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In view of the proliferation in the number of new charmonium states, it is really important to have an
experimental way to prove that an observed bump is, indeed, a real resonance. To do that, in this paper 
we present an alternative method to demonstrate the resonant behavior of a state. With this method, 
the phase variation of a generic complex amplitude can be directly revealed through interference in the 
Dalitz-plot region where it crosses a well established resonant state, used as a probe. We have tested 
the method for the Z−(4430) state by generating Monte Carlo samples for the B0 → ψ(2S)π− K + decay 
channel. We have shown that the proposed method gives a clear oscillation behavior, related to the phase 
variation associated with a real resonant state, in the case where the Z−(4430) is considered as a regular 
resonance with a strong phase variation.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Several experiments operating during the last decade, mainly 
BaBar at SLAC and Belle at KEK, CLEO-III and CLEO-c at CESR, CDF 
and DØ at Fermilab, BESIII at IHEP and LHCb and CMS at CERN, 
have vastly increased the available data on new charmonium-like 
states, called X , Y and Z states. Among these states, the charged 
ones are the most interesting, since they cannot be simple cc̄
states. The Z+(4430), found by Belle Collaboration in 2007, was 
the first one observed [1–3]. Since the minimal quark content of 
this state is cc̄ud̄ this can only be achieved in a multiquark config-
uration. The BaBar Collaboration searched for the Z−(4430) signa-
ture in four decay modes and concluded that there is no significant 
evidence for a signal peak in any of these processes [4]. However, 
very recently the Belle and LHCb Collaborations have confirmed 
the Z+(4430) observation and have determined the preferred as-
signment of the quantum numbers to be J P = 1+ [3,5]. Curiously, 
the first evidence of this resonance in the J/ψπ+ channel was re-
ported only this year by Belle Collaboration [6].

The Z+(4430) observation motivated further studies of other 
B̄0 decays and, in 2008, Belle Collaboration reported the observa-
tion of other two resonance-like structures, called Z+

1 (4050) and 
Z+

2 (4250), in the exclusive process B̄0 → K −π+χc1, in the π+χc1
mass distribution [7]. Once again the BaBar Collaboration did not 
confirm these observations [8].
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Following these observations, from March to October of 2013 
four more charmonium charged states were reported. The first one 
was the Z+

c (3900), observed almost at the same time by BESIII [9]
and Belle [10] Collaborations, in the M(π± J/ψ) mass spectrum of 
the Y (4260) → J/ψπ+π− decay channel. This structure was also 
confirmed by the authors of Ref. [11] using CLEO-c data.

Soon after the Z+
c (3900) observation, the BESIII related the ob-

servation of other three charges states: Z+
c (4025) [12], Z+

c (4020)

[13] and Z+
c (3885) [14]. Up to now it is not clear if the states 

Z+
c (3900)–Z+

c (3885) and the states Z+
c (4025)–Z+

c (4020) are the 
same states seen in different decay channels, or if they are inde-
pendent states.

Finally, in August 2014 the Z+
c (4200) was reported by Belle Col-

laboration in the J/ψπ+ channel of the B̄0 decay, with a 6.2σ
significance. As in the case of the Z+(4430), the preferred assign-
ment of the quantum numbers is J P = 1+ [6]. We show these 
states in Table 1. For more details we refer the reader to the more 
comprehensive review articles [15–19].

In view of so many non-confirmed (NC) states in Table 1, it 
is really important to have an experimental way to prove that an 
observed excess of events is, indeed, a real resonance. In particu-
lar, bumps close to the threshold of a pair of particles should be 
treated with caution [21]. Sometimes they are identified as new 
particles, but they can also be a reflection of a resonance below 
threshold. As an example, in the case of the Z+

c (3885), it was 
shown in Ref. [21] that the signal reported in [14] could be also 
described by a D D̄∗ resonance with a mass around 3875 MeV and 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
The new charged states in the cc̄ regions, ordered by mass. Masses m and widths � represent the weighted averages from the listed sources as in [19], or are taken from 
[20] when available. The citation given in red is for the first observation and the citation given in blue is for a non-confirmation. The Status column NC (needs confirmation) 
indicates that the state has been observed by only one, or was not confirmed by other, experiment. The Status is OK if at least two independent experiments saw the state.

State m (MeV) � (MeV) J P (C) Process (mode) Experiment Year Status

Z+
c (3885) 3883.9 ± 4.5 25 ± 12 1+ Y (4260) → π−(D D̄∗+) BESIII [14] 2013 NC

Z+
c (3900) 3896.7 ± 7.3 55 ± 35 1+ Y (4260) → π−(π+ J/ψ) BESIII [9], Belle [10], CLEO-c [11] 2013 OK

Z+
c (4020) 4022.9 ± 2.8 7.9 ± 3.7 . . . e+e− → π−(π+hc) BESIII [13] 2013 NC

Z+
c (4025) 4026.9 ± 4.5 24.8 ± 9.5 1+ , 2+ Y (4260) → π−(D∗ D̄∗)+ BESIII [12] 2013 NC

Z+
1 (4050) 4051+24

−43 82+51
−55 . . . B → K (π+χc1(1P )) Belle [7], BaBar [8] 2008 NC

Z+
c (4200) 4196+35

−30 370+99
−110 1+ B → K (π+ J/ψ) Belle [6] 2014 NC

Z+
2 (4250) 4248+185

−45 177+321
−72 . . . B → K (π+χc1(1P )) Belle [7], BaBar [8] 2008 NC

Z+(4430) 4458±15 166+37
−32 1+ B → K −(π+ψ(2S)) Belle [1–3], BaBar [4], LHCb [5] 2007 OK

B → K −(π+ J/ψ) Belle [6]
width around 30 MeV. Also, in the case of the Z+
c (4025), it was 

shown in Ref. [22] that both, a resonance with J P = 1+ or a bound 
state with J P = 2+ , are compatible with the data from Ref. [12]. 
Besides, it was also shown in Ref. [22] that the experimental data 
can also be explained with just a pure wave-D background. In the 
case of the Z+(4430), since its mass is close to the D∗ D1 thresh-
old, it was suggested that it could be a J P = 1+ D∗ D̄1 molecular 
state [23] or a cusp in the D∗ D̄1 channel [24].

The first attempt to demonstrate the resonant behavior of the 
Z+(4430) state was done by LHCb in Ref. [5], where a fit was 
performed in which the Breit–Wigner amplitude was replaced by 
a combination of independent complex amplitudes at six equally 
spaced points in mψ(2S)π range covering the Z+(4430) peak re-
gion. The resulting Argand diagram is consistent with a rapid phase 
transition at the peak of the amplitude, just as expected for a 
resonance. In Ref. [6] a similar method was applied to show the 
resonant behavior of the Z+(4200). The Breit–Wigner amplitude 
was replaced by a combination of constant amplitudes, with six 
bins in m J/ψπ range covering the Z+(4200) peak and two inde-
pendent sets of constant amplitudes, to represent the two helicity 
amplitudes of the Z+

c (4200), H0 and H1. The results in the Argand 
diagram for H1 clearly show a resonance-like change of the ampli-
tude’s absolute value and phase. However, they argue that because 
of the Argand diagram for the H0 amplitudes has much larger rel-
ative errors, it was not possible to draw any conclusions from it. In 
any case, the Argand-plot approach, proposed by LHCb experiment, 
needs a high statistics sample to be able to give, in an undoubted 
way, the confirmation of the phase variation expected for a regular 
resonant state.

In this paper we propose a different method to demonstrate the 
resonant behavior of a state. It is a simple experimental method 
isobar-based Amplitude Difference (AD), that can be used to ex-
tract the phase motion of a complex amplitude in three-body 
heavy-meson decays [25]. With this method, the phase variation 
of a generic complex amplitude can be directly revealed through 
interference in the Dalitz-plot region where it crosses a well es-
tablished resonant state, used as a probe. This method was suc-
cessfully applied to Fermilab E791 data [26] to extract the well-
known phase motion of the scalar amplitude f0(980) observed 
in D+

s → π−π+π+ decay. It was also successfully used to ex-
tract the phase motion, of a resonant scalar amplitude σ(500) in 
D+ → π−π+π+ decay [27], to confirm previous evidences of the 
existence of a light and broad scalar resonance presented by Fer-
milab experiment E791 [28].

In full Dalitz-plot analyses, each possible resonance amplitude 
is represented by a Breit–Wigner function multiplied by angular 
distributions associated with the spin of the resonance. The vari-
ous contributions are combined in a coherent sum, with complex 
coefficients, that are extracted from fits to the data. The absolute 
value of the coefficients is related to the relative fraction of each 
contribution and the phases take into account the final state inter-
action (FSI) between the resonance and the third particle.

Amplitude Difference method has a different approach. It con-
centrates in a particular region of the Dalitz plot, where the 
amplitude under study crosses a well-known resonance ampli-
tude, called probe amplitude, represented by a Breit–Wigner. The 
phase variation of the complex amplitude can be directly revealed 
through the interference, in the Dalitz-plot region, where they 
cross each other.

There are two necessary conditions to extract the phase motion 
of a generic amplitude with the AD method:

• A crossing region between the amplitude under study and a 
probe resonance has to be dominated by these two contribu-
tions.

• The integrated amplitude of the probe resonance must be 
symmetric with respect to an effective mass squared (m2

eff ) 
that is the nominal mass of the resonance probe.

These two conditions are very well satisfied in many charmo-
nium three-body B decays, where the phase space is large and the 
charmonium candidates are located in the central region of the 
Dalitz plot, possibly crossing with well established resonances. The 
probe resonances are, in general, placed at low Kπ , K K or ππ
invariant mass. As a consequence, the charmonium amplitude can-
didates must cross basically all phase space, or at least the low Kπ
region, to be observed by the AD method. Therefore, if the ampli-
tude under study is located only in a region of the Dalitz plot and 
does not cross the probe resonance, this method may not apply. 
One example could be a molecular state, as discussed in Ref. [29]. 
This will exclude the direct observation of the phase variation of 
molecular states with the AD method.

With the two above conditions, we can examine the B0 →
ψπ−K + decay (where ψ represents J/ψ or ψ(2S)), and write 
down an amplitude with two components: one representing the 
probe resonance, K ∗ , placed in the Dalitz variable s12 that is the 
square invariant mass of the pair π− and K + , through a Breit–
Wigner and the angular distribution, and the other, representing 
the resonance under study, which we call generically by Z decay-
ing in J/ψπ or ψ(2S)π , placed in the Dalitz variable s13, that is 
the square invariant mass of the pair π− and J/ψ . This simple 
amplitude must be used only in the small part of the phase space 
where the interference between them occurs. Since the last one 
can have different dynamical origins, it can be written in a most 
generic way as:

A Z (s13) = sin δ(s13)eiδ(s13) . (1)



I. Bediaga et al. / Physics Letters B 748 (2015) 187–190 189
This unitary equation is able to represent amplitudes with slow 
phase variation, as well as resonances with a large phase variation, 
of the order of 180◦ , around the nominal mass of the resonance, 
in the same way as the Argand plot used by LHCb [5]. The total 
amplitude for the B0 → ψπ−K + decay, in the small part of the 
phase space where the interference between the resonances K ∗ →
K +π− and Z− → ψπ− occurs, can be written as [3]:

|A(s12, s13)|2 =
∑

ζ=1,−1

|A(s12, s13, ζ )|2 ,

with A(s12, s13, ζ ) =
∑

λ=−1,0,1

AK ∗
λζ +

∑
λ′=−1,0,1

A Z
λ′ζ , (2)

where ζ , λ and λ′ are the helicities of the lepton pair, the K ∗ and 
Z respectively. We take the amplitudes of the decays B0 → ψ(→
l+l−)K ∗(→ K +π−) and B0 → K + Z−(→ ψ(→ l+l−)π−) from [3]:

AK ∗
λζ = H K ∗

λ AK ∗
(s12)d

1
λ0(θK ∗)eiλϕd1

λζ (θψ) ,

A Z
λ′ζ = H Z

λ′ A Z (s13)d
1
0λ′(θZ )eiλ′ϕ̃d1

λ′ζ (θ̃ψ )eiζα . (3)

In Eqs. (3) H R
λ is the helicity amplitude for the decay via the res-

onance R , d J
mn(β) are Wigner d functions, θR is the resonance 

helicity angle (the angle between π− and K + or ψ momenta in 
the resonance rest frame), θψ (θ̃ψ ) is the ψ helicity angle (the an-
gle between π− and l− momenta in the ψ rest frame), ϕ(ϕ̃) is 
the angle between the planes defined by the (l+π−) and (K +π−)

momenta in the ψ rest frame and α is the angle between the 
planes defined by the (l+π−) and (l+K ∗) momenta in the ψ rest 
frame. The amplitudes H Z

1 and H Z−1 are related by parity conser-

vation H Z
λ = H Z−λ . Finally, A Z (s13) is given in Eq. (1) and AK ∗

(s12)

is described by a Breit–Wigner:

AK ∗
(s12) = m0�0

s12 − m2
0 + im0�0

, (4)

where m0 and �0 are the mass and the width of the K ∗(892) re-
spectively.

Let us define

aK ∗
ζ eiαζ (K ∗) = H K ∗

−1d1−10(θK ∗)e−iϕd1−1ζ (θψ)

+ H K ∗
0 d1

00(θK ∗)d1
0ζ (θψ) + H K ∗

1 d1
10(θK ∗)eiϕd1

1ζ (θψ),

aZ
ζ eiαζ (Z) = H Z

1

(
d1

0−1(θZ )e−iϕ̃d1−1ζ (θ̃ψ ) + d1
01(θZ )eiϕ̃d1

1ζ (θ̃ψ )
)

+ H Z
0 d1

00(θZ )d1
0ζ (θ̃ψ ) . (5)

Using Eqs. (3) and (5), we can write

A(s12, s13, ζ ) =
∑

λ=−1,0,1

AK ∗
λζ +

∑
λ′=−1,0,1

A Z
λ′ζ

= AK ∗
(s12)a

K ∗
ζ eiαζ (K ∗) + A Z (s13)eiζαaZ

ζ eiαζ (Z). (6)

Therefore,

|A(s12, s13, ζ )|2 = (aK ∗
ζ )2|AK ∗

(s12)|2 + (aZ
ζ )2 sin δ(s13)

+ 2aK ∗
ζ aZ

ζ sin δ(s13)m0�0

(s12 − m2
0)

2 + m2
0�

2
0

× [
(s12 − m2

0) cos(δ(s13) + βζ )

− m0�0 sin(δ(s13) + βζ )
]
, (7)

where we have used Eqs. (1) and (4) and we have defined βζ =
αζ (K ∗) − αζ (Z) − ζα.
The expression in Eq. (7) is very similar to the one obtained 
in [27], for two scalar resonances. For small �0, |AK ∗

(s12)|2 can 
be considered as a symmetric function, therefore |AK ∗

(s12 = m2
0 +

ε)|2 −|AK ∗
(s12 = m2

0 −ε)|2 = 0, where ε is small. Also, in the small 
part of the phase space where the interference between the K ∗
and the Z occurs, we can suppose that all the angles are almost 
constant. Consequently the difference of the amplitudes squared 
takes the simple form:

| A(m2
0 + ε, s13, ζ ) |2 − | A(m2

0 − ε, s13, ζ ) |2

= 4aK ∗
ζ aZ

ζ m0�0ε sin δ(s13)

ε2 + m2
0�

2
0

cos(δ(s13) + βζ ) . (8)

We can rewrite Eq. (8) as:

� | Aζ |2 = | A(m2
0 + ε, s13, ζ ) |2 − | A(m2

0 − ε, s13, ζ ) |2
= Cζ (sin(2δ(s13) + βζ ) − sinβζ ), (9)

where Cζ = 2aK ∗
ζ aZ

ζ εm0�0/(ε
2 + m2

0�
2
0).

Using Eqs. (2) and (9) we can write the difference of the ampli-
tudes squared:

� | A |2 = | A(m2
0 + ε, s13) |2 − | A(m2

0 − ε, s13) |2
=

∑
ζ=−1,1

� | Aζ |2

=
∑

ζ=−1,1

Cζ

(
sin(2δ(s13) + βζ ) − sinβζ

)
, (10)

where | A(m2
0 − ε, s13) |2 and | A(m2

0 + ε, s13) |2 are taken from 
data. The above equation can, finally, be rewritten as:

� | A |2 = sin(2δ(s13))
∑

ζ=−1,1

Cζ cosβζ

+ (cos(2δ(s13)) − 1)
∑

ζ=−1,1

Cζ sinβζ . (11)

� |A |2, in Eq. (11), directly reflects the behavior of δ(s13). A con-
stant � | A |2 would imply a constant δ(s13), and this would be 
the case of non-resonant contribution. In the same way, a slow 
phase motion will produce a slowly varying � | A |2 and a full res-
onance phase motion produces a clear signature in � | A |2 with 
the presence of zero, maximum and minimum values.

To clarify these possible behaviors of � | A |2 and show the 
statistic feasibility of the AD method, we perform a simple Monte 
Carlo study. To do that we generated two Monte Carlo samples 
of B0 → ψ(2S)π−K + decay channel, each one with a sample of 
20,000 events with relative fractions 0.86 and 0.08 respectively for 
the K ∗/ψ(2S) and Z−(4430)/K contributions, similarly to the ob-
served by the LHCb experiment with 3 fb−1 accumulated data [5]. 
In the first sample the Z−(4430) enters as a regular resonance 
with a strong phase variation, represented by a Breit–Wigner, 
while in the second, Z−(4430) is represented by a real bump am-
plitude with no strong phase associated. To simplify this study we 
use only one helicity of the lepton pair in Eq. (10) and assume 
that in the little phase space crossing region both amplitudes do 
not have a significant variation due to the angular distribution. In 
both cases we assume zero phase difference between these am-
plitudes. Finally we do not include background components in our 
simulation.

Fig. 1(a) shows the � | A |2 distribution for the sample with 
a Breit–Wigner representing the Z−(4430) particle. One can see 
a clear oscillation behavior around the zero value of this func-
tion, with positive and negative regions, placed around the nom-
inal mass value of this charmonium state. As it was discussed 
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Fig. 1. � | A |2= (| A(m2
0 + ε, s13) |2 − | A(m2

0 − ε, s13) |2), as a function of s13 = m2(ψ(2S)π), for a sample of 20,000 signal events, using K ∗ as a probe with m0 =
0.89594 GeV2/c4 and ε = 0.06 GeV2/c4. Two cases are illustrated: (a) considering both resonances represented as Breit–Wigner, and (b) representing the K ∗ resonance as a 
Breit–Wigner and a real bump around s13 = 20 GeV2/c4 as a non-resonant component.
in Ref. [25], this particular distribution is determined by the 
phase difference between the two amplitudes. Here we assume 
zero, but any other possible value to this phase difference pro-
duces the same signature: positive, negative and zero regions 
along the crossing region. The � | A |2 distribution for the sec-
ond Monte Carlo sample, with no phase variation associated with
the Z−(4430) around the K ∗ mass region, is shown in Fig. 1(b). 
The behavior is clearly different from Fig. 1(a), with almost con-
stant value for � | A |2 distribution. The mean value of � | A |2
is shifted from zero due to the constant behavior of δ(s13) phase, 
along the s13 variable in the phase space region considered.

In conclusion, we have discussed the new findings of several 
experiments operating during the last decade, with many indi-
cations of new charmonium states. We have identified the need 
to have a direct confirmation of these states through the study 
of the phase variation associated with a real resonant state. The 
first attempt to demonstrate such resonant behavior was done 
by the LHCb Collaboration [5], for the charged charmonium state 
Z−(4430) observed in the B0 → ψ(2S)π−K + decay. In this pa-
per we present an alternative method, called isobar-based Ampli-
tude Difference (AD), already used in charm three-body decays 
[25–27], that can be used in cases where the amplitude under 
study crosses, in the Dalitz plot, a well established resonance. We 
have tested the method for the Z−(4430) state by generating two 
Monte Carlo samples of B0 → ψ(2S)π−K + decay channel. The 
first where the Z−(4430) is considered as a regular resonance with 
a strong phase variation, represented by a Breit–Wigner, and the 
second where the Z−(4430) is represented by a real bump ampli-
tude with no strong phase associated and, therefore, is not a real 
particle. Each one of these Monte Carlo simulations were generated 
with samples similar to the observed by the LHCb experiment [5]. 
We have shown that, in the first case, the AD method gives a clear 
oscillation behavior related to the phase variation associated with
a real resonant state. For the second case no oscillation behavior
was observed.
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