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Abstract

Given graphs G, H, and H,, let G = (H,, Hy) denote the property that in every edge-colouring of G there is a monochromatic
copy of H; or a rainbow copy of H,. The constrained Ramsey number, defined as the minimum » such that K, RN (H,, H,), exists
if and only if H, is a star or H, is a forest. We determine the threshold for the property G(n, p) = (H,, H,) when H, is a forest.
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1. Introduction

Given graphs G, H, and H,, we write G = (Hi, H») if in every colouring of E(G) (with no restriction on the
number of used colours) there is a monochromatic copy of H; or a rainbow copy of H,, that is, a copy of H; with all
edges having the same colour or a copy of H, with no two edges of the same colour. Here we investigate the property

RN (Hi, H) when G is the binomial random graph G(n, p).
The constrained Ramsey number 1.(H,, H,), sometimes called rainbow Ramsey number, is defined as the minimum

n € N such that K, N (Hi, Hy). In [8] it is proved that the number r.(H;, H>) exists if and only if H; is a star or H»
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is a forest (for results concerning constrained Ramsey numbers, see [1, 2, 5, 6, 7, 9, 8, 12, 15]). Therefore, assuming

that H is a star or H is a forest, since the property G(n, p) = (H1, H») is increasing, it admits a threshold function
(see [4]). We recall that a function p: N — [0, 1] is called a threshold function for a graph property P in G(n, p)
if lim,o P[G(n, p) € P] = 1 for p > p and lim,,, P[G(n, p) € P] = 0 for p < p. Such limits are called the
1-statement and O-statement respectively. We call any p’ = ©(p) ‘the threshold’ for P.

Definition 1.1. Given graphs H, and H, for which r.(H,, H,) exists, we denote the threshold for G(n, p) iR (Hy, H)
by p(Hy, Hp).

In this paper we determine p(H;, H,) when H, is a forest. The 2-density of a graph G, denoted by m,(G), is defined
as follows, where we denote by v(G) and e(G), respectively, the number of vertices and edges of G.
max {4975 1 J € G, v(J) 2 3} ifw(G) 2 3,

m2(G) = { 1/2 G = K.

We will also use the concept of maximum subgraph density of a graph G, denoted by m(G), which is defined as

m(G) = max{@ JcG,v(J) > 1}.
v(J)

We now discuss the thresholds for G —» (Hy, H,), which depend on the structure of H; and H,. Let us first discuss
the easy cases. If H; or H, has only one edge, then the threshold is given by the appearance of an edge in G(n, p),
which gives p(H,, H,) = n~2.If H, is a forest with e(H,) = 2 and H, is any graph with e(H;) > 2, then we can easily
check that p(H,, H,) = n~'/""HV (see Proposition 1.3).

In the remainder of the introduction, assume that e(H;) > 2 and e(H,) > 3. From the celebrated result of Rodl
and Rucinski [13], we know that if H; is not a star forest, then for p <« n~VmH) with high probability (that is, with
probability tending to 1 as » tends to infinity) there is a colouring y of the edges of G(n, p) with two colours containing
no monochromatic copy of H;. Clearly, if H, is a forest with at least three edges, there is no rainbow copy of H; in y.
Therefore, if p < n~!/"(HD then with high probability G(n, p) = (H,, Hy) does not hold. We prove that n~!/"2(H) jg
indeed the threshold for G(n, p) = (H,, Hy) when H| is not a star forest and H; is a forest.

Now let H; be a star forest. We say that a pending forest is a forest composed of a disjoint union of edges and
cherries (2-edge paths), and a star forest that has at least two components and is not a matching is a non-trivial
disconnected star forest or simply disconnected star forest. If H; is a disconnected star forest and H, is not a pending
forest, then we prove that the threshold for G(n, p) = (Hy, H>) is also given by n~!/"#D Summarising, if either H,
is not a star forest and H, is a forest, or H, is a disconnected star forest and H; is not a pending forest, then H is
irrelevant to the threshold, as we show that is given by n~1/"2(HD,

For the remaining possibilities for H; and H», the threshold depends on both H; and H,. We prove that if H; is a star,
or if H; is a disconnected star forest and H, is a pending forest, then the threshold for G(n, p) LN (H,, H,) is given by
n-Ume(HLH) where the parameter my(H,, H,) is defined as follows: mp(H,, H>) = min{m(F): F is a forest and F —
(H1, Hy)}. We show that for such graphs H| and Hj, there is a forest F with a fixed number of vertices and components
such that m(F) = mp(H,, Hy) (see Proposition 4.2).

Our main theorem is as follows.

Theorem 1.2. Let H| be a graph and H, be a forest such that e(H,) > 2 and e(H,) > 3.

(i) If H, is not a star forest; or H, is a disconnected star forest and H, is not a pending forest, then

P(H), Ha) = n~/mtH), (1

(ii) If Hy is a star; or H; is a disconnected star forest and H, is a pending forest, then

P(H, Hy) = ! Imr i), ©)
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Some particular cases are not covered by Theorem 1.2. The following proposition characterises their behaviour for
completeness.

Proposition 1.3. Let H, be a graph and H; be a forest.

(i) If H, is a matching with e(H) > 2 and H, is a non-pending forest, then

p(Hy, Hy) =n". 3)

(ii) If Hy is a cherry and H, is not a forest, or if H, is a 2-edge matching, then

p(Hy, Hy) = p~ D), 4

(iii) If H is a cherry and H, is a forest, then

P(H1, Hy) = p 10D, &)

Note that when H, is a forest with e(H,) > 2, Theorem 1.2 and Proposition 1.3 cover all possibilities for graphs
H,. The case e(H,) = 2 is covered by Proposition 1.3 (ii )— (iii ). For e(H,) > 3, note first that the case where H| is not
a star forest is covered in Theorem 1.2 (i ). On the other hand, if H is a star forest, then H, is either a star, a matching,
or a disconnected star forest. Items (i ) and (ii ) of Theorem 1.2 cover the case where H; is a star or a disconnected star
forest, and Proposition 1.3 (i) deals with the case where H; is a matching.

The problem of determining the threshold for G(n, p) BN (Hy, Hy) when H; is a star and H; is not a forest is
still open. We remark that this problem is a generalisation of the well-known anti-Ramsey problem, which aims to
determine the threshold for the property that every proper colouring of E(G(n, p)) contains a rainbow copy of a given
fixed graph H. In fact, an edge-colouring that contains no monochromatic path with 2 edges is a proper colouring.
In more generality, an edge-colouring that contains no monochromatic Kj, is an r-bounded colouring. In [10] it is

proved that, for every fixed r and every graph H,, with high probability we have G(n, p) N (K1, Hy), whenever
p > n~ /MU This, however, turns out not to be the threshold for some graphs (see [11]).

This paper is organised as follows. In Section 2 we provide some results that will be useful in the proofs of
Theorem 1.2 and Proposition 1.3. Section 3 contains the proof of Theorem 1.2 (i) and in Section 4 we prove Theo-
rem 1.2 (ii ). We remark that since Proposition 1.3 follows from simple arguments combined with Theorem 1.2 (i)
and a construction presented in Subsection 3.2, we choose to omit it in this extended abstract.

2. Random graphs

Given a graph G = (V, E) and a colouring y of E, for any X C V, let d, (v, X) be the colour-degree of v in X, given
by d, (v, X) = |{x(e) : e\ {v} C X}|. We write simply d, (v) for d, (v, V(G)). The following definition plays an important
role in our proof. Let H be a graph, r > 2 be an integer and let b > 0. A graph G = (V, E) satisfies property Q(b, r, H) if
every edge colouring y of G with no monochromatic copy of H is such that every subset X c V with |X| > bn contains
a vertex v with d, (v, X) > r.

The aim of this section is to prove the following result, which will be useful in the proof of the one statement of
Theorem 1.2 (1).

Theorem 2.1. Let H be a connected graph and let r > 2 and b > 0. If p > n~ """ then G(n, p) satisfies property
Q(b, r, H) with high probability.

The following classical result of Bollobds will be useful.

Theorem 2.2 ([3]). Let H be an arbitrary graph with at least one edge. Then, the threshold for H to be a subgraph of
G(n, p) is n~1/mH),
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We write G — (H), for the property that in every r-colouring of the edges of G(n, p) there is a monochromatic
copy of H. When dealing with a graph H; that is not a star forest, and a forest H,, we use the following celebrated

result proved by Rodl and Ruciniski to obtain the O-statement for the property G(n, p) LN (Hy, Hy).

Theorem 2.3 (Theorem 1’ of [13]). For every integer r > 2 and for every graph H which is not a star forest there
exists a constant C such that

0, ifp<nt/m ©)

lim (G(n, p) — (H),) = { I, ifp > CnlimD 7

We also need the following strengthening of the 1-statement of Theorem 2.3.

Theorem 2.4 (Theorem 3 of [13]). Let H be a graph with at least one edge and let r > 2 be an integer. There exist
constants ng, C, b such that if n > ny and p > Cn="/"™" then

P (G, p) = (H),) 2 1 - exp (~bnp)

By using the union bound and Theorem 2.4, we conclude that the random graph G(n, p) satisfies the following
property.

Corollary 2.5. Let H be a graph with at least one edge and let r > 2 and & > 0. If p > n~'""®  then the following
holds with high probability. For every edge colouring x of G(n, p) with no monochromatic copy of H and every
X c V(G(n, p)) of size |X| > en, the colouring )(I(;() contains more than r colours.

Proof. 1t follows directly from the union bound over at most 2" subsets of vertices and the bound given in Theorem 2.4.
O

To prove Theorem 2.1, it suffices to strengthen the conclusion of Corollary 2.5 to ensure that a single vertex is
incident to edges of r different colours. For that, the following definition will be useful. We say a colouring y of a
graph F is r-local if d,(v) < r for every v € V(F). The following lemma was shown in [14].

Lemma 2.6 (Lemma 2 of [14]). Let F and H be graphs such that H is connected. If there is an r-local colouring y
of F with no monochromatic copy of H, then there exists W C V(F) of size |[W| > :—,!V(F ) and an r-colouring x' of the
edges of F[W] with no monochromatic copy of H.

Combining Corollary 2.5 and Lemma 2.6, we prove Theorem 2.1.

Proof of Theorem 2.1. We want to prove that, with high probability, every edge colouring y of G = G(n, p) with no
monochromatic copy of H is such that every subset X C V with |X| > cn contains a vertex v with d, (v, X) > r.

Take € = cr!/r", let y be an edge colouring of G = G(n, p) with no monochromatic copy of H and consider a
set X C V(G) of size |X| > cn. Suppose for a contradiction that y|ggx)) is 7-local. By Lemma 2.6 applied with
F = G[X] and H, there exists a set W C V(G[X]) with |[W| > (#!/#")|X| = en and an r-colouring y’ of the edges of
G[W] with no monochromatic copy of H. But, from Corollary 2.5, we know that with high probability there is no
such r-colouring. O

3. Threshold at n~1/m2(H1)

Let H; be a graph and H; be a forest such that e(H;) > 2 and e(H,) > 3. We prove Theorem 1.2 (i), which gives

the threshold n~'/"2(0 for G(n, p) = (H,, H,) when Hj is not a star forest, or when H; is a disconnected star forest
and H, is not a pending forest.
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3.1. 1-statement

In this section it will be useful to assume that H; is connected, a fact that follows easily by induction on the number
of components of H; together with the following proposition.

Proposition 3.1. Let G| and G, be connected graphs such that my(G1) > my(G»,) and let H be a graph obtained by
connecting G| and G, by a single edge. Then my(H) = max{m,(Gy), 1}.

Proof. If my(Gy) < 1, then G| = K, and my(H) = 1, so we may assume m,(G) > 1. Clearly, it suffices to show that
my(H) < my(Gy). Let J € H be a subgraph of H with at least three vertices, and let A; = V(G;)) N V(J) for 1 <i < 2.
We may also assume that A| and A, are both nonempty. If |A|,|A,| > 3, then using that (a+b)/(c+d) < max{a/c,b/d}
for any a,b > 0 and ¢, d > 0, we have

e(/) -1 _ (e(H[A]D - D+ (e(H[AD) — 1) +2
v(J/)-2 " (A1l =2) + (A2 =2) + 2

< max{my(H[A]), my(H[Az]), 1} < my(Gy).

If |A1],]A3| < 2, then the graph J has no cycles and therefore m,(J) < 1 < my(Gy). Moreover, if |A;| > 3 and |A3_;| <2
for some 1 <i < 2, then e(J) — e(J[A;]) < |A3-|, that is, the inclusion of A3_; adds at least as many vertices as edges,
implying m,(J) < max{m,(J[A;]), 1} by a similar argument as above. This concludes the proof. ]

To prove the 1-statements of Theorem 1.2 (i ), we shall use Theorem 2.1 to prove that for every connected graph H
and every fixed tree T, the random graph satisfies G(n, p) — (H, T) with high probability as long as p > n~1/m,

For this purpose, we will consider the complete d-ary rooted tree of height &, for general / and d, denoted by T'(d, h).

Theorem 3.2. Let H be a connected graph. If p > n~ /"™ then G(n, p) = (H,T(d, h)) with high probability.
Since Theorem 2.1 states that G(n, p) satisfies property Q(b, r, H) with high probability when p > n~ !/,
Theorem 3.2 follows directly from the following deterministic lemma.

Lemma 3.3. Let H be a connected graph. For all positive integers d and h, there exist 0 < b,c < 1 and an integer
r > 1 with the following property. If G satisfies Q(b, r, H), then in any edge colouring of G there is a monochromatic
copy of H or there are | c - V(G)] vertex-disjoint copies of T(d, h) in G, each of them rainbow.

Proof. Let H be a connected graph and fix positive integers d and h. Our proof is by induction on /. Let y be an edge
colouring of G.

We may assume that there are no monochromatic copies of H under y, as otherwise the proof would be finished.
Recall that, in this case, Q(b, r, H) says that every subset X C V(G) with |X| > bn contains a vertex incident to more
than r colours. Therefore, if 7 = 1, we may take b = 1/2, ¢ = 1/2(d + 1) and r = d — 1. Indeed, for such values, the
definition of property Q(b, r, H) allows us to iteratively find rainbow copies of T(d, 1) until we have used more than
n/2 vertices of G. This procedure therefore finds | cn] disjoint rainbow copies of T'(d, 1), as claimed.

We now show that the result holds for 2 > 1. Let &', ¢’ and r’ be obtained by applying the base case &’ = 1 with
d’ = 2d". Also, let b”, ¢’ and "’ be obtained by applying the induction step with #/”/ = A — 1 and d”’ = d. We will
show below that the conclusion of the lemma holds for b = b”¢’/2, r = max{r’, ¥’} and ¢ = ¢’¢” /2.

Let G be a graph satisfying Q(b, r, H), and observe that we may assume that cv(G) > 1 because the conclusion of
the lemma is vacuous otherwise. Since b’ = 1/2 > b and r’ < r, the graph G satisfies Q(b’, r’, H) and by induction
hypothesis contains a family £ of [¢’ - v(G)] > (¢’ /2)(G) rainbow vertex-disjoint copies of T(2d", 1). Let X ¢ V(G)
be the set of roots of such trees. Observe that, since b”|X| > b”(¢’/2)v(G) > bn and " < r, G[X] satisfies property
Q(b",r"”, H). Therefore, by induction hypothesis, G[X] contains a family 7~ of [ ¢””-v(G[X])] > |¢-v(G)] vertex-disjoint
rainbow rooted copies of T(d,h — 1) in X.

Notice that, by definition of X, each leaf v of a tree T € 7 is the root of a tree L, € L. Since T has at most d"
edges, there are d" edges in each L, whose colours do not appear in T. A greedy procedure can then be used to extend
T to a tree of height &, concluding the the induction step and the proof of the lemma. O
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3.2. O-statement

Let H, be a forest with e(H,) > 3. In this subsection we prove that if p < n~!/"2(HD then the following holds with
high probability when H; is not a star forest, or when H, is a disconnected star forest and H, is not a pending forest:
there is an edge-colouring of G(n, p) with neither a monochromatic copy of H; nor a rainbow copy of H,. In fact, if
H, is not a star forest, then this follows directly from the zero statement of Theorem 2.3 with r = 2 (recall that H,
has at least three edges). Thus, we may and shall assume that H, is a disconnected star forest and H, is not a pending
forest.

Since H; is a forest, we have my(H,) = 1. For p < n~V/™#H) = p~1 the expected number of cycles in G(n, p) is
o(1), and therefore G(n, p) is a forest with high probability. Therefore, to obtain the aimed O-statement it is enough to
provide an edge-colouring y of any given forest F avoiding monochromatic copies of H; and rainbow copies of H,.

Proof of the 0-statement of Theorem 1.2 (i). Let H; be a disconnected star forest and H; be a forest with e(H;) > 3

that is not a pending forest. Let F' be an arbitrary n-vertex forest composed by trees T4, ..., Tk, rooted at arbitrary
vertices with heights Ay, ..., h.
In what follows, let Vo, = (v1,...,v,) be an ordering of V(F) such that every vertex of T; appears before every

vertex of T in Vg forall 1 < i < j < n, and for each tree T, vertices at height i appear before vertices of height
h+ 1, for every 0 < h < h; — 1. We construct a colouring y: E(F) — N that contains no monochromatic copy of H;
or rainbow copy of H,. Since H, is not a pending forest, either A(H,) > 3 or H, contains a path with three edges.

If A(H) > 3, then put y(v;v;) = i to every edge v;v; with i < j. The colouring y clearly has no monochromatic
copy of H; as there are no vertex-disjoint stars with the same colour. Also, since every vertex of F is incident to edges
coloured with at most two colours and A(H;) > 3, there is no rainbow copy of H, in F.

Finally, if H, contains a path with 3 edges, then we colour F by setting y(e) = i, where v; is the unique vertex of e
of odd height in the tree containing e. As before, since there are no vertex-disjoint stars with the same colour, there is
no monochromatic copy of H;. Furthermore, under the colouring y, there is no rainbow path vov;v,v3, since either v;
or v, would have odd heights and therefore its two incident edges would have the same colour. U

4. Threshold below rn~1

Let H, be a forest with e(H,) > 3. Here we prove Theorem 1.2 (ii ), which gives a threshold smaller than n~! for
G(n, p) = (Hy, Hy) when H; is a star, or when H is a disconnected star forest and H> is a pending forest.

Recall that mp(H,, H>) = min{m(F): F is a forest and F = (H1, Hy)}. Propositions 4.1 and 4.2 below imply that
the parameter mp(H;, H,) is well defined for these particular graphs H; and H; (Corollary 4.3), from which it follows
that the threshold for G(n, p) —> (H,, H) is given by n~1/mr(H1-H2) Note that the 1-statement follows from the fact
that F =5 (Hy, H,) and the fact that ' C G(n, p) with high probability.

Proposition 4.1. If H, is a star and H, is a forest, then there exists a tree T such that T LR (Hy, Hy).

Proof. Let H; be a star with s edges. Consider a tree H}, such that V(H}) = V(H>) and E(H}) C E(H>), rooted at some
arbitrary vertex v. Let e(H}) = ¢, and let & be the height of H’,. We will show that an ((s — 1)(£ — 1) + 1)-ary tree T of

height / satisfies T — (Hy, H}), which implies T — (H,, H).

Note that in any edge-colouring avoiding a monochromatic copy of H; there are at most s — 1 edges with any
given colour at each vertex of 7. Thus, the edges from every non-leaf of T to its children must be coloured with at
least ¢ different colours. Therefore, a greedy embedding that starts by assigning v to the root of 7 and always chooses
edges of previously unused colours will succeed in finding a rainbow copy of H; in any colouring of T that avoids a
monochromatic copy of H;. U

In the next proposition we consider the case where H; is a disconnected star forest and H; is a pending forest.
Given a graph G with edges coloured by y and v € V(G), recall that dg ,(v) denotes the numbers of colour used at
edges incident to v.
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Proposition 4.2. If H is a disconnected star forest and H, is a pending forest, then there exists a tree T such that
T 25 (Hy, Hy).

Proof. Since H, is a pending forest, we may assume (by extending isolated edges to cherries if necessary) that H; is a
disjoint union of cherries, as clearly an edge-colouring of a tree with a rainbow copy of a graph that contains H, also
contains a rainbow copy of H,. We may also assume, to simplify notation, that H; has s stars with s edges each and
that H, is composed by s cherries.

We prove that a complete d-ary tree T with height /(T) = 165> + 3s and d = 2s” + s satisfies T = (Hy, Hy). Let y
be an arbitrary edge-colouring of such a tree T'. If there are 3s vertices of 7" with colour-degree at least 2s, then there
is a rainbow copy of the forest of cherries H,. Otherwise, by removing these vertices we obtain a subgraph (a forest)
F of T with at least v(T) — 3s vertices such that for all vertices v of F' we have dr,(v) < 2s. Therefore, for every
internal v € V(F), since dr(v) > dr(v) — 3s > 2s(s — 1) there is a monochromatic star in F centred at v with s edges.

Note that after removing a vertex from a complete d-ary tree 7”, we obtain at least one complete d-ary tree of height
h(T”) — 1 and same internal degree. Then, since at most 3s vertices were removed from 7 to obtain F, we know that
F contains a complete d-ary tree T’ of height 16s® with d = 2s* + s with the property that for every internal v € V(F)
there is a monochromatic star centred at v with s edges.

Since T is a complete d-ary tree, there is a path P with 165> vertices such that every edge of P belongs to a
monochromatic star with s edges. Supposing there is no monochromatic H; in 7’, every subpath of P with 2s vertices
contains a rainbow cherry, and therefore P contains at least 852 rainbow cherries in total. To finish the proof, we
greedily pick a rainbow cherry and delete from P all edges whose colour appear in the chosen cherry. Since every
colour appears at most 2s times in P, this deletes at most 45 edges and therefore destroys at most 8s rainbow cherries.
Since P originally contained 8s” cherries, it is possible to repeat this procedure s times and find a rainbow copy of H,,
as desired. O

Corollary 4.3. Let H; be a star and H, be a forest, or let Hy be a disconnected star forest and H, be a pending forest.
There is a forest F,, with a fixed number of vertices and components such that F,, 4 (Hy, Hy) and for any forest F’
with m(F") < m(F,,) we do not have F' — (H,, Hy).

Proof. Let v(H;, Hy) = min{k € N: there is a forest F' with components of size at most k such that F’ = (Hy, Hy)}.
Note that in view of Propositions 4.1 and 4.2, the parameter v(H,, H,) is well defined. Let ¥ (H;, H,) be the family
of all forests F' with components of size at most v(H|, H,) such that F LN (H,, H) and consider a forest F,, with
minimum number of vertices among all forests of 7 (H;, H>). O

We now prove the main result of this section.

Proof of Theorem 1.2 (ii ). Let H; be a star and H, be a forest, or let H; be a disconnected star forest and H; a
pending forest. From Corollary 4.3, there is a forest /' with a fixed number of vertices and components such that
m(F) = mp(Hy, Hy).

For p > n~!/mrHuH) the random graph G(n, p) contains a copy of F with high probability by Theorem 2.2.
Therefore, any colouring of G(n, p) contains either a monochromatic copy of H; or a rainbow copy of H,. On the
other hand, if p < n~!/™(HiH2) yith high probability G(n, p) is a forest with m(G(n, p)) < mp(H,, H>), which from
the definition of mg(H|, H,), implies the existence of a colouring of G(n, p) containing neither a monochromatic copy
of Hj nor a rainbow copy of H,. This concludes the proof. O
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