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Abstract. Electroencephalography is a popular method for brain waves
analysis. Each region of the scalp or brain surface has different contri-
bution accordingly to the task that is being performed. Different sorts
of techniques are employed to study connectivity between brain regions,
and for this paper, the performance of magnitude-squared coherence will
be evaluated along with a power spectrum analysis. Coherence and power
spectrum analysis will be conducted upon a stress database, which was
collected from two of the authors with an electroencephalogram device
developed to acquire, filter, display and export electroencephalogram
(EEG) data in real-time from OpenBCI equipment. Stressors used were
Stroop and Montreal image tasks, and all of the results generated by
signal processing methods with these stressors were discussed and com-
pared to a baseline (EEG section performing actions without stress).
Collected data was also used to train an artificial neural network with
Multilayer Perceptron for stress level classification with two levels. The
developed device showed an excellent performance considering hardware
limitations. Experimental results with both stressors allowed the pro-
posed methods to be successfully employed and discussed considering
that phenomenons such as an increase in theta and beta power and
coherence were observed for both stressors, which matches the corre-
sponding bibliography even with hardware limitations. The Multilayer
Perceptron allowed 95% and 74% of accuracy using magnitude-squared
coherence and power spectrum, respectively, as inputs.

Keywords: Coherence - Power spectrum - Multilayer perceptron - Neu-
ral network classification - Brain-computer interface.

1 Introduction

Stress is widely present in our daily lives, and it might compromise both mental
and physical health, that is why its comprehension is important [46]. Electroen-
cephalography (EEG) along with signal processing tools is an applied method

* Supported by Sdo Paulo Research Foundation (FAPESP) and National Council for
Scientific and Technological Development (CNPq).
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to help the understanding of human emotional responses such as stress [16]. The
power spectrum, connectivity measures and artificial neural networks (ANN) are
examples of tools that have been recently applied to EEG stress analysis [3,41].
The standard analysis of EEG data in signal processing uses second-order statis-
tics, the second moment and second central moment [36]. From them, by the use
of Fourier Transform, power spectrum (by the Wiener—Khinchin theorem [14])
and the cross-spectrum (when the correlation between signals in the frequency
domain is desired) can be calculated [23]. EEG is a method that allows the mea-
surement of scalp conductance through electrodes positioned on the head [52].
These signals are generated from activities of different brain areas, and these sig-
nals, along with a frequency domain analysis, allow us to understand the brain
state [27].

The study of how different brain regions interact and how this interaction
behaves during the execution of specific tasks has been of great interest, for
that, connectivity signal processing tools, such as coherence, are used [53]. Co-
herence can show us if there is a similar or under synchronism activities from
different brain areas [47]. High connectivity values indicate a strong interac-
tion among these areas and low values indicate a possible independence [8].
Coherence has also been used to verify brain areas connectivity variation in re-
sponse to psychological disorders or emotional states such as stress [35]. ANN
has been used to classify biomedical datasets [51,6,32]. A possible EEG classifi-
cation method is Multilayer Perceptron (MLP), which uses supervised learning
and cross-validation methods to avoid over and underfitting [25]. For this kind
of classification, data has to be preprocessed using filtering methods, Fourier
transforms and adequate windows in order to highlight main lobes of interest
[26,54,55]. MLP specifically has been used for stress recognition and classification
with great performance, that is over 95% of accuracy [1].

This work will explore the analysis and discussions around the application,
limitations and behaviour of the power spectrum and magnitude-squared coher-
ence (MSC) applied to EEG signals. The same goal is proposed for the appli-
cation of classification with MLP to EEG signals. To perform these discussions
and study these tools behaviour during a psychophysiological stimuli, Montreal
image task [15] and Stroop test [50] were used as stressors during the EEG ac-
quisition. These proposed analyses were motivated by the fact that many times,
these tools are used as black boxes and for this reason might conduct to spurious
results. That is why their comprehension is so essential even because they are
widely applied to biomedical studies [3,35,1]. In order to perform these tasks,
an interface connected to the EEG device had to be developed to acquire, fil-
ter, display and export EEG data in real-time from a simple EEG acquisition
hardware from OpenBCI. The proposed tools will be discussed considering the
hardware limitations. Section 2 is going to introduce the theory related to elec-
troencephalography, coherence, power spectrum techniques and MLP. Section 3
presents the interface development and applied methodology. Section 4 reports
the results and discussions achieved. To close the paper, Section 5 presents a
conclusion.
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2 Theory

This section presents a brief review of the required theory for this paper. Elec-
troencephalography, coherence, power spectrum techniques and MLP are de-
fined. Some equations are established to uniform mathematical notation.

2.1 Electroencephalography Signals

The electroencephalograph is a device that allows brain activity measurement
through electrodes on the scalp, and it is a method with great temporal resolution
[52].

EEG signals are divided into frequency bands, each one indicating determined
conditions of the subject from neuron activity and intrinsic oscillations according
to membrane’s properties [52]. The first band is delta, which is composed of
frequencies lower than 4 Hz, and it appears mainly during deep sleep and diseases
that provoke a lack of consciousness [18]. The second band is theta (4 to 7 Hz),
which indicates that the subject is doing a repetitive action, under stress, alert
or attention [43] and these waves can be acquired at the frontal lobe [42]. Alpha
band (8 to 13 Hz) indicates relaxation when awake [44]. Finally, beta waves (13
to 30 Hz) are associated with high stress, logical thinking and problem-solving
[39].

The brain is divided into regions that indicate different kinds of activities.
These regions are frontal, temporal, parental and occipital lobes. The frontal lobe
is responsible by speech and motor activities, while the temporal lobe is respon-
sible by speech processing and memory, the parental lobe is the brain processing
area, and for least, the occipital lobe is responsible by eye image processing [52].
The activity of these areas can be measured by electroencephalogram using the
10/20 placement system [31]. It is essential to highlight that EEG signals are
commonly affected by noises, especially eye blinking, muscular movements, res-
piration and heart beating and eye blinking specifically has a general effect over
the whole EEG spectrum [22].

2.2 Spectral Estimation

The power spectrum is a measure of power distribution at each frequency of
the signal and, for this calculation, Wiener-Khinchin method [14] is used, which
is the Fourier Transform of the signal autocorrelation function [14]. However,
the method is only allowed to stationary signals, and it is necessary to have
a large number of samples, which is not available in most applications [29].
A solution is the use of spectral estimation methods, which considers that the
signal is stationary in a determined time interval, allowing the power distribution
calculus [9].

One of these spectral estimation methods is Welch Periodogram. The re-
sult of the Welch Periodogram is the mean of smaller samples power spectrum,
decreasing the variance of the estimation [57]. The selection of each sample is
made by the use of windows functions, and one of these is the prolate spheroidal
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window, which is an optimal window that has the maximum energy at the main
lobe [34]. Once the power spectral density of a signal (S,.(e*77)) is already es-
timated with sampling frequency F; and N number of points, the average power
within a band (limited by f; and f2) can be determined from Eq. (1) [49].

f2
. . 1—7‘9 .
P(€J27rf1’ej2ﬂ'f2) _ N E SXX(eﬂwk) (1)
k=f1

Welch periodogram is commonly used for power spectral density because of
its excellent performance with noise compared to traditional periodogram and
Bartellet methods, although with worse spectral resolution [36].

Another spectral estimation method is by the use of time-frequency trans-
forms, as Short Time Fourier Transform (STFT), which allows Fourier Transform
to be applied to non-stationary signals, dividing the signal into smaller parts and
calculating the Fourier Transform of each part [2]. It generates a spectral analy-
sis of each time interval, giving when each frequency is showed [45]. The results
of this methods depend on the length of the window (L), and the size of sliding
window shift (D) and they are linked to the spectral and temporal resolutions
of the data [12]. The expression of the STFT can be seen below, with f,, = &

L
and t, = nD:
L—1
X(tn, fm) = Y _ w(k)w(nD — k)e 7" % (2)
k=0

The result of the STFT has a tradeoff between the variance of signal time and
frequency. This relationship is expressed by the fact that the product between
time and frequency standard deviations is constant, showing that the deviations
are inversely proportional, which is called the uncertainty principle [13]. Thus,
although it is not possible to have all frequencies that occur at a determined
instant, it is possible to determine the power in a range of frequencies within a
time interval.

2.3 Coherence

Coherence can be seen as a linearity measurement between two signals [10],
and this kind of function applies to a great sort of purposes, such as system
identification, signal-to-noise ratio (SNR) and time delay measurements [11].
Mathematically coherence can be defined as a complex coherence, which is the
ratio between the cross-spectrum of two signals (Sg,(e*™/)) and the root of
the product between each signal power spectrum (S (e*™F) and Sy, (e*™f)),
or a magnitude-squared coherence (MSC or C,,(e2™F)), which is the squared
complex coherence [11], expressed at Eq. 3. It is important to highlight the cross-
spectrum returns a cross-correlation between signals in the frequency domain

[36).
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MSC as expressed at Eq. 3 is frequency-dependent and returns a normalized
value between 0 and 1. Value 1 happens in two main situations: when signals are
represented by a single sample set (which does not have any physical meaning)
and when there is no amplitude e phase variation between two signals across
time for a given frequency component once phase and amplitude variation are
able to change coherence [10]. Also, MSC can be applied to EEG signals to
verify coupling between brain regions [33] and high MSC values might be seen
as a functional or structural connection between cortex regions from which the
signals were acquired [17].

Cay (ej%‘f) =

2.4 Data Classification

The use of artificial neural networks (ANN) to solve pattern classification prob-
lems is a widespread method [37]. Among these methods, it is highlighted the
architecture which uses supervised learning, which needs a data set with the
labelled input and desired output of each sample to perform classification [24].
A typical structure that allows these classifications with generalization is the
Multilayer Perceptron. This method is composed of smaller structures called
Perceptrons, which uses non-linear models to make a linear classification [19].
The arrangement of these smaller parts is made by the organization in layers
without feedback. Layers are divided into input, hidden and output, and the
signal direction is always from the input to the output. This division allows the
non-linear classification of the data [20].

The training is made by backpropagation algorithm [24], which adapts the
weight w of each input in each neuron. This adaptation is dependent on the
difference between the actual model output and the desired output for each
input data set [19]. The resulting value is multiplied by the input sample and
learning rate (defined previously), and it is added to the actual weight value.
This algorithm runs until the difference between two consecutive weights are
smaller than a threshold [24].

3 Materials and Methods

In this section, information about the developed EEG interface is reported, as
well as the applied methodology, including algorithms and the computational
environment.

3.1 Materials

An interface was developed to acquire, filter, display and export data from EEG
source Ultracortex “Mark IV” EEG Headset made by OpenBCI. After the acqui-
sition, the Cyton board converts the analogical signal to digital with a sampling
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rate of 250 Hz and communicates via Bluetooth with a dongle, which sends
the data to the computer. The components of the used hardware can be seen
in Figure 1. The computational environment to develop and run the developed

software was Ubuntu 16.04 in a Dell Vostro 5470 (Intel Core i5 and 8GB RAM)
using Python 3.5.2 as the programming language.

7] HEs
[Eooooot

ey

Fig.1: a) Ultracortex “Mark IV’ EEG Headset hardware with 8 electrodes and
10/20 system possible positions. b) Cyton Board with 250Hz of sampling rate.
¢) Dongle that communicates via Bluetooth with Cyton board.

3.2 Interface development

The developed interface basic functioning can be represented by the Figure 2.

Thread 1 Thread 2

Read 8 channel Initialize
data each Tg graphical interface |
FIR band-pass
filtering s filtered data
l queue empty ?
Save filtered Yes
data in .txt No
Accumulate filtered Wait until queue .
data to queue receive data RICHCred S

Fig. 2: Interface operating scheme for EEG acquisition, filter and display in real-
time using multithreading.

For band-pass FIR filtering, 5Hz and 50Hz were used as cutoff frequencies
with Hann window [36]. It is important to highlight that 5Hz was used as low
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cutoff frequencies in order to decrease the DC level influence significantly and
there is no problem about it once delta band is not used to the proposed analysis.
Moreover, 50Hz was used to lower the influence of the electrical system, which
in the laboratory was 60Hz.

3.3 Tests description

With the developed software, Stroop and Montreal image tasks [15,50] were
performed with two of the researchers, and the results were compared to regular
activity with the same researchers. Stroop test consists of inducing a conflict
produced by reading and colour perception. The objective of this test is to speak
the name of the text colour, which is different from the text word itself [50]. For
instance, the word yellow is coloured in blue, so the right answer after seeing the
word picture is blue. The other task (Montreal Imaging Stress Task) consists of
performing mental calculus (without any calculating tool) with a limited time,
and the level is gradually increased, starting with sum and subtraction of two
numbers with only one digit, until achieving operations with four numbers using
both multiplication and division with numbers in range from 0 to 100, and
also the time is decreased inasmuch as the user gets the right answer. Both
tasks were implemented in Python and appended to a new thread along with
the former interface threads (Figure 2), so the subject can perform Stroop and
Montreal Image tasks while the software acquires, filters, displays and exports
the EEG data. Stroop and Montreal image tasks were chosen based on the
existing correlation between them and the stress effect on EEG power spectrum
[15,21].

Electrodes positions for each channel were : FP2 (Ch0), FPz (Chl), F8 (Ch2),
Cz (Ch3), F4 (Ch4), P3 (Ch5), T6 (Ch6) and T4 (Ch7). These positions were
chosen considering areas with great stress sensitivity used in previous works
and bibliography [4,5,56]. Once EEG is already collected, before applying power
spectrum and MSC to each channel data with both stressors and compare with
normal EEG activity, a convenient temporal interval had to be selected. This
had to be done once the available hardware did not include electrooculography
(EOG) and, therefore, the blinking effect was present and capable of disturbing
the analysis. In order to solve this issue, intervals without many blinking peaks
were chosen for power spectrum and coherence analysis.

3.4 Applied methodology

Average power in each band (theta, alpha and beta) was determined from the
power spectrum estimated with Welch’s periodogram using Eq. (1) and MSC
coherence was computed with a generalization of Welch’s periodogram in order to
estimate cross-spectrum [57]. Both power spectrum and MSC were implemented
with Python 3 using the last version of scipy.signal library [28]. It’s important
to highlight that the choice for Welch’s method was made considering its good
performance dealing with noise [36], which is our main concern considering that
the acquisition hardware is not good enough for achieving biomedical conclusions
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however serves the goal of exploring the performance and discussions around the
proposed signal processing and machine learning tools.

For coherence discussion, an average MSC was computed for each pair of
electrodes combination, and the ratio between the average MSC during stress
manifestation (Montreal and Stroop) and regular activity was computed for
theta, alpha and beta bands. These results were generated in a correlogram with
the same colour scale in order to compare results more easily. In this colour scale,
red represents an increase in average MSC and blue represents a decrease. Also,
in the proportion that the colour gets darker, these variations become higher.

For the signal classification discussion, two classifications were made, each one
using different kinds of input. The first one used the results from the Short Time
Fourier Transform to acquire the power of each band over time with a window
containing 256 taps, and the power of each band was normalized considering
the total signal power. So, with 8 EEG channels and 3 frequency bands, 24
inputs were generated. The second classification used the mean coherence of all
electrodes combinations within each band, with a Slepian window [59] containing
512 taps and 50% of overlap, totalling 168 inputs.

To assign labels to the training set, the task that was being performed during
the EEG recording with two of the researchers was considered. Briefly, class
“without stress” (or 0) was assigned for signals intervals captured during regular
activity, and class “with stress” (or 1) was assigned for signals intervals captured
during Stroop or Montreal tasks where the power spectrum and MSC indicated
stress manifestation according to the corresponding bibliography [43,42,4,39,3].
The results of each combination were plotted in a graph. For one hidden layer, the
graph was the accuracy versus the number of neurons. For two hidden layers, the
axes were the number of neurons at each layer, and the accuracy was represented
by a colour scale, with darker parts indicating a higher score. The dataset had
a total of 249 samples, of these, 53.7% corresponding to the non-stressed state.

The MLP model was implemented using the scikit-learn library [38]. The
applied MLP topology used sigmoid as an activation function, learning rate
of 0.001, and adam solver to optimize the weights. This optimization is based
mainly in the fact that the learning rate adapts accordingly to the first and
second momentum of the gradient [30], where the initial momentum was set to
107°.

4 Results and discussion

In this section results and discussions around the developed interface to perform
the study is reported, as well as the applied methodology, including coherence,
power spectrum and MLP.

4.1 EEG interface functioning

The interface developed to connect to the EEG device worked adequately, and
the acquisition and display features can be seen in Figure 3.
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Fig. 3: Developed interface with real-time acquisition, filtering, display and data
export working during data collect with 5 seconds of time range.

4.2 Tests results and discussion

The applications developed to perform Stroop and Montreal tasks can be seen in
Figure 4. Stroop application generates samples with different words and colours
each 5s, although, for visual purposes, some cases were joined in the same figure.
Figure 4 shows different difficulty levels got together in the same picture.

RED

BLACK

PURPLE GREEN

Fig.4: Several samples of Stroop developed application and different difficulty
levels of implemented Montreal Image task application.

Choosing intervals of EEG raw data where the blinking effect is almost im-
perceptible, the following mean power radar plots for each band, each electrode
position and each activity were generated.
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Mean power in theta band [VZ/Q] Mean power in alpha band [V2/Q] Mean power in beta band [V2/Q]

le-10 ek le-9 B2 le-9 B2

T6

Normal
Stroop
Montreal

Fig. 5: Mean power in theta, alpha and beta bands for normal activity, Montreal
and Stroop tasks.

As can be seen in Figure 5, average power computed in theta, alpha and
beta bands through the proposed power spectrum estimation methods could
handle the noise present (variance reduction) in the acquisition platform and
the signal. These results were consistent once theta band is related to attention
and stress tasks, so it’s expected that mean power in this band, especially in
the frontal regions, increases with stress manifestation (Stroop and Montreal
stimuli) [43,42]. Furthermore, beta waves had a huge power increase during stress
manifestation especially during Montreal image test which meets the fact that
increases in beta power are strongly related to attention and cognition activities,
which is true mainly in Montreal image task [4,39].

The blinking effect in different EEG signal intervals for each of the activities
proposed can be seen in Figure 6. If we focus on regular activity interval (highest
blinking density), the power spectrum consequence of blinking effect at a low
sampling rate (250Hz) can also be seen on the right side of Figure 6.

Mean power in theta band (blinking effect) [V2/Q]
1e-8 FP2

—_—

T4 FPz
WW Normal
W Stroop T6 F8
N\A-\/\A/\-\,V Montreal

Normal
——Stroop
——Montreal F4

Fig. 6: Blinking effect in selected intervals of EEG collected signals and further
power spectrum analysis focused on regular activity interval.
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If blinking peaks were more selective (this means more similar to an impulse)

it would not be a problem for spectral analysis once the Fourier transform of an
impulse is a DC level in the frequency domain and it could be easily removed
before power spectrum and MSC analysis. However, as it can be seen in Figure
6, those peaks are more similar to a square window than to an impulse, and
this happens because of the low sampling rate (250Hz), so the frequency domain
is affected differently by some function close to a cardinal sine, which sharply
increases power density in lower frequencies (theta band) in scalp regions closer
to the eyes (frontal region : FP2, FPz and F4).
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For coherence analysis, Figures 7 and 8 were generated.
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Fig. 7: Average MSC ratios between Stroop task and normal activity signals.
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Fig. 8: Average MSC ratios between Montreal task and normal activity signals.
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One main characteristic of the MSC is the fact that its value is high (almost
one) for adjacent regions, and it decreases in the proportion that the distance
between regions increases [48]. From the Figures 7 and 8 it can be inferred
that for neighbouring regions (among the electrode placement chosen), such as
P3-Cz and Cz-T4, MSC almost did not vary and for distant regions, such as
T6-FPz, T6-FP2 and T6-F8 MSC had the most prominent variations. This fact
can be seen as a confirmation that [48] proposes, once if MSC is almost one
for near regions independently of the task that is being performed during the
EEG recording, a change of task, such as a stressor task, won’t be able to vary
significantly the MSC between close brain regions and the analogous reasoning
is also true for distant brain regions.

Moreover, MSC could also generate consistent results for EEG stress signals
once it showed some shared characteristics between both stressors : a majority
increase in theta and beta coherence and decrease in alpha coherence (mainly
for Stroop case), which goes toward the expected effect during stress stimulated
by both stressors [3].

The results for the MLP classification with different topologies can be seen
in Figure 9. The maximum accuracy of each case, using coherence and power
spectrum as inputs with one and two hidden layers, can be seen in Table 1. The
highest values of accuracy and how these values vary with the number of neurons
in each layer allow us to know what is the best configuration for this MLP.

Table 1: Maximum accuracy and the number of neurons of each hidden layer for
the MLPs trained with each type of input.
Num. of Max. Neurons Neurons

Input hidden layers score 1st layer 2nd layer
Power Spectrum 1 74% 108 -
Power Spectrum 2 71% 39 13
Coherence 1 95% 36 -
Coherence 2 94% 168 115

In Figure 9, the accuracy was higher in the network trained with coherence as
input, reaching 95%, while those trained with power spectrum had a maximum
of 74%.

The previous results indicated that coherence training had higher classifi-
cation performance in terms of accuracy than with power spectrum inputs. A
difference between results was already expected once the number of inputs in
each case is widely different (coherence had 168 inputs, while the mean power
spectrum had 24 inputs). Coherence inputs might have its better performance
attributed to the fact that this function returns a normalized value between zero
and one independently of the subject and mental state, while power spectrum
might have high variations and hugely discrepant values depending on the sub-
ject and on the mental state [7]. Furthermore, the coherence of the EEG data
returns a value that corresponds to how each channel varies in relation to an-
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Fig.9: Neural network accuracy with (a) mean power spectrum as input and
one hidden layer, (b) mean power spectrum as input and two hidden layers, (c)
mean coherence as input and one hidden layer and (d) mean coherence as input

and two hidden layers.

other, in the frequency domain; While the power spectrum analyzes the effect
of only one channel each time, which does not imply that functional activity
changed, once the functional activity depends on the interaction between dif-
ferent brain regions (as considered by MSC) [40]. Moreover, the approach with
the power spectrum as input is more susceptible to the presence of artifacts,
mainly in frontal lobes, once power spectrum measures an absolute value, and
there is no interaction between channels to compensate the artifact presence [58].
Thus it might be considered the fact that interaction inputs are more discrim-
inant than absolute inputs for MLP stress classification, however, to conclude
that, more data with more subjects, better equipment and a study along with

medical monitoring is required.
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5 Conclusions and recommendations

In a first moment, power spectrum and coherence analysis were able to provide
discussions around their applications and background such as noise resistance
and blinking effects. These facts were clarified by the contrasting difference in the
mean power between regions affected and not affected by eye blinking. Hardware
limitations explained how a small sampling frequency could distort an impulse
in the time domain and cause an increase in the power spectrum during blinking
periods.

EEG power spectrum and MSC variations within intervals without blinking
influence observed during the proposed tasks showed behaviours already well
established by the corresponding bibliography [43,42,4,39,3] such as an increase
in theta and beta band mean power and MSC. These observations showed that
even with simple hardware, the software developed to filter and acquire raw data
in real time from the EEG source could handle its limitations. Also, a discussion
around MSC could provide a relationship between variations observed in MSC
and the intrinsic dynamics of this tool when signals from different distant points
are tested, that is near regions provided more intense MSC than distant regions
[48].

Networks trained with mean coherence presented better scores than with the
power spectrum. This fact was observed mainly in the case with one hidden layer,
once scores higher than 90% could be achieved. All these conclusions support
the fact that for classification purposes, functional activity changes are better
expressed by interaction measures (such as MSC) rather than absolute values
(power spectrum) as suggested by [40].

For future works, acquisition of more data from a more extensive number of
subjects and better acquisition hardware are proposed in order to improve the
classification, support the reached results in this paper and verify the statement
of the possibility to classify the brain state using coherence. Besides that, tests
using other machine learning architectures must be done to verify if they improve
the classification performance.
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