Towards the Systematic Testing of
Virtual Reality Programs

Stevao A. Andrade
Universidade de Sao Paulo - ICMC
Sédo Carlos, Brasil
stevao@icmc.usp.br

Abstract—Background: Software testing is a critical activity
to ensure that software complies with its specification. However,
current software testing activities tend not to be completely
effective when applied in specific software domains in Virtual
Reality (VR) that has several new types of features such as
images, sounds, videos, and differentiated interaction, which can
become sources of new Kkinds of faults.

Aims: This paper presents an overview of the main VR
characteristics that can have an impact on verification, validation,
and testing (VV&T). Furthermore, it analyzes some of the most
successful VR open-source projects to draw a picture concerning
the danger of the lack of software testing activities.

Method: We compared the current state of software testing
practice in open-source VR projects and evaluate how the lack
of testing can be damaging to the development of a product.
We assessed the incidence of code smells and verified how such
projects behave concerning the tendency to present faults. We
also perform the same analyses on projects that are not VR
related to have a better understanding of these results.

Results: The results showed that the practice of software test-
ing is not yet widespread in the development of VR applications.
It was also found that there is a high incidence of code smells in
VR projects. Analyzing Non-VR projects we noticed that classes
that have test cases tend to produce fewer smells compared to
classes that were not tested. Regarding fault-proneness analysis,
we used an unsupervised approach to VR and Non-VR projects.
Results showed that about 12.2% of the classes analyzed in VR
projects are fault-prone, while Non-VR projects presented a lower
fault-proneness rate (8.9%).

Conclusions: Regarding the application of software testing
techniques on VR projects, it was observed that only a small
number of projects are concerned about developing test cases
for VR projects, perhaps because we still do not have the
necessary tools to help in this direction. Concerning smells, we
concluded that there is a high incidence in VR projects, especially
regarding implementing smells and this high incidence can have
a significant influence on faults. Finally, the study related to fault
proneness pointed out that the lack of software testing activity
is a significant risk to the success of the projects.

Index Terms—software testing, virtual reality, validation, code
smells, fault proneness

I. INTRODUCTION

Technological advancement has led to the development of
systems with new features such as images, sounds, videos
and differentiated interaction. Thus, technologies such as Vir-
tual Reality (VR) have led to possibilities of creating three-
dimensional environments with real-time interaction.

Despite the great benefits of adopting VR for the develop-
ment of applications in various areas, it poses new challenges

Fatima L. S. Nunes
Universidade de Sao Paulo - EACH
Sédo Paulo, Brasil
fatima.nunes @usp.br

Marcio E. Delamaro
Universidade de Sao Paulo - ICMC
Sédo Carlos, Brasil
delamaro@icmc.usp.br

for verification, validation, and testing (VV&T) activities. For
example, VR software presents original software structures,
such as scene graphs, which may represent new sources of
defects for programs. These new challenges motivated the
development of some approaches that aim to contribute to the
quality assurance process of software in the context of VR.

As mentioned by Corréa et al. [1], there is interest in the
literature on the subject. However, there is still no concept
regarding systematized practices for conducting this activity.
Studies have shown that the major problem remains in the
difficulty to deal with test oracles, which is considered to be
an open-ended research problem.

In general, the test activities for the VR domain are man-
ually performed and mostly conducted only after the end of
the development phase [2]. Such events generally support the
generation of test requirements (functional and non-functional)
which must be guaranteed before the product is delivered.
The lack of studies that evaluate the cost of developing new
techniques or using existing ones assess their effectiveness
or even propose tools that can support their application,
thus contributing to impact VV&T activities in general and
aggravate this scenario.

Regardless of the programming technology used, a primary
development goal is to produce high-quality software. Conse-
quently, VR also needs to be tested and vetted for quality. Key
questions related to quality include: What should be tested?,
What does “adequate testing” mean?, What is a failure in VR
software?

Systematic testing of the VR system must be based on fault
models that reflect the structural and behavioral characteristics
of VR software. Criteria and strategies for testing VR should
be developed based on that fault model.

In this paper, we discuss whether new challenges for VV&T
of VR exist that require novel techniques and methods, or
instead, we need new ways of combining and using existing
approaches. We also try to evaluate how much the lack of
VV&T activities can negatively impact VR software devel-
opment. To do so, we analyze the most popular open-source
projects and categorize fault-proneness codes that could be
mitigated by adopting VV&T activities.

This paper is organized as follows: Section II discusses
the critical questions described above, as well as what testing
approaches proposed in other domains could be reused for the

VR domain; Section III presents an exploratory study to assess
how much the lack of VV&T activities can be prejudicial to
open-source projects; Section IV discusses the results of the
experiment presented; Section V points out some limitations
related to this study; Section VI discusses related work and
the conclusions and future work are shown in Section VII.

II. CHALLENGES AND ISSUES

Despite the benefits of adopting VR for the development
of applications in several areas, this poses new challenges
for software quality assurance activities. For example, soft-
ware developed for the context of VR has unique software
structures, which may represent new sources of faults for the
programs developed [3]. These new challenges have motivated
the development of some approaches that aim to contribute to
the quality assurance process of software in the context of VR.

Automating software testing activities is often a complicated
and challenging process. The main tasks of this activity include
organizing, executing, registering the execution of the test
cases and verifying the result of their execution.

In order to address these tasks, in the context of VR,
some key points discussed in the next subsections should be
understood.

A. What should be tested?

Virtual reality systems use individual hardware devices to
allow the interaction with the user and the system. The work of
graphics engines is not the primary concern for VR application
developers. Defining scene graphs for organizing 3D objects
in a VR world, managing virtual users, controlling sensors for
detecting events such as object collision and processing events
for reacting to user inputs are some of the typical elements of
VR systems that the developers should be concerned about
[4].

By observing the organization of 3D object elements and
assets in scene graphs, it seems that it needs a higher-level type
of test. In general, because they are independent, they do not
have an architecture correlation of the source code. Therefore
integration testing tends to be a more appropriate approach to
be used. In integration testing, the main aim is to verify the
communication between the units that make up the system.

B. What does “adequate testing” mean?

The solution to define this question: “What does adequate
testing mean?” is to apply test criteria, which consists of a set
of rules for dividing and evaluating the valid input domain for
the program being tested. A test criterion defines elements
of a program that must be exercised during its execution,
thereby guiding the tester in the process of designing the test
cases for the system. A test requirement may be, for example,
a software-specific execution path, a functionality obtained
through specification, a mutation-based approach, etc [5].

Corréa et al. [1] presented a set of studies that deal with the
application of software testing techniques to programs in the
VR context, showing that there is an interest in the literature

on the subject, however, there is still no concept regarding
systematized practices for the activity.

Due to the lack of defined requirements, it is not easy
to identify test adequacy criteria for VR systems. How can
we decide that testing is enough? This question needs to be
adapted to the context.

C. What is a failure in a VR software?

In the context of VR applications, the testing activity hinges
on the difficulty of systematizing how the behavior of a test
case can be measured. This difficulty is described in the
literature as “test oracle problems” and it appears in cases
where traditional means of measuring the execution of a test
case are impractical or are of little use in judging the correction
of outputs generated from the input domain data [6], [7].

D. Can we reuse something?

General tools such as capturing and replaying can be used,
but they offer a shallow level of abstraction. Thus, any small
change to the system will result in the fact that the tests should
be redone [8]. Therefore, using capture and replay tools cannot
be used when the system is in development.

From a unit test point of view, we can still reuse a traditional
approach in which we can quickly gauge the expected output
to a method execution, ensuring that the smallest units of
the VR system have been sufficiently tested against their
specifications.

Regarding integration testing which is expected to handle
new kinds of elements (3D objects, assets, behaviors, etc.) the
literature review shows that we still need better-systematized
practices for this activity [1].

E. What is done nowadays?

Almost all 3D applications require some common features.
Therefore, developers tend to use platforms that provide these
features out-of-the box. Using game engines is one of the most
popular techniques among developers due to the fact it helps
produce the systems, besides speeding up the development
process.

Recently popular game engines, such as Unity3D' and
Unreal Engine®, released their own set of testing tools, which
allows developers to produce automated testing during the
development phase of the system which can substantially
increase the stability of the product developed. Despite this,
these tools still do not provide observable test criteria which
is additionally repeatable, documented and does not rely on
the tester’s creativity.

III. DO WE REALLY NEED TO TEST VIRTUAL REALITY
SOFTWARE?

Considering popularizing VR application development, we
are interested in understanding, from the software engineering
point of view, how the development process of these applica-
tions is currently conducted. We are especially interested in

!https://docs.unity3d.com/Manual/testing-editortestsrunner.html
Zhttps://docs.unrealengine.com/latest/INT/Programming/Automation

software testing practices in the development process of such
applications in order to address what kinds of malfunctions
the lack of test practice can lead to.

One of the most used approaches to quantify quality at-
tributes in software projects is the evaluation of source code
metrics. Source code metrics are a significant component for
the software measurement process and are commonly used to
measure fault proneness and improve the quality of the source
code itself [9].

Another factor that can be exploited to evaluate code quality
is to identify anti-patterns since some studies show that there
is a correlation with fault proneness [10]. Therefore, these are
two aspects that are taken into account in the evaluation carried
out in our study to investigate the quality aspects of the code
in the context of software testing.

Ghrairi et al. [11] made an exploratory study on Github
and Stack Overflow in order to investigate which are the
most popular languages and engines used in VR projects.
According to their results, the most popular language for
VR development is C#, and Unity is the most used game
engine during VR application development. Thus, we focus
our analyses targeting these characteristics.

A. Overview of the study

We formulated the following research questions regarding
the quality analysis goal of VR projects.

e RQ;: : “How does testing happen in open-source VR
software systems?” We focus on understanding how
testing practices are being applied in open-source VR
projects.

e RQs : “What are the distribution of architecture, im-
plementation and design smells in VR projects?” We
investigated the distribution of smells to find out whether
there is a set of code smells that occur more frequently
in VR systems.

« RQ3 “Can we draw a relationship between code
metrics and fault proneness?” It is commonly believed
that code metrics and fault-proneness, i.e., if a set of
code metrics reaches a predefined threshold, it is very
likely that the project could also have some defects. We
investigate this using an unsupervised defect prediction
approach.

B. Study Design

The process of selecting open-source projects consists of a
systematized search, on Github, using the keywords “virtual
reality” and “VR”. With the objective of drawing a more spe-
cific profile, the search focused only on projects developed for
the Unity platform, since it has emerged as the most popular
VR development platform due to its extensive documentation
[11].

Our primary aim is to explore virtual reality projects from
both project and source code perspectives. To do so, we
cataloged and analyzed a total of 151 open-source projects,
available in Github. Some of the projects could not be analyzed
due to either missing external dependencies or custom-build

mechanisms (i.e., missing standard C# project files), thus we
were able to analyze a total of 119 projects.

In order to draw a picture concerning research questions
R@Q9 and RQs3, we also cataloged a set of general (Non-
VR) open-source projects, which have similar characteristics
(same C# programming language). The goal is to try to
compare the information observed in the VR application with
Non-VR application. Therefore, we catalog a total of 177
Non-VR projects. After an individual process analysis, we
removed duplicated projects and projects that had missing
external dependencies or custom-build mechanism. In the end
we achieved a total of 107 Non-VR projects able to be used
in our experiment.

Since our goal is to analyze which impacts the lack of
software testing practice can cause on VR projects, concerning
Non-VR projects, we will use only data related to classes that
have been properly tested.

C. Overview of Projects

Table 1 presents general information about the projects
analyzed.

Table I: General characteristics of the analyzed projects.

Attributes VR Non-VR
Projects 119 107
Number of tested classes 63 4,186
Number of classes (total) 21,508 21,563
Lines of code (C# only) 2,314,522 | 2,455,766

Aiming to estimate non-functional requirements used to
evaluate the performance of a system, such as software quality
attributes of the projects, and to give an overall view of
the projects analyzed, we computed, according to an object-
oriented design [12], a set of metrics that are summarized in
Table II.

Table II: Metrics of the analyzed projects.

Metric VR Average Non-VR tested Average
Number of Children 3,811 0.17 716 0.17
Number of Fields 102,785 4.77 7,062 1.68
Number of Methods 107,516 4.99 14,374 343
Number of Properties 24,395 1.13 67 0.01
Number of Public Fields 49,793 231 1,368 0.32
Depth of Inheritance Tree 4,072 0.18 1,278 0.30
Number of Public Methods 65,624 3.05 9,582 2.28
Lack of Cohesion of Methods 34,197 1.58 7,958 1.90
Weighted Method per Class 190,658 8.86 21,959 5.24

All the information about the projects, the data used for
plotting the tables and graphs, as well for the discussion, are
available in the experiment repository>.

IV. RESULTS AND DISCUSSION

In this section, we address the research questions and
further discuss the results obtained from the analysis and our
observations with the empirical study.

3https://github.com/stevao-andrade/ACL _defect_prediction

A. How is VR software tested?

Regarding the first research question (RQ31) of the study,
which aims to understand the question: “How does test-
ing happen in open-source VR software systems?”, the 119
projects were manually evaluated and it was found that only
6 VR projects (Bowlmaster - 53 tests, CameraControls - 60
tests, GraduationGame - 15 tests, MiRepositorio_VRPAD -
11 tests, space_concept - 11 tests, UnityBenchmarkSamples
- 4 tests) are concerned with the software testing practices,
including a total of 154 unit test cases, to evaluate the projects
functionalities.

Despite the existence of unit testing, we were unable to
calculate information regarding testing criteria, such as code
coverage, since this Unity does not provide an out-of-the box
solution to code coverage.

Based on the information collected, it can be observed
that from the 119 analyzed projects, only 6 (5.04%) have
some software testing activity, and even the projects that have
test cases, do not present many tests that can ensure that
the main functionalities of the applications were adequately
tested. Based on this observation, concerning R(); we came
to the conclusion that there is not yet consensus regarding the
application of software testing practices for VR applications
and this motivated us to explore the next research questions.

These results are in agreement with the most recent papers
in the literature. Karre et al. [13] conducted an empirical
study of VR practitioners to learn the current practices and
challenges faced in industry. The software testing related
results points out to the absence of adequate tools, as well
as uncertainty about how to test the VR app apart from
conducting a standard field evaluation. As a consequence, this
lack of usability evaluation methods and automated testing
tools tend to cost a lot of time to release a VR product.

In order to understand the risks and advantages of these
characteristics and to accurately answer R(); and RQ)s, in
the next sessions, we compare the difference between the VR
projects and Non-VR projects concerning code smells and
fault-proneness distribution.

B. Distribution of Code smell

Observing the lack of software testing practice in all the
other projects, we decided to investigate how this practice
is reflected within the projects. To do so, we decided to
measure the incidence of code smells [14] within the projects
investigated. This leads us to the second research question
(RQ2) presented: “What are the distribution of architecture,
implementation, and design smells in VR projects?”.

In order to better understand what is related to the lack of
tests, we compared the results obtained in the RV projects
with the results obtained in Non-VR applications, which have
well-defined test cases within the projects.

In general, the presence of code smells in software projects
indicates the presence of quality problems. Besides, it also
increases the risk of software faults [15]. Such problems
directly impact features such as maintainability and contribute
to make it difficult for software to evolve.

To better understand RQ2, we identified three different
types of code smells in the projects:

o Architecture smells: focus on identifying points of in-
terest for possible structural problems that can negatively
contribute and hamper activities such as debugging and
refactoring, as well as increasing the cost for fault correc-
tion and refactoring, due to the characteristic of increasing
the complexity of the software, when present [16].

o Implementation smells: code smells or implementation
smells were first introduced by Fowler et al. [14] and
seek to establish a concept to classify shortcomings in
object-oriented design principles. This class of smells
covers principles such as data abstraction, encapsulation,
modularity, hierarchy, etc.

o Design smells: are specific types of structures that may
indicate a violation of a fundamental principle, which can
impact aspects of design quality [17].

In order to calculate the distribution of the code smells
previously described within the projects, we use the Designite
tool [18]. The smells were classified according to the number
of occurrences in the analyzed classes and percentage distri-
bution. The data is presented in Tables III, IV and V.

It is worth mentioning that test case classes were not taken
into account for this smell classification, once our initial target
was to measure the quality aspects of the source code classes.
Besides that, smells in software test codes require a whole
different classification approach [19].

Table III: Description of the detected architecture smells and
their distribution.

1D Smell VR Non-VR tested
AAI Ambiguous Interface 29 0.13% 1 0.02%
ACD Cyclic Dependency 212 0.99% 6 0.14%
ADS Dense Structure 3 0.01% 2 0.05%
AFC Feature Concentration 366 1.70% 24 0.57%
AGC God Component 201 0.93% 12 0.29%
ASF Scattered Functionality 84 0.39% 8 0.19%
AUD Unstable Dependency 78 0.36% 11 0.26%
Std Dev 118.34 7.17

Average 139.0 9.14

It can be observed that in Table III, among the VR projects,
there is a low incidence of architecture smells, with only
three types (ACD, AFC, and AGC) presenting a percentage of
occurrence between 0.93 % and 1.70 %. Observing the Non-
VR projects, it can be observed that this category of smells
had a lower incidence compared to VR projects. The AUD,
AGC and AFC smells showed the highest occurrence rates,
with percentages between 0.26% and 0.57%.

VR project behavior can be justified due to the fact
that within the Unity platform, although an object-oriented
language (C#) is mostly used, the development model is
considered a component-based programming approach. This
approach focuses on the separation of concerns regarding the
features to be developed in the system.

Despite Non-VR applications presenting lower rates of
architecture smells, it mainly shows a higher incidence of
smell AFC. This smell occurs when a component performs
more than one architectural concern/feature . This can be

explained due to the programming model adopted. A large part
of Non-VR projects corresponds to web applications, which
typically use a Model-View-Controller (MVC) standard for
application development. As shown by Aniche et al. [20],
systems that adopt such architecture can be affected by types
of poor practices that lead to the apparition of such a smell.

From a software testing point of view, the lower rate of
architecture smells can be considered as a decisive successful
factor, since the low dependence between modules is a char-
acteristic that facilitates the application of unit tests [21]. In
general, when it is necessary to communicate with other units
of code, sometimes stubs or mock objects are used to represent
this communication.

In order to better understand the presented results, regarding
each of the classes of smells analyzed, we verified if there is,
in fact, a statistical difference between the presence of smells
between groups of classes that were not tested and groups
of classes that were tested during its development process.
Therefore, due to the low number of smell types for each
category (architecture, design and implementation), and since
we can not guarantee that the data collected departs from a
normal distribution, we applied the Mann-Whitney test [22]
to verify whether there is a statistical difference between the
presence of smells for each category of smells evaluated.

The null hypothesis (Hy) of the Mann-Whitney test in-
dicates that “The distribution of the variable in question is
identical (in the population) in the two groups”, that is, there
is no difference in the presence of smells between classes that
have not been tested and classes that have been tested and the
alternative hypothesis (H;) indicates that “The distributions
in the two groups are not the same”, therefore, there is
a statistical difference between the incidence of smells for
classes that were not tested against classes that were tested.

Considering the value of alpha = 0.05, which comprises the
complement of the margin of a confidence level of 95%, for
the architecture smells, Hy with a p-value = 0.00760 could be
rejected. Thus, it indicates that there is a statistical difference
between the presence of smells when comparing architecture
smells in classes that were not tested against classes that were
tested.

Using a descriptive analysis, obtained by analyzing the
number of occurrences of each type of smells, it could be
observed that classes that were not tested tend to present a
higher rate of architecture smells in relation to classes that
were tested.

It can be observed that, different from the architecture
smells, in Table IV, we can identify a high rate of imple-
mentation smells in the VR projects. We highlight ILI, ILS,
and IMN, which had a percentage of occurrence of 31.81%,
55.55%, and 117.46%, respectively.

Although it does not pose a direct risk to the source code
produced, smell ILI may be an indicator that something can be
revised/refactored. A very long identifier may be an indication
that there is a need for too much text to distinguish/identify
variables and in some instances, this may indicate that the

Table IV: Description of the detected implementation smells
and their distribution.

ID Smell VR Non-VR
ICM Complex Method 1,812 8.42% 9 0.22%
Icc Complex Conditional 684 3.18% 14 0.33%
IDC Duplicate Code 9 0.04% 1 0.02%
IECB Empty Catch Block 150 0.70% 5 0.12%
LM Long Method 583 2.71% 9 0.22%
ILPL Long Parameter List 2,117 9.84% 13 0.31%
ILI Long Identifier 6,841 31.81% 12 0.29%
ILS Long Statement 11,947 55.55% 40 0.96%
IMN Magic Number 25,264 117.46% 36 0.86%
IMD Missing Default 931 4.33% 17 0.65%
IVMCC Virtual M. C. C.** 35 0.16% 5 0.12%
Std Dev 7,425.91 11.87

Average 4,579.36 14.63

**Virtual Method Call from Constructor

programmer may not be using the most suitable data structure
to represent it.

ILS occurs when there is an excessively long statement.
Long declarations tend to make it difficult to manage the code
and are consequently villains if observed from the practice of
software testing. Very long code snippets tend to be harder to
test because they often become too complex when compared
to smaller snippets that are managed more efficiently.

Finally, IMN occurs when an unexplained number is used
in an expression. In general, magic numbers are unique
values that have some symbolic meaning. Good programming
practices indicate that in these cases, such numbers should be
declared as constants to facilitate the reading of the source
code, as well as to standardize its use.

Non-VR projects again presented a lower occurrence rate.
The most frequent smells were ILS, IMN and IMD which
achieved, respectively, percentages of 0.96%, 0.85%, and
0.65%.

The appearance of this type of smells is connected with
the lack of guidelines for standardization of code as well as
the lack of code refactoring practices. From the standpoint of
software testing, opting to use of constants instead of magic
numbers can ensure that once the value of the constant has
been tested, there is no risk that the value of the constant is
erroneously declared in the future.

We also applied the Mann-Whitney test to verify whether
there is a statistical difference between the presence of im-
plementation smells in groups of classes that were not tested
when compared to the classes that were tested. Adopting a
confidence interval of 95%, the test presented the p-value =
0.00040, which rejects the null hypothesis of the test and
confirms the data presented in Table IV, proving that classes
that were tested tend to present a lower rate of implementation
smells.

Finally, we have the design smells which seek to identify
breaches of design principles. It can be concluded from Table
V it is possible to conclude that this class of smells was the
one that presented the highest degree of incidence in the VR
projects. DUA, DTA and DDE smells were the ones with the
highest percentage of occurrence with 17.39%, 32.49%, and
37.67% respectively.

The DUA smell deals with the practice of unnecessary
abstractions and is identified when an abstraction has more

Table V: Description of the detected design smells and their
distribution.

1D Smell VR Non-VR
DBH Broken Hierarchy 245 1.14% 8 0.19%
DBM Broken Modularization 991 4.61% 46 1.10%
DCM Cyclically-dependent M. 3,149 14.64% 45 1.08%
DCH Cyclic Hierarchy 6 0.03% 4 0.10%
DDH Deep Hierarchy 0 0.00% 1 0.02%
DDE Deficient Encapsulation 8,101 37.67% 13 0.31%
DDA Duplicate Abstraction 2,469 11.48% 11 0.26%
DHM Hub-like Modularization 4 0.02% 16 0.38%
DIA Imperative Abstraction 627 2.92% 9 0.22%
DIM Insufficient Modularization 1,171 5.44% 44 1.05%
DMH Missing Hierarchy 18 0.08% 2 0.05%
DMA Multifaceted Abstraction 209 0.97% 2 0.05%
DMH Multipath Hierarchy 1 0.00% 2 0.05%
DRH Rebellious Hierarchy 389 1.81% 9 0.22%
DUE Unexploited Encapsulation 15 0.07% 2 0.05%
DUH Unfactored Hierarchy 483 2.25% 7 0.17%
DUA Unnecessary Abstraction 3,741 17.39% 17 0.41%
DTA Unutilized Abstraction 6,987 32.49% 23 0.55%
DWH Wide Hierarchy 64 0.30% 5 0.12%
Std Dev 2,344.41 14.59

Average 1,508.94 14.00

than one responsibility attributed to it. This smell tends to
occur when there is an application of procedural program-
ming features in the context of object-oriented programming
languages [17].

From the standpoint of VR applications that adopt
component-based programming, the appearance of this smell
can be explained by the fact that the programming approach
focuses on creating interchangeable code modules that work
almost independently, not requiring that to be familiar with
their inner workings in order to use them.

Unnecessary design abstractions increase their complexity
needless and affect the comprehensibility of the overall design.
From a software testing point of view, this bad practice tends
to hamper test practices

DTA occurs when an abstraction is left unused, is not being
used directly, or because it is not reachable in the source code.
This smell correlates with DUA since unnecessary abstractions
tend not to be used. Another impact factor for the appearance
of this smell is linked to possible code maintenance/refactoring
activities, which tend to leave traces of code that are no longer
needed.

From the standpoint of software testing, the existence of a
test base that can be used as a regression test tends to facilitate
the localization of source code that is no longer necessary,
causing the occurrence of this smell to be reduced. From a
tester’s point of view, if there is a code that is not being
used in the project, it does not need to be tested. Therefore,
identifying these snippets of code can lead to more efficient
testing activities.

Finally, smell DDE, which identifies cases of poor encapsu-
lation, had the highest occurrence rate in this class of smells.
This smell occurs when the declaration of attribute visibility of
a class is more permissive than necessary. For example, when
the attributes of a class are unnecessary declared as public.

From the standpoint of software testing, separation of
interests allows implementation details to be hidden. If an
abstraction exposes implementation details unnecessarily, it
leads to undesirable coupling in the source code. This will have

an impact on the testing activity because checking units that
have a high degree of coupling becomes a more challenging
task due to the need for more complex mocks and stubs..
Similarly, the high degree of coupling causes changes that
are made in a code snippet to reflect in various parts of the
application causing previously designed tests to fail if they are
not adequately designed.

Non-VR applications had a lower occurrence in this cate-
gory of smells, in which DBM and DCM are the two that
presented the highest occurrence, with 1.10% and 1.08%
respectively. The explanations for the occurrence rate for
the DCM smell are related to the cyclic dependence issue
of the MVC model and the DBM smell arises when data
and/or methods that ideally should have been localized into
a single abstraction are separated and spread across multiple
abstractions.

Once again, we applied the Mann-Whitney test to check
whether the data obtained from our empirical evaluation can
draw a real picture about the behavior of class that does not
have tests compared to classes that were properly tested. Once
again the Mann-Whitney test proved with a p-value = 0.00089
that classes that were tested tend to present lower rates of
smells when compared to classes that were not tested.

Our second research question (R(Q)2) sought to understand
“What are the distribution of architecture, implementation and
design smells in VR projects?”. We investigated the main types
of smells for VR applications and compared their results with
Non-VR applications. We also presented a discussion about
how software testing practice can benefit from avoiding the
smells that obtained the highest occurrence rate.

According to Hall et al. [15], code smells have a significant
but small effect on faults. This can justify the fact that Non-
VR application projects, which have test cases, present a
lower rate of code smells when compared to VR applications,
which do not have, for the most part, a well-defined test
activity. However, the presence of smells not only hides
potential source code flaws but also contributes to hindering
the maintainability and evolution of the source code in larger
projects. This leads us to the last research question of this
study (R(Q3), which aims to investigate the fault proneness of
VR projects. In a similar way to the analysis of code smells,
evaluate this in more depth, we inserted the analysis of Non-
VR projects so as to better understand the results.

C. Analyzing fault proneness

As mentioned before, the presence of code smells can
indicate the absence of quality attributes in the source code and
this can be an indication of faults in a software [15]. Similarly,
as previously mentioned, the higher occurrence rate of code
smells in the projects can hinder the practice of software
testing. To understand the risks of neglecting this activity, we
analyzed the projects concerning fault proneness.

Since code smells are identified according to rules and
thresholds defined in code metrics [23], we aim to investigate
(RQs3) the question: “Can we draw a relationship between
code metrics and fault proneness?”. To do so, we use the code

metrics described in Table II with a fault prediction technique,
which uses the metrics value as an indicator to suggest whether
a given source code is fault-prone or not.

By exploring relationships between software metrics and
fault proneness, we seek to justify the need for software
testing activities. For instance, a high threshold in a specific
metric may lead us to suspect, with high probability, about the
reliability of some parts of the code.

The effectiveness of fault prediction techniques is often
demonstrated using historical repository data [24]. However,
once these techniques are adopted, it is not clear how they
would affect projects that do not match with the characteristics
(language, platform, domain) of the built model [25].

Since we do not have access to a dataset or a bug track his-
tory maintained with VR systems data, we tried to exploit an
approach that uses an unsupervised fault prediction technique
[26], that does not rely on historical data, to investigate fault
proneness on the analyzed projects.

We use the Average Clustering and Labeling (ACL) [26]
approach to predict fault proneness in unlabeled datasets.
ACL models obtain good prediction performance and are
comparable to typical supervised learning models in terms
of precision and recall, offering a viable choice for fault
prediction when we do not have historical data related to faults.

This study can help software developers to understand the
characteristics of VR software and the potential implications
of neglect software testing activities. Raising awareness is the
first step towards VV&T activities.

Clean

Y

Unsupervised
Clustering

Repositories| *
Labeling X

Rule
Fault

Proner

E
8 .
8

Metrics

Figure 1: General process of ACL fault prediction approach.

Figure 1 describes the process used by the approach to attest
if a given instance of code is defined as fault-prone or not. In
general terms, the algorithm of the approach calculates the
average value for each of the code metrics used, it builds a
violation matrix metric, calculates metrics of instance violation
and finally defines whether the analyzed instance is considered
as fault-prone or clean. Details of the implementation can
be found in [26] and in the repository that contains the
information about this work *.

The 119 VR projects were analyzed using the described
approach and according to the classification metric adopted,
from 21,508 classes contained in all the projects, a total of
2,627 classes or 12.21% were classified as classes with a high

“https://github.com/stevao-andrade/ACL _defect_prediction

probability of having faults, due to the fact they extrapolate the
threshold defined by the approach to consider them as clean.

Similarly, in the 107 Non-VR projects, out of 21,568
classes, a total of 1,921 were labeled as fault-prone, which
corresponds to a percentage of 8.90% of the analyzed classes.

According to previous investigations [27], the Pareto prin-
ciple also tends to apply to a software faults context. It is
believed that 20% of the files in a project are responsible for
up to 80% of the faults found. Therefore, it is natural that
the results obtained in the fault-proneness analyze follow this
trend.

As pointed out by Nam [28], defect prediction approaches
play a role as a complementary approach to help identify
potential problems in the source code as well as a mecha-
nism to improve it and consequently get rid of productivity
bottlenecks and future issues. Thus, the results presented here
are not intended to point out the exact number of problems in
a software product evaluated, but to strengthen the hypotheses
that projects that adopt quality criteria, such as software testing
practice, tend to be less predisposed to future issues.

It’s also important to note that, since there is no precise
information about the test criteria used in Non-VR projects,
as well as any information regarding the coverage reached by
the designed tests, it is impossible to guarantee that the tests
designed for a class are enough to ensure that it is free of
any problems. Therefore, it is natural that the percentage of
fault-proneness between projects that have not been tested (VR
projects) and projects that have test cases (Non-VR projects)
is relatively similar.

It can be observed that despite having a larger number of
classes and lines of code for those analyzed in the VR projects,
Non-VR projects presented a lower fault-proneness rate. It is
worth noting that the fault-prone algorithm is executed only in
the classes related to the source code of the application, thus
disregarding the test classes in the Non-VR projects.

This analysis could be an indication that due to the practice
of testing, classes of the Non-VR projects have a higher degree
of reliability, and therefore are less fault-prone when compared
to the classes existing in the VR projects, which mostly do not
present test cases.

These numbers can be observed in Figure 2a and are
alarming numbers since they show the negative impact that a
lack of robust and standardized testing technologies can cause
to the software industry [29]. Consequently, it contributes to
an increase in the incidence of avoidable faults that tend to
appear only after the software is used by its end users.

Similarly, the software development cost tends to increase
because historically the process of identifying and correcting
faults during the software development process represents
more than half of the costs incurred during the development
cycle [30]. This delay in the product development can lead
to situations such as the increase in the time needed to put
a product on the market, also resulting in market opportunity
losses [31].

We went further trying to understand how the faults pointed
out by the approach are distributed into the projects. Since the

Clean Classes
Fault pronner classes

12.2% 8.9%

87.8% 91.1%

(a) VR (b) Non-VR

Figure 2: Classification of the VR projects according to the
ACL approach.

projects have a great variety of sizes, we grouped them into
6 different categories (by the number of classes) in order to
observe how the distribution of fault-prone classes occurs.
Figure 3 shows this distribution. It can be observed that in
both VR and Non-VR projects, there is a relation between the
number of fault-prone classes and the size of the projects. This
relation points out that the higher the number of classes in the
projects, the higher the average fault-prone classes, and leads
us to conclude that neglecting testing activity in larger projects
may be even more riskier in terms of the project’s success.

— VR
120 - NonVR
8
«» 100 4
w
o
v
[
§ 80 4
iy
El
8 60 A
S
0)
o
© 404
[
>
<
20 4 /-'—"
/ - —
o- T T T T T T
0~50 51~100 101~150 151~200 201~500 500+

Repositories grouped by number of classes

Figure 3: Distribution of fault-prone classes according to the
size of the projects.

Future analyses could be extracted from the data obtained.
However, we believe that the presented data are capable of
attesting a clear answer to R()s, making it clear that in a
general context, the lack of software testing techniques have
a direct impact on quality attributes, as demonstrated by the
metrics extracted from the analyzed projects and this directly
reflects the adoption of bad development practices, which lead
to the existence of code smells, consequently becoming an
outlet for the increase in faults.

RQ3 sought to understand the question: “Can we draw a
relationship between code metrics and fault proneness?” and
by implementing the approach to detect fault proneness in the
projects investigated, it could be observed that neglecting the

test activity can lead to a higher probability of development
problems. According to our analysis, it was seen that the
VR projects, which do not present test cases, have a higher
propensity to present faults to Non-VR projects, and that
propensity tends to increase as the complexity of the projects
increases.

It was also observed that although Non-VR projects present
test cases in all projects, they still present a high rate of fault
proneness. This underscores the importance of the developing
software testing practice within the scope of project devel-
opment. Although Non-VR projects have test cases, the test
sets provided do not meet the basic test criteria, such as code
coverage, so that part of the code that is not tested is still
prone to possible failures.

Another point that this study raised is the need for specific
test practices for a specific domain. Software of different do-
mains have different characteristics, which must be adequately
investigated. In the context of VR applications, the simple
use of unit tests may not be sufficient to attest the quality of
the developed product, since the technological advancement
has led to the development of systems with advanced features
such as images, sounds, videos, and differentiated interaction,
presenting new challenges when compared to software testing
in conventional domains, such as the lack of information on
typical defects and even the lack of a precise definition of a
test case and the oracle problem [6], [7].

V. LIMITATIONS AND THREATS TO VALIDITY

The main limitations of this study are related to the fact
that the data used in this study were gathered from Github.
Although the collected data enabled us to discuss the state
of practice regarding the application of software testing tech-
niques in the context of VR, open source projects represent
only a portion of what is produced in the context of VR
applications. Commercial projects and closed projects are also
part of this universe, and it is not possible to attest that
the results discussed from data extracted from open source
projects can be generalized for these other scenarios.

In addition to the limitations described above, another
obstacle that must be pointed out is the fact that despite the
fact that the assumptions made during the study were related
to the context of VR applications, it should be emphasized that
all the samples observed only use a single technology (Unity),
therefore the results indicated here cannot be generalized for
other platforms. To achieve this generalization, new studies
should be carried out to corroborate or counter the results
presented in this study.

Concerning the threats to the validity of this study, which
are related both to the evaluation of code smells and to fault-
proneness detection, we can highlight the fact of performing
an analysis using samples extracted only from a platform and
just for open source projects was a significant threat to validity
- this relies on the lack of representativity of the projects in
serving as a real sample of the universe of all types of projects
for the VR domain. Unfortunately, this is a problem that affects

the entire software engineering area, since there is no well-
fledged theory capable of ensuring that a set of programs is
considered a representative sample for experimentation. To try
to mitigate this threat, the most significant possible number
of projects was assembled, varying in size (small, medium
and large) and application purposes (entertainment, simulation,
training, health).

Another measure taken to try to mitigate this threat was
to analyze Non-VR projects, which served as subsidies to
compare with the results obtained from VR projects, ensuring
a better grounded discussion and a minimum baseline for
comparison, since, unfortunately, there are still no projects
cataloged with VR applications that meet the requirements to
be used in this work.

Related to threats to construct validity, possible mistakes can
be pointed out both in the analysis of codes smells, as well as
in the evaluation of fault proneness. To minimize this threat,
the tool Designite was used to detect code smells, Designite
is a commercial tool and has already been successfully used
in other experiments [32]. Regarding the approach to detect
fault proneness, the strategy was previously validated through
experiments in large datasets to attest its efficacy [26], and it is
worth mentioning the fact that the main point of the approach
is not, in fact, to find faults in the projects, but point out
classes that have a high probability of having faults, serving
as a guide to direct testing efforts.

Finally, we discuss threats to the internal validity of the
study, which are related to the level of confidence between
the expected results and the results obtained. The whole study
was conducted in a way that minimized this threat. To increase
confidence about the presented results, the data were analyzed
using tables and graphs and were also made available in a
repository to enable the replication if it is deemed necessary.

VI. RELATED WORK

Although virtual reality studies date back a long time [33],
only recently have few studies addressed the development
of VR applications from a software engineering perspective.
The increase in community interest has emerged with the
recent popularization of tools that have facilitated access, and
consequently developers ~ interest in this technology, which is
still considered as emerging.

Rodriguez and Wang [34] present a survey about projects
developed for the Unity platform, highlighting the growth of
the number of projects in recent years. Another highlight is
the fact that despite the higher number of applications focused
on games and entertainment, there has been an increase in the
number of applications for other purposes, such as training
and simulations.

Unlike our work, the paper does not analyze the content of
the cataloged material in detail, and is limited to studying the
growing trends, development involvement, favorite topics, and
frequent file changes in these projects.

Ghrairi et al. [11] conducted a study on the exploratory
analysis of Github projects and questions extracted from
StackOverflow, analyzing it from a software engineering point

of view. The study demonstrates the current state of practice
regarding the development of open-source VR applications,
highlighting mainly the most used platforms and technologies.
Moreover, the paper also discusses topics of interest for VR
developers by analyzing the VR questions extracted from
StackOverflow.

The main results show the greater popularity of the Unity
and Unreal Engine platforms as being the most popular among
VR application developers. However, they also point out that
more work needs to be done to better understand the VR
requirements under a software engineering context, which is
one of the points that our work seeks to elucidate.

From the perspective of software testing applications in the
context of VR, we highlight the work produced by Corréa
et al. [2], which presents a proposal for application software
testing for VR applications. This study generates test data
using specified requirements through a semi-formal language
for VR application development. This approach moves in the
direction pointed out by our study, which is the proposition of
mechanisms that allow the systematization of the test activity
for VR applications.

VII. CONCLUSION AND FUTURE WORK

This paper discusses the main challenges related to using
software testing practice in the VR domain. Some of the
critical issues related to the quality of these systems were
pointed out and possible solutions were also discussed that
could be used and adapted to deal with such issues.

We discussed whether there is a real need to test VR
systems. To better understand this, a comprehensive study was
conducted, guided by 3 research questions, whose objective
was: to understand the state of the practice of software testing
in the context of VR programs (R(@)1), to measure metrics and
quality attributes in VR software (R()2), and finally to evaluate
fault proneness in the collection of the software analyzed
(RQ3).

In order to answer the raised questions, a collection of 119
VR projects, available in open source projects and manually
analyzed, was cataloged to understand the state of the practice
concerning the application of software testing techniques. Re-
garding the application of software testing techniques (RQ)1),
it was observed that out of all the projects, only 6 of them
had some test cases in their project.

Given the results pointed out by R, we decided to
evaluate how the negligence of the practice of software
testing can be detrimental to a software project, and it was
decided to evaluate the distribution of code smells among
the analyzed projects. Smells related to architecture, design,
and implementation were analyzed. It can be concluded that
there is a high incidence of smells in the projects analyzed,
especially regarding implementation smells. We discussed the
most common smells for each of the categories and how
they can discourage the practice of software testing, and also
how they can be avoided if a software testing activity is
appropriately conducted.

Finally, considering the results of R(Q)s, it was decided to
investigate how the lack of good practices and the presence
of code smells can impact the quality of the source code
produced. To do so, an approach that evaluates code metrics
was used to point out classes that are fault-prone (RQ)s3).
The study pointed out that about 12% of the analyzed VR
classes have such characteristics, revealing a significant risk
to the success of the projects. The distribution of these classes
was also evaluated when observed concerning the size of the
projects analyzed. It was observed that the larger a project
becomes, there is a higher incidence of fault-prone classes,
which may be an indication that neglecting test practices in
larger projects becomes even more riskier.

We believe that the results reported in this paper will
contribute to raising the awareness of the software testing and
virtual reality community about the needs of software testing
approaches for VR developers.

Future work intends to propose a fault taxonomy to the
context of VR programs. It is believed that having such tax-
onomy, it would be possible to encourage the development of
specific software testing techniques and criteria to the context
of VR programs, thus spreading the practice of software testing
in order to mitigate possible problems and move towards
software projects that best meet software quality requirements.

ACKNOWLEDGEMENTS

Stevdo A. Andrade research was funded by FAPESP (Sio
Paulo Research Foundation), process number 2017/19492-1.

We also would like to thanks Tushar Sharma and Designite
team by providing us an Academic license of Designite tool.

REFERENCES

[1] A.C.S. Corréa, M. E. Delamaro, and F. L. S. Nunes, “The relationship
between requirements engineering and virtual reality systems: A system-
atic literature review,” in 2013 XV Symposium on Virtual and Augmented
Reality, 2013.

[2] A. C. S. Corréa, F. L. S. Nunes, and M. E. Delamaro, “An automated
functional testing approach for virtual reality applications,” Software
Testing, Verification and Reliability, 2018.

[3] T. M. Takala et al., “A toolkit for virtual reality software development-
investigating challenges, developers, and users,” Ph.D. dissertation,
Aalto University, 2017.

[4] Q. Zhao, “A survey on virtual reality,” Science in China Series F:
Information Sciences, 2009.

[S] A. Bertolino, “Software testing research and practice,” in Abstract State
Machines 2003, E. Borger, A. Gargantini, and E. Riccobene, Eds., 2003.

[6] S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE Trans. Softw. Eng., 1985.

[7]1 E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, 2015.

[8] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-replay vs.
programmable web testing: An empirical assessment during test case
evolution,” in 2013 20th Working Conference on Reverse Engineering
(WCRE), 2013.

[9] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia,

“Do they really smell bad? a study on developers’ perception of bad

code smells,” in 2014 IEEE International Conference on Software

Maintenance and Evolution, 2014.

F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An

exploratory study of the impact of antipatterns on class change- and

fault-proneness,” Empirical Software Engineering, 2012.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27])

(28]

[29]
[30]

[31]

[32]

(33]

[34]

N. Ghrairi, S. Kpodjedo, A. Barrak, F. Petrillo, and F. Khombh, “The state
of practice on virtual reality (vr) applications: An exploratory study on
github and stack overflow,” in 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS), 2018.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, 1994.

S. A. Karre, N. Mathur, and Y. R. Reddy, “Is virtual reality product
development different?: An empirical study on vr product development
practices,” in Proceedings of the 12th Innovations on Software Engi-
neering Conference, 2019.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
improving the design of existing code. Addison-Wesley, 1999.

T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells have a
significant but small effect on faults,” ACM Trans. Softw. Eng. Methodol.,
2014.

R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in 2015 12th
Working IEEE/IFIP Conference on Software Architecture, 2015.

G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

T. Sharma, P. Mishra, and R. Tiwari, “Designite - a software design
quality assessment tool,” in 2016 IEEE/ACM 1Ist International Workshop
on Bringing Architectural Design Thinking Into Developers’ Daily
Activities (BRIDGE), 2016.

M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2016.

M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen,
“Code smells for model-view-controller architectures,” Empirical Soft-
ware Engineering, 2018.

M. F. Aniche, G. A. Oliva, and M. A. Gerosa, “What do the asserts in a
unit test tell us about code quality? a study on open source and industrial
projects,” in 2013 17th European Conference on Software Maintenance
and Reengineering, 2013.

M. P. Fay and M. A. Proschan, “Wilcoxon-mann-whitney or t-test? on
assumptions for hypothesis tests and multiple interpretations of decision
rules,” Statistics surveys, 2010.

F. Khomh, M. D. Penta, and Y. Gueheneuc, “An exploratory study of
the impact of code smells on software change-proneness,” in 2009 16th
Working Conference on Reverse Engineering, 2009.

S. Herbold, “A systematic mapping study on cross-project defect pre-
diction,” arXiv preprint arXiv:1705.06429, 2017.

P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software
defect prediction with a simplified metric set,” Information and Software
Technology, 2015.

J. Yang and H. Qian, “Defect prediction on unlabeled datasets by
using unsupervised clustering,” in 2016 IEEE 18th International Con-
ference on High Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2016.
N. Walkinshaw and L. Minku, “Are 20% of files responsible for
80% of defects?” in Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2018.
J. Nam, “Survey on software defect prediction,” Department of Compter
Science and Engineerning, The Hong Kong University of Science and
Technology, Tech. Rep, 2014.

S. Planning, “The economic impacts of inadequate infrastructure for
software testing,” National Institute of Standards and Technology, 2002.
F. Brooks, The Mythical Man-Month, Anniversary Edition: Essays On
Software Engineering. Pearson Education, 1995.

P. Afonso, M. Nunes, A. Paisana, and A. Braga, “The influence of time-
to-market and target costing in the new product development success,”
International Journal of Production Economics, 2008.

T. Sharma, M. Fragkoulis, and D. Spinellis, “House of cards: Code
smells in open-source c# repositories,” in 2017 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), 2017.

D. K. Boman, “International survey: virtual-environment research,”
Computer, 1995.

I. Rodriguez and X. Wang, “An empirical study of open source virtual
reality software projects,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 2017.

