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Two versions of the threshold contact process - ordinary and conservative - are studied on a square lattice.
In the first, particles are created on active sites, those having at least two nearest neighbor sites occupied,
and are annihilated spontaneously. In the conservative version, a particle jumps from its site to an active
site. Mean-field analysis suggests the existence of a first-order phase transition, which is confirmed by
Monte Carlo simulations. In the thermodynamic limit, the two versions are found to give the same results.
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1. Introduction

The contact process [1] is recognized as one of the simplest
models in nonequilibrium statistical mechanics which presents a
phase transition. It is characterized by the competition between a
spontaneous particle annihilation process and a catalytic particle
creation process. The creation occurs on sites having at least
one nearest neighbor site occupied by a particle. In a finite
lattice, the number of particles inevitably falls to zero, if we
wait long enough, and the empty lattice constitutes an absorbing
state. In an infinite lattice, however, an active state may be
sustained if the annihilation rate « is smaller than a certain
critical value «.. The phase transition is continuous: the particle
density o decays continuously to zero as « increases towards its
critical value «.. Many other models also present a continuous
phase transition to a nondegenerate absorbing state and similar
sets of critical exponents, such as Schlogl’s first and second
models for autocatalytic chemical reactions [2-4], and the directed
percolation models [5], forming the DP universality class.

A possible variation of the contact process is the threshold
contact process [6]. In this model, the spontaneous annihilation
process competes with a creation process that happens in more
restrictive conditions: there must have at least n, n > 1, occupied
sites near an empty site. We can ask if the model still presents
an active stationary state and, if the answer is yes, if the phase
transition still is continuous.

It is easy to show that there is no active stationary state in one
dimension if n > 2. Indeed, if a sequence of at least two empty
sites is formed, it is impossible to reintroduce particles in them.
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In two or more dimensions, each site has more nearest neighbors,
and the creation process is less restrictive. Liu, Guo, and Evans
[7-9], studying a version of the threshold contact process, have
shown that the transition phase is no longer continuous, and that
it does not occur for a specific value of «, but it does depend on the
boundary and initial conditions. They also have studied how the
existence of a initial spatial pattern can affect the phase transition.

Here, we study a threshold contact model on a square lattice
in which a particle is created on a site having at least two
nearest neighbor sites occupied, as shown in Fig. 1. In a previous
article [10], we have shown that, for a similar threshold contact
model, the characterization of the active phase may depend on
the boundary conditions. If this model is simulated using periodic
boundary conditions, the active cluster cannot grow and the active
phase cannot be reached. This problem was avoided by changing
the boundary condition, surrounding the lattice by permanent
particles. In the present case, we used the same procedure, which
leads to a well-defined transition point .

Another issue that we consider here is the possibility of defining
nonequilibrium models in distinct ensembles. This technique is
traditionally used in equilibrium statistical mechanics, where
the ensemble change implies a change in the thermodynamic
variables. A variable that functions as a parameter in one ensemble
becomes a stochastic variable in the other ensemble. It has been
shown [11-14] that it is possible to define alternative ensembles
for nonequilibrium models, like the contact process: if the original
model is characterized by fixed rate and varying density, the
alternative model is characterized by fixed density and varying
rate, and both models show similar behavior as the lattice size
increases and become identical in the thermodynamic limit. Here,
we show how to define the threshold contact process in a
conservative ensemble. Monte Carlo simulations are performed in
both ensembles.
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Fig. 1. Transition rates for the NC model (left) and the C model (right). White circles
are empty sites and black circles are occupied sites.

2. NC model and C model - definitions

We define two versions of the threshold contact model,
designated as NC (nonconservative ensemble) and C (conservative
ensemble). Both models are staged in a square lattice of length
L. Each site can be occupied by a particle or can be empty, and a
configuration of the lattice is given as the set of L? variables {1;},
n; = 0, 1. The number of particles N in a configuration is given by

2
N = Z{'_=1 Ni-

For the NC model, after setting a random configuration as the
initial state, the system evolves by losing (annihilation process)
or gaining (creation process) particles. The annihilation process
is spontaneous and occurs with rate «. The creation process is
catalytic: an empty site gains a particle with rate n/4, where nis the
number of nearest occupied sites, and n > 2. There is no particle
creation if n < 1. An empty site with n > 2 is called an empty
active site. Process rates for the NC model are shown in Fig. 1.

In a finite lattice, the NC model presents only one real stationary
state: the absorbing state, which contains no particles. If we take
as initial condition a state with any number of particles, and
the system evolves for a long time, eventually the fluctuation in
the number of particles can be sufficiently large that the system
reaches the state with no particles and freezes. An active state
is observed if « is sufficiently small, since in this situation the
mean time needed for a fluctuation that carries the system to
the absorbing state is exponentially big. In an infinite lattice, the
metastable active state becomes a real active state, with a finite
mean particle density (p) = (N) /L2, and there is a phase transition
to the absorbing state at o = «..

In Sections 3 and 4, it will be shown that the phase transition is
discontinuous for the NC model, separating regions with high and
low particle density. As the control parameter is the annihilation
rate o, we cannot access states with p between those two values.
Following [11], we can define a conservative version of the NC
model, whose control parameter is p, by tuning the rates of the
creation and annihilation processes so that the number of particles
remains constant, and then substitute the two processes for a
jumping process.

For the C model, first we set a random configuration with a
selected value of p as the initial state. At each time step, two sites
are randomly selected: if the first site contains a particle and the
second site is an empty active site, the particle jumps from the first
site to the second site with rate n/4. The rates associated to each
possible move are shown in Fig. 1. We define the parameter a* as
the ratio between the density of active empty sites and the particle
density.

The C model cannot present an absorbing state, because the
number of particles is constant. However, if we take the limit L —
00, keeping N constant, the density vanishes, and we may identify
this state with the absorbing state of the NC model. In the limit

L — o0, the C model also presents a phase transition from a state
with p = 0 to a state with p > p. # 0, identified with the active
state of the NC model. For 0 < p < p, the active and absorbing
phases are both present, and «* is approximately constant.

Comparing the two models in the thermodynamical limit, we
see that the Cand NC models are realizations of the same dynamics
in different ensembles. A proof of this affirmation can be built
following the steps used by Hilhorst and van Wijland in [12]
to show the equivalence between the contact process and the
conservative contact process.

3. Mean-field analysis

From the rules stated above, we set up equations for the time
evolution of the density of particles o = P(1) and the density of
empty-occupied pairs of sites o = P(01). They are

d
di; — 2P(01100) + P(01010)
4£3P(01110) + P(01111) — aP(1) (1)
d
d—‘: — —6P(01110) — 4P(01111) + 4aP(11) — 4aP(01).  (2)

The symbol P(7o, 11, 02, 03, n4) denotes the probability of finding
a site in the state 1, and its nearest neighbors in the states 51, 1,
n3, and 74, in directions East, North, West, and South, respectively.

We use two levels of mean-field approximations. In the simple
mean field, we use the approximation

P(no, n1, n2, 13, n4) = P(mo)P(n1)P(n2)P(n3)P(n4). (3)

In this case, it suffices to use the Eq. (1), which becomes

dp
= =P A=PB=3p+p") —ap. (4)
In the stationary state, dp/dt = 0. The trivial solutionis p = 0(the

absorbing state), and the other is p # 0 (the active state), given by

a=3p—6p>+4p> —p". (5)

For o < a¢, there are two possible solutions. Only the largest value
is stable, describing a system whose density is 1 when ¢« = 0,
and decreases when « increases, until it jumps from p. to 0 when
o = o, as seen in Fig. 2, where o = 0.47247 and p. = 0.37004.

A better solution can be obtained by using the pair mean-field
approximation. In this case, we use

P (10, n1)P (10, n2)P (10, n3)P (10, n4)
P (o) ’

In this approximation, n-site probabilities (n > 2) are rewritten
as products of two-site and one-site probabilities. Let us take y =
P(01)/P(0) = o /(1— p). At the stationary state, and using the pair
mean-field approximation, Egs. (1) and (2) take the form

P(no, M1, M2, N3, N4) = (6)

d
T = (=P B0 - +3y(1 =y +¥]—ap=0  (7)
d
d—f = —(1— p)?[6(1—y) + 4yl + 4 [p — 2(1 — p)y] = 0.(8)

One solution is p = y = 0 (absorbing state). The other solution
(active state) is given by the set of equations

3
o= {(2—3y+y2> (9)

4B -3y+y)
P e 3y — 92 + a4y
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Fig. 2. Particle density p as a function of annihilation rate «, from simple mean-
field (SMF) and pair mean-field (PMF) approximations. Full lines represent the
active state, dashed lines the transition to an absorbing state, and dotted lines the
unstable section.
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Fig. 3. Density p as a function of « from numerical simulations of the NC model for
several values of the linear system size L.

From this solution, we get p versus «, as shown in Fig. 2. The critical
values in the pair mean-field approximation are

1
ac = —— = 0.28868 (11)
‘T 2/3
4
pc = %(14 —3+/3) = 0.54178. (12)

Again, we have a jump in density describing a first-order phase
transition.

4. Numerical simulation of the NC model

In order to study the transition to the absorbing phase, we have
made numerical simulations of the NC model in square lattices
of L x L sites, with L ranging from 10 to 160. We choose a fixed
boundary condition such that the border of the lattice is fully
occupied by particles that cannot be removed. Using this condition,
at any moment, there are at least four empty active sites, and the
system cannot reach the absorbing state. However, as the lattice
size increases, the density is allowed to vanish.

After setting the initial configuration (all sites are occupied), we
let the system evolve by randomly choosing at each step a site in
the lattice, and then change its state according to the rules defined
previously. The time is then increased by 1/L2. After discarding

15 ‘
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Fig. 4. In x as a function of o from the numerical simulation of the NC model for
several values of the linear system size L.
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Fig. 5. In x as a function of In |@ — «.| from the numerical simulation of the NC
model, for o = 0.2002 and several values of the linear system size L.

some initial configurations, we calculate the mean density and the
second moment m = (pz) from the remaining configurations. We

use a number of Monte Carlo steps ranging from 10° to 4 x 107.
Fig. 3 shows p as a function of « for several values of the linear
system size L. As L grows, the density presents a jump, as can be
seen in Fig. 3. The transition point is estimated as o, = 0.201.

A better estimate of the transition point can be obtained by
calculating the variance of the particle number x = (N?)— (N)* =
L?(m — p?) in the subcritical regime. The NC model presents a
discontinuous phase transition, which can be seen as a special case
of a critical phase transition, where the exponent g, related to the
order parameter p, is null. However, there still is a divergence
in the correlation length; therefore, the variance must show the
behavior

X~ o — o™ (13)

near the transition point.

In Fig. 4, we plot In x as a function of . We note that each
curve has a peak which moves to the left when L increases and
determines «, at the limit L — oo.

In order to determine o, and y, we plot In« as a function of
In|a — ac| for some values of «., choose the value that produces
the smallest deviation from a straight line and estimate its standard
deviation. From this procedure, we get the value o, = 0.2002(4)
and the exponent y = 1.96(6), as seen in Fig. 5.
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In Fig. 5, comparing the graphs obtained for L = 10, 20, 40,
on the one hand, and L = 80, 160, on the other, we also observe
the formation of a peak in the first three graphs. This peak results
from transitions from the high-density phase to the low-density
phase, which can be observed when the lattice is sufficiently small.
Therefore, the maximum value of x (L) obeys the scaling rule
xmax ~ L for L = 10, 20, 40. We believe that it would be needed
a exceedingly long simulation time in order to observe peaks like
these for the other lattice lengths.

5. Numerical simulation of the C model

In this section, we perform simulations of the stationary state of
the C model, obtaining the mean value of o* for different values of
p.The results obtained can be compared with the results for the NC
model if we make the correspondence o* — «, as the local rules
for particle addition and extraction are the same and, using Eq. (1)
to obtain « as a function of the stationary state of the NC model,
we get

2P(01100) + P(01010) + 3P(01110) + P(01111)
o = .
P(1)

From this point, in order to simplify the notation, we will use the
same symbol for &* and «.

The simulations of the C model have been done on a square
lattice of linear length L, taking a fixed boundary condition such
that the border of the system is again fully occupied by particles
that cannot be removed. We choose an initial configuration of
density p, randomly occupied by particles. At each time step, we
choose two sites inside the lattice. If one of the sites is occupied
and the other is an active empty site, we take the particle to the
empty active site with probability n/4, and we do not do anything
with probability 1 — n/4. We discard some initial configurations
and calculate the mean value of & by the use of Eq. (14). Simulation
times are much lower for the C model than for the NC model.

Fig. 6 shows p as a function of « for the C model. We note a
strong fall of p when o ~ 0.2 for the C model, which converges
to a jump as L grows—as we take smaller values of p, an empty
cluster appears and pushes the active phase to the boundaries of
the lattice, and different values of p correspond to different ratios
of the areas of the active and empty phases.

The curves for the same value of L in Figs. 3 and 6 are very
similar, except for the appearance of a loop in the C model, shown
in the inset of Fig. 6. We notice, however, that the size of the loop
decreases when L — oo. Estimates of a, can be obtained by
making graphs o x L~! for several values of p, and extrapolating
to L — ooc. The best estimate using this method is « = 0.201(1)
(taking p = 0.55).

(14)

6. Time-dependent simulation

We also simulated the time evolution of the NC model starting
from an infinite empty lattice, except for one occupied site. In
a time-dependent simulation, we can distinguish a supercritical
phase, where the mean value of the particle number (N) grows
geometrically or exponentially with time t, a subcritical phase,
where (N) can grow initially, but approaches a limit value N4
when t increases indefinitely, and a critical transition phase, when
(N) presents an algebraic behavior:

(N) ~ t" (15)

as t increases indefinitely.

As we said before, it is impossible for an isolated particle to
attract more particles in the NC model: the system will fall without
doubt in the stationary state. We circumvent this problem by

1
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0.4

0.2

Fig. 6. Density p as a function of @ from the numerical simulation of the C model
for several values of the linear system size L. The inset shows an amplification of the
region where the loops appear.
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Fig. 7. The average number of particles (N) for the NC model as function of t for
several values of «.

putting the initial particle in contact with two lines of particles that
cannot be removed. If we associate coordinates to each site of the
lattice, then the coordinates of the first particle are (1, 1), the lines
x = 0and y = 0 are occupied by immovable particles, and the area
of growth is the quadrant x, y > O.

In order to save simulation time, a particle list is created at
the beginning and actualized as the system evolves. At each step,
a particle from the list is chosen: with probability «/(e + 1),
the particle is destroyed and the list decreases by one unit; with
probability 1/(1 4+ «), we choose one of the four nearest neighbor
sites, check if this site is empty and, if so, we check the number n
of neighbor particles of the empty site. If n > 2, a particle is put
on the empty site and the list increases by one unit. Finally, the
time is increased by 1/N. If the number of particles goes to zero,
another particle is created at site (1, 1). As a result, after a long
time, a cluster of particles is formed, with the approximate form
of aright-angle triangle, in which particles are mainly added to the
hypotenuse.

This sequence of steps recreates the annihilation and creation
rates of model NC, except at sites located along the boundaries of
the lattice, where the actual creation rate is lower than the rate of
model NC. However, the difference is minor: as time goes by, the
fraction of occupied sites which are in contact with the boundary
decreases.

We estimate the critical rate o, in the present time-dependent
simulation by determining, for different values of «, the mean
number of particles (N) and by plotting In (N) as a function of In t,
as shown in Fig. 7.
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Fig. 8. The same as Fig. 7, for further values of @ around the critical point.

For « > «c, the average number of particles increases but
reaches a limiting value. For « < «,, the average number of
particles increases as t2, as can be seen in Fig. 7. The critical value
is obtained at the transition between the two behaviors. Fig. 7 also
shows us that the critical point must be near o« = 0.2.

In order to obtain a better value for the critical point, we
simulate the model for several values of « near 0.2 using a larger
time interval, and make a graph In (N) x Int for9 < Int < 11.5
(8 x 10° < t < 10°), as seen in Fig. 8. a. is then estimated as the
value of « for which the angular coefficient (the exponent n) given
by linear regression has the smallest incertain. Using this method,
we obtain ¢ = 0.2013(2) and n = 0.97(5).

7. Conclusion

We have presented two versions of the threshold contact
model in a square lattice, characterized by a discontinuous phase
transition for a specific value of the annihilation rate «.. The two
versions can be understood as distinct ensembles of the same

model, that become identical in the thermodynamic limit. Taking
into account the best estimates of . given by the two versions, the
final estimate is o, = 0.2007(6).

We also measured two critical exponents: the exponent n
associated with the divergence of the variance of the particle
number at the critical point, for which the best estimate is y =
1.96(6), and the exponent n associated with the algebraic growth
of the mean particle number from a unitary seed, for which the best
estimate is = 0.97(5). Working in a version of the threshold
contact model in two dimensions similar to the NC model [10],
we have also found y ~ 2 and n =~ 1 (with possible logarithm
corrections).

Even if the two models are equivalent in the thermodynamical
limit, there are some qualitative differences between them for
finite values of L. For the NC model, it is hard to obtain reliable
values of p near the discontinuity point when we increase L. For
the C model, the active region seems to terminate in a metastable
spinodal point located at os > .. However, the loop decreases as L
increases, ceasing to exist in the thermodynamical limit and giving
origin to a tie line.
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