of Rödl
and Ruciński [13], we know that if H1 is not a star forest, then for p � n−1/m2(H1) with high probability (that is, with
probability tending to 1 as n tends to infinity) there is a colouring χ of the edges of G(n, p) with two colours containing
no monochromatic copy of H1. Clearly, if H2 is a forest with at least three edges, there is no rainbow copy of H2 in χ.
Therefore, if p � n−1/m2(H1), then with high probability G(n, p)

mr−−→ (H1,H2) does not hold. We prove that n−1/m2(H1) is
indeed the threshold for G(n, p)

mr−−→ (H1,H2) when H1 is not a star forest and H2 is a forest.
Now let H1 be a star forest. We say that a pending forest is a forest composed of a disjoint union of edges and

cherries (2-edge paths), and a star forest that has at least two components and is not a matching is a non-trivial
disconnected star forest or simply disconnected star forest. If H1 is a disconnected star forest and H2 is not a pending
forest, then we prove that the threshold for G(n, p)

mr−−→ (H1,H2) is also given by n−1/m2(H1). Summarising, if either H1
is not a star forest and H2 is a forest, or H1 is a disconnected star forest and H2 is not a pending forest, then H2 is
irrelevant to the threshold, as we show that is given by n−1/m2(H1).

For the remaining possibilities for H1 and H2, the threshold depends on both H1 and H2. We prove that if H1 is a star,
or if H1 is a disconnected star forest and H2 is a pending forest, then the threshold for G(n, p)

mr−−→ (H1,H2) is given by
n−1/mF (H1,H2), where the parameter mF(H1,H2) is defined as follows: mF(H1,H2) = min{m(F) : F is a forest and F

mr−−→
(H1,H2)}. We show that for such graphs H1 and H2, there is a forest F with a fixed number of vertices and components
such that m(F) = mF(H1,H2) (see Proposition 4.2).

Our main theorem is as follows.

Theorem 1.2. Let H1 be a graph and H2 be a forest such that e(H1) ≥ 2 and e(H2) ≥ 3.

(i ) If H1 is not a star forest; or H1 is a disconnected star forest and H2 is not a pending forest, then

p̂(H1,H2) = n−1/m2(H1). (1)

(ii ) If H1 is a star; or H1 is a disconnected star forest and H2 is a pending forest, then

p̂(H1,H2) = n−1/mF (H1,H2). (2)
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Some particular cases are not covered by Theorem 1.2. The following proposition characterises their behaviour for
completeness.

Proposition 1.3. Let H1 be a graph and H2 be a forest.

(i ) If H1 is a matching with e(H1) ≥ 2 and H2 is a non-pending forest, then

p̂(H1,H2) = n−1. (3)

(ii ) If H2 is a cherry and H1 is not a forest, or if H2 is a 2-edge matching, then

p̂(H1,H2) = n−1/m(H1). (4)

(iii ) If H2 is a cherry and H1 is a forest, then

p̂(H1,H2) = n−1−1/(v(H1)−1). (5)

Note that when H2 is a forest with e(H2) ≥ 2, Theorem 1.2 and Proposition 1.3 cover all possibilities for graphs
H1. The case e(H2) = 2 is covered by Proposition 1.3 (ii )– (iii ). For e(H2) ≥ 3, note first that the case where H1 is not
a star forest is covered in Theorem 1.2 (i ). On the other hand, if H1 is a star forest, then H1 is either a star, a matching,
or a disconnected star forest. Items (i ) and (ii ) of Theorem 1.2 cover the case where H1 is a star or a disconnected star
forest, and Proposition 1.3 (i ) deals with the case where H1 is a matching.

The problem of determining the threshold for G(n, p)
mr−−→ (H1,H2) when H1 is a star and H2 is not a forest is

still open. We remark that this problem is a generalisation of the well-known anti-Ramsey problem, which aims to
determine the threshold for the property that every proper colouring of E(G(n, p)) contains a rainbow copy of a given
fixed graph H. In fact, an edge-colouring that contains no monochromatic path with 2 edges is a proper colouring.
In more generality, an edge-colouring that contains no monochromatic K1,r is an r-bounded colouring. In [10] it is
proved that, for every fixed r and every graph H2, with high probability we have G(n, p)

mr−−→ (K1,r,H2), whenever
p � n−1/m2(H2). This, however, turns out not to be the threshold for some graphs (see [11]).

This paper is organised as follows. In Section 2 we provide some results that will be useful in the proofs of
Theorem 1.2 and Proposition 1.3. Section 3 contains the proof of Theorem 1.2 (i ) and in Section 4 we prove Theo-
rem 1.2 (ii ). We remark that since Proposition 1.3 follows from simple arguments combined with Theorem 1.2 (i )
and a construction presented in Subsection 3.2, we choose to omit it in this extended abstract.

2. Random graphs

Given a graph G = (V, E) and a colouring χ of E, for any X ⊂ V , let dχ(v, X) be the colour-degree of v in X, given
by dχ(v, X) = |{χ(e) : e \ {v} ⊂ X}|. We write simply dχ(v) for dχ(v,V(G)). The following definition plays an important
rôle in our proof. Let H be a graph, r ≥ 2 be an integer and let b > 0. A graph G = (V, E) satisfies property Q(b, r,H) if
every edge colouring χ of G with no monochromatic copy of H is such that every subset X ⊂ V with |X| ≥ bn contains
a vertex v with dχ(v, X) > r.

The aim of this section is to prove the following result, which will be useful in the proof of the one statement of
Theorem 1.2 (1).

Theorem 2.1. Let H be a connected graph and let r ≥ 2 and b > 0. If p � n−1/m2(H), then G(n, p) satisfies property
Q(b, r,H) with high probability.

The following classical result of Bollobás will be useful.

Theorem 2.2 ([3]). Let H be an arbitrary graph with at least one edge. Then, the threshold for H to be a subgraph of
G(n, p) is n−1/m(H).
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We write G → (H)r for the property that in every r-colouring of the edges of G(n, p) there is a monochromatic
copy of H. When dealing with a graph H1 that is not a star forest, and a forest H2, we use the following celebrated
result proved by Rödl and Ruciński to obtain the 0-statement for the property G(n, p)

mr−−→ (H1,H2).

Theorem 2.3 (Theorem 1′ of [13]). For every integer r ≥ 2 and for every graph H which is not a star forest there
exists a constant C such that

lim
n→∞

(G(n, p)→ (H)r) =
{

0, if p � n−1/m2(H) (6)
1, if p ≥ Cn−1/m2(H) . (7)

We also need the following strengthening of the 1-statement of Theorem 2.3.

Theorem 2.4 (Theorem 3 of [13]). Let H be a graph with at least one edge and let r ≥ 2 be an integer. There exist
constants n0, C, b such that if n ≥ n0 and p ≥ Cn−1/m2(H), then

P (G(n, p)→ (H)r) ≥ 1 − exp
(
−bn2 p

)
.

By using the union bound and Theorem 2.4, we conclude that the random graph G(n, p) satisfies the following
property.

Corollary 2.5. Let H be a graph with at least one edge and let r ≥ 2 and ε > 0. If p � n−1/m2(H), then the following
holds with high probability. For every edge colouring χ of G(n, p) with no monochromatic copy of H and every
X ⊂ V(G(n, p)) of size |X| ≥ εn, the colouring χ|(X

2) contains more than r colours.

Proof. It follows directly from the union bound over at most 2n subsets of vertices and the bound given in Theorem 2.4.

To prove Theorem 2.1, it suffices to strengthen the conclusion of Corollary 2.5 to ensure that a single vertex is
incident to edges of r different colours. For that, the following definition will be useful. We say a colouring χ of a
graph F is r-local if dχ(v) ≤ r for every v ∈ V(F). The following lemma was shown in [14].

Lemma 2.6 (Lemma 2 of [14]). Let F and H be graphs such that H is connected. If there is an r-local colouring χ
of F with no monochromatic copy of H, then there exists W ⊂ V(F) of size |W | ≥ r!

rr v(F) and an r-colouring χ′ of the
edges of F[W] with no monochromatic copy of H.

Combining Corollary 2.5 and Lemma 2.6, we prove Theorem 2.1.

Proof of Theorem 2.1. We want to prove that, with high probability, every edge colouring χ of G = G(n, p) with no
monochromatic copy of H is such that every subset X ⊂ V with |X| ≥ cn contains a vertex v with dχ(v, X) > r.

Take ε = cr!/rr, let χ be an edge colouring of G = G(n, p) with no monochromatic copy of H and consider a
set X ⊂ V(G) of size |X| ≥ cn. Suppose for a contradiction that χ|E(G[X]) is r-local. By Lemma 2.6 applied with
F = G[X] and H, there exists a set W ⊂ V(G[X]) with |W | ≥ (r!/rr)|X| ≥ εn and an r-colouring χ′ of the edges of
G[W] with no monochromatic copy of H. But, from Corollary 2.5, we know that with high probability there is no
such r-colouring.

3. Threshold at n−1/m2(H1)

Let H1 be a graph and H2 be a forest such that e(H1) ≥ 2 and e(H2) ≥ 3. We prove Theorem 1.2 (i ), which gives
the threshold n−1/m2(H1) for G(n, p)

mr−−→ (H1,H2) when H1 is not a star forest, or when H1 is a disconnected star forest
and H2 is not a pending forest.
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3.1. 1-statement

In this section it will be useful to assume that H1 is connected, a fact that follows easily by induction on the number
of components of H1 together with the following proposition.

Proposition 3.1. Let G1 and G2 be connected graphs such that m2(G1) ≥ m2(G2) and let H be a graph obtained by
connecting G1 and G2 by a single edge. Then m2(H) = max{m2(G1), 1}.

Proof. If m2(G1) < 1, then G1 = K2 and m2(H) = 1, so we may assume m2(G1) ≥ 1. Clearly, it suffices to show that
m2(H) ≤ m2(G1). Let J ⊂ H be a subgraph of H with at least three vertices, and let Ai = V(Gi) ∩ V(J) for 1 ≤ i ≤ 2.
We may also assume that A1 and A2 are both nonempty. If |A1|, |A2| ≥ 3, then using that (a+b)/(c+d) ≤ max{a/c, b/d}
for any a, b ≥ 0 and c, d > 0, we have

e(J) − 1
v(J) − 2

≤ (e(H[A1]) − 1) + (e(H[A2]) − 1) + 2
(|A1| − 2) + (|A2| − 2) + 2

≤ max{m2(H[A1]),m2(H[A2]), 1} ≤ m2(G1).

If |A1|, |A2| ≤ 2, then the graph J has no cycles and therefore m2(J) ≤ 1 ≤ m2(G1). Moreover, if |Ai| ≥ 3 and |A3−i| ≤ 2
for some 1 ≤ i ≤ 2, then e(J) − e(J[Ai]) ≤ |A3−i|, that is, the inclusion of A3−i adds at least as many vertices as edges,
implying m2(J) ≤ max{m2(J[Ai]), 1} by a similar argument as above. This concludes the proof.

To prove the 1-statements of Theorem 1.2 (i ), we shall use Theorem 2.1 to prove that for every connected graph H
and every fixed tree T , the random graph satisfies G(n, p)

mr−−→ (H, T ) with high probability as long as p � n−1/m2(H).
For this purpose, we will consider the complete d-ary rooted tree of height h, for general h and d, denoted by T (d, h).

Theorem 3.2. Let H be a connected graph. If p � n−1/m2(H), then G(n, p)
mr−−→ (H, T (d, h)) with high probability.

Since Theorem 2.1 states that G(n, p) satisfies property Q(b, r,H) with high probability when p � n−1/m2(H),
Theorem 3.2 follows directly from the following deterministic lemma.

Lemma 3.3. Let H be a connected graph. For all positive integers d and h, there exist 0 < b, c < 1 and an integer
r ≥ 1 with the following property. If G satisfies Q(b, r,H), then in any edge colouring of G there is a monochromatic
copy of H or there are �c · v(G)� vertex-disjoint copies of T (d, h) in G, each of them rainbow.

Proof. Let H be a connected graph and fix positive integers d and h. Our proof is by induction on h. Let χ be an edge
colouring of G.

We may assume that there are no monochromatic copies of H under χ, as otherwise the proof would be finished.
Recall that, in this case, Q(b, r,H) says that every subset X ⊂ V(G) with |X| ≥ bn contains a vertex incident to more
than r colours. Therefore, if h = 1, we may take b = 1/2, c = 1/2(d + 1) and r = d − 1. Indeed, for such values, the
definition of property Q(b, r,H) allows us to iteratively find rainbow copies of T (d, 1) until we have used more than
n/2 vertices of G. This procedure therefore finds �cn� disjoint rainbow copies of T (d, 1), as claimed.

We now show that the result holds for h ≥ 1. Let b′, c′ and r′ be obtained by applying the base case h′ = 1 with
d′ := 2dh. Also, let b′′, c′′ and r′′ be obtained by applying the induction step with h′′ = h − 1 and d′′ = d. We will
show below that the conclusion of the lemma holds for b = b′′c′/2, r = max{r′, r′′} and c = c′c′′/2.

Let G be a graph satisfying Q(b, r,H), and observe that we may assume that cv(G) ≥ 1 because the conclusion of
the lemma is vacuous otherwise. Since b′ = 1/2 > b and r′ ≤ r, the graph G satisfies Q(b′, r′,H) and by induction
hypothesis contains a family L of �c′ · v(G)� ≥ (c′/2)v(G) rainbow vertex-disjoint copies of T (2dh, 1). Let X ⊂ V(G)
be the set of roots of such trees. Observe that, since b′′|X| ≥ b′′(c′/2)v(G) ≥ bn and r′′ ≤ r, G[X] satisfies property
Q(b′′, r′′,H). Therefore, by induction hypothesis, G[X] contains a familyT of �c′′ ·v(G[X])� ≥ �c·v(G)� vertex-disjoint
rainbow rooted copies of T (d, h − 1) in X.

Notice that, by definition of X, each leaf v of a tree T ∈ T is the root of a tree Lv ∈ L. Since T has at most dh

edges, there are dh edges in each Lv whose colours do not appear in T . A greedy procedure can then be used to extend
T to a tree of height h, concluding the the induction step and the proof of the lemma.
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3.2. 0-statement

Let H2 be a forest with e(H2) ≥ 3. In this subsection we prove that if p � n−1/m2(H1), then the following holds with
high probability when H1 is not a star forest, or when H1 is a disconnected star forest and H2 is not a pending forest:
there is an edge-colouring of G(n, p) with neither a monochromatic copy of H1 nor a rainbow copy of H2. In fact, if
H1 is not a star forest, then this follows directly from the zero statement of Theorem 2.3 with r = 2 (recall that H2
has at least three edges). Thus, we may and shall assume that H1 is a disconnected star forest and H2 is not a pending
forest.

Since H1 is a forest, we have m2(H1) = 1. For p � n−1/m2(H1) = n−1, the expected number of cycles in G(n, p) is
o(1), and therefore G(n, p) is a forest with high probability. Therefore, to obtain the aimed 0-statement it is enough to
provide an edge-colouring χ of any given forest F avoiding monochromatic copies of H1 and rainbow copies of H2.

Proof of the 0-statement of Theorem 1.2 (i ). Let H1 be a disconnected star forest and H2 be a forest with e(H2) ≥ 3
that is not a pending forest. Let F be an arbitrary n-vertex forest composed by trees T1, . . . ,Tk, rooted at arbitrary
vertices with heights h1, . . . , hk.

In what follows, let Vord = (v1, . . . , vn) be an ordering of V(F) such that every vertex of Ti appears before every
vertex of T j in Vord for all 1 ≤ i < j ≤ n, and for each tree Ti, vertices at height h appear before vertices of height
h + 1, for every 0 ≤ h ≤ hi − 1. We construct a colouring χ : E(F) → N that contains no monochromatic copy of H1
or rainbow copy of H2. Since H2 is not a pending forest, either ∆(H2) ≥ 3 or H2 contains a path with three edges.

If ∆(H2) ≥ 3, then put χ(viv j) = i to every edge viv j with i < j. The colouring χ clearly has no monochromatic
copy of H1 as there are no vertex-disjoint stars with the same colour. Also, since every vertex of F is incident to edges
coloured with at most two colours and ∆(H2) ≥ 3, there is no rainbow copy of H2 in F.

Finally, if H2 contains a path with 3 edges, then we colour F by setting χ(e) = i, where vi is the unique vertex of e
of odd height in the tree containing e. As before, since there are no vertex-disjoint stars with the same colour, there is
no monochromatic copy of H1. Furthermore, under the colouring χ, there is no rainbow path v0v1v2v3, since either v1
or v2 would have odd heights and therefore its two incident edges would have the same colour.

4. Threshold below n−1

Let H2 be a forest with e(H2) ≥ 3. Here we prove Theorem 1.2 (ii ), which gives a threshold smaller than n−1 for
G(n, p)

mr−−→ (H1,H2) when H1 is a star, or when H1 is a disconnected star forest and H2 is a pending forest.
Recall that mF(H1,H2) = min{m(F) : F is a forest and F

mr−−→ (H1,H2)}. Propositions 4.1 and 4.2 below imply that
the parameter mF(H1,H2) is well defined for these particular graphs H1 and H2 (Corollary 4.3), from which it follows
that the threshold for G(n, p)

mr−−→ (H1,H2) is given by n−1/mF (H1,H2). Note that the 1-statement follows from the fact
that F

mr−−→ (H1,H2) and the fact that F ⊂ G(n, p) with high probability.

Proposition 4.1. If H1 is a star and H2 is a forest, then there exists a tree T such that T
mr−−→ (H1,H2).

Proof. Let H1 be a star with s edges. Consider a tree H′2 such that V(H′2) = V(H2) and E(H′2) ⊂ E(H2), rooted at some
arbitrary vertex v. Let e(H′2) = �, and let h be the height of H′2. We will show that an ((s − 1)(� − 1) + 1)-ary tree T of

height h satisfies T
mr−−→ (H1,H′2), which implies T

mr−−→ (H1,H2).
Note that in any edge-colouring avoiding a monochromatic copy of H1 there are at most s − 1 edges with any

given colour at each vertex of T . Thus, the edges from every non-leaf of T to its children must be coloured with at
least � different colours. Therefore, a greedy embedding that starts by assigning v to the root of T and always chooses
edges of previously unused colours will succeed in finding a rainbow copy of H′2 in any colouring of T that avoids a
monochromatic copy of H1.

In the next proposition we consider the case where H1 is a disconnected star forest and H2 is a pending forest.
Given a graph G with edges coloured by χ and v ∈ V(G), recall that dG,χ(v) denotes the numbers of colour used at
edges incident to v.
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Proposition 4.2. If H1 is a disconnected star forest and H2 is a pending forest, then there exists a tree T such that
T

mr−−→ (H1,H2).

Proof. Since H2 is a pending forest, we may assume (by extending isolated edges to cherries if necessary) that H2 is a
disjoint union of cherries, as clearly an edge-colouring of a tree with a rainbow copy of a graph that contains H2 also
contains a rainbow copy of H2. We may also assume, to simplify notation, that H1 has s stars with s edges each and
that H2 is composed by s cherries.

We prove that a complete d-ary tree T with height h(T ) = 16s3 + 3s and d = 2s2 + s satisfies T
mr−−→ (H1,H2). Let χ

be an arbitrary edge-colouring of such a tree T . If there are 3s vertices of T with colour-degree at least 2s, then there
is a rainbow copy of the forest of cherries H2. Otherwise, by removing these vertices we obtain a subgraph (a forest)
F of T with at least v(T ) − 3s vertices such that for all vertices v of F we have dF,χ(v) < 2s. Therefore, for every
internal v ∈ V(F), since dF(v) ≥ dT (v) − 3s ≥ 2s(s − 1) there is a monochromatic star in F centred at v with s edges.

Note that after removing a vertex from a complete d-ary tree T ′, we obtain at least one complete d-ary tree of height
h(T ′) − 1 and same internal degree. Then, since at most 3s vertices were removed from T to obtain F, we know that
F contains a complete d-ary tree T ′ of height 16s3 with d = 2s2 + s with the property that for every internal v ∈ V(F)
there is a monochromatic star centred at v with s edges.

Since T ′ is a complete d-ary tree, there is a path P with 16s3 vertices such that every edge of P belongs to a
monochromatic star with s edges. Supposing there is no monochromatic H1 in T ′, every subpath of P with 2s vertices
contains a rainbow cherry, and therefore P contains at least 8s2 rainbow cherries in total. To finish the proof, we
greedily pick a rainbow cherry and delete from P all edges whose colour appear in the chosen cherry. Since every
colour appears at most 2s times in P, this deletes at most 4s edges and therefore destroys at most 8s rainbow cherries.
Since P originally contained 8s2 cherries, it is possible to repeat this procedure s times and find a rainbow copy of H2,
as desired.

Corollary 4.3. Let H1 be a star and H2 be a forest, or let H1 be a disconnected star forest and H2 be a pending forest.
There is a forest Fm with a fixed number of vertices and components such that Fm

mr−−→ (H1,H2) and for any forest F′

with m(F′) < m(Fm) we do not have F′
mr−−→ (H1,H2).

Proof. Let v(H1,H2) = min{k ∈ N : there is a forest F with components of size at most k such that F
mr−−→ (H1,H2)}.

Note that in view of Propositions 4.1 and 4.2, the parameter v(H1,H2) is well defined. Let F (H1,H2) be the family
of all forests F with components of size at most v(H1,H2) such that F

mr−−→ (H1,H2) and consider a forest Fm with
minimum number of vertices among all forests of F (H1,H2).

We now prove the main result of this section.

Proof of Theorem 1.2 (ii ). Let H1 be a star and H2 be a forest, or let H1 be a disconnected star forest and H2 a
pending forest. From Corollary 4.3, there is a forest F with a fixed number of vertices and components such that
m(F) = mF(H1,H2).

For p � n−1/mF (H1,H2), the random graph G(n, p) contains a copy of F with high probability by Theorem 2.2.
Therefore, any colouring of G(n, p) contains either a monochromatic copy of H1 or a rainbow copy of H2. On the
other hand, if p � n−1/mF (H1,H2), with high probability G(n, p) is a forest with m(G(n, p)) < mF(H1,H2), which from
the definition of mF(H1,H2), implies the existence of a colouring of G(n, p) containing neither a monochromatic copy
of H1 nor a rainbow copy of H2. This concludes the proof.
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