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Review 

Where do all the pests go? Understanding the  
genomic mechanisms of crop pest dynamics  
during the off-season☆ 

Frederico Hickmann1,3, Megan E Meuti2, Andrew P Michel1 and  
Alberto S Corrêa3   

Agroecosystems provide abundant resources to insects. 
However, throughout the off-season, insects must overcome 
resource shortages and adverse climates to survive. This off- 
season persistence affects pest infestations in subsequent 
crops or seasons. Key pest species employ diapause, 
migration, and local-scale dispersal to persist during the off- 
season. Genomic approaches have advanced our 
understanding of these survival mechanisms. Clock genes 
regulate the circadian rhythm and interact with neuropeptides 
and downstream pathways, such as insulin-like peptides and 
hormonal factors–like ecdysteroids and juvenile hormones 
that regulate diapause. Migrant insects must manage 
processes like energy metabolism, oogenesis, and flight 
orientation. Local-scale dispersal requires mechanisms to 
locate, select, and exploit the most suitable host and habitat 
for survival and reproduction during the off-season. Here, we 
present advances in genomic research on pest survival during 
the off-season, focusing on diapause, migration, and local- 
scale dispersion. Understanding these phenomena is crucial 
for developing and optimizing effective integrated pest 
management programs. 
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Introduction 
Throughout most of the year, agroecosystems provide 
ample resources to insects, including those considered 
crop pests. However, resources become scarce when 
crops are unavailable during the off-season, even in 
subtropical and tropical regions. Consequently, insects 
must overcome resource shortages and adverse climatic 
conditions to survive and reproduce (see Box 1 and  
Figure 1). These processes involve physiological, meta-
bolic, and behavioral mechanisms that are ultimately 
regulated at the genomic level [1]. The survival of insect 
pests during the off-season is a key process to pest 
management because it affects pest population dy-
namics and infestations in the next crop season, directly 
impacting actions such as insect resistance management, 
biological control, and behavioral strategies. Among the 
tremendous insect diversity found in agroecosystems, 
key staple crops are infested by insects from three major 
insect orders: Lepidoptera, Hemiptera, and Coleoptera. 
Many pests in these orders can survive the off-season by 
utilizing diverse strategies, including diapause, migra-
tion, and local-scale dispersal (also referred to as short- 
distance movement) in the agricultural landscape to     
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exploit different resources (Box 1, Figures 1 and 2). 
Genomic approaches have enhanced our understanding 
of the mechanisms by which insects adapt and survive in 
adverse conditions. Therefore, we aim to communicate 
the advancements made over the past 2 years and future 
opportunities offered by genomic approaches to better 
understand the evolution and genetic mechanisms of 

pests’ survival during the off-season, focusing on three 
major topics: diapause, migration, and local-scale dis-
persal (Figure 1). 

Diapause 
Diapause is a type of dormancy employed by insects to 
survive adverse conditions and synchronize their 

Box 1 Crop pest survival during the off-season concepts.  

Crop off-season refers to any period when the preferred crop is unavailable. The off-season varies greatly in agroecosystems, with winter par-
ticularly prominent in temperate regions and the dry season in the tropics. Furthermore, the term can also indicate when a specific crop has 
completed its growth cycle or been harvested, demanding pests that previously infested it in that habitat to find alternative sources of nutrition or 
new habitat. 

Diapause is a complex process that involves physiological and behavioral mechanisms. It suppresses development to ensure survival during 
unfavorable conditions, synchronizing development and reproduction with resource availability, often crops. This intricate process is a key survival 
strategy for insects, allowing them to persist in challenging environments. 

Migration is a purposeful and intentional movement that occurs at the population level. Migrants typically continue their journey until they reach a 
suitable destination. Additionally, migration involves round-trip movements, with individuals or future generations returning to their original lo-
cation. 

Local dispersal refers to the local movement of insects between habitats throughout the year. Local dispersal is facultative and refers to the 
movement of an individual’s place of birth and the location where it reproduces and raises its offspring. Furthermore, unlike migration, local 
dispersal does not involve insects with specific spatial goals but rather entails direct movement and stopping when they encounter a potential host. 
Sometimes, distinguishing between locally dispersing and migrating insects can be difficult (e.g., moths like Spodoptera frugiperda that use wind 
to disperse and can travel long distances).   

Figure 1  
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Diagram illustrating how seasonal factors — such as photoperiod, temperature, and rainfall — can significantly impact pest habitats and resource 
availability. These environmental changes serve as cues that influence whether an organism will enter diapause, migrate, or disperse locally in 
response to resource shortages. Notably, there is considerable overlap among the environmental factors that shape survival strategies. The variations 
primarily depend on species, ultimately affecting pest population dynamics during the off-season.   
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reproduction with resource availability [1,2,3]. Unlike 
quiescence, which is a state of dormancy that occurs in 
direct response to environmental stressors [3], diapause 
is anticipatory and occurs in response to token stimuli 
that is a reliable indicator of the approaching, stressful 
season and that persists for a predetermined amount of 
time, whether or not the stressful conditions persist. 
Many key agronomic pests use this adaptation to survive 

and persist in agroecosystems, including in tropical and 
subtropical areas, where diapause is common in many 
insect groups [1,4]. Much progress has been made in 
recent years regarding the molecular features of dia-
pause. Insects enter diapause by interpreting seasonal 
and environmental cues, including short daylength, low 
or high temperatures and humidity, and changes in food 
quality. Once an internal threshold is exceeded, the 

Figure 2  
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Overview of agroecosystem landscapes that will be encountered throughout the year by pests. Insects, including those from temperate and tropical 
areas, mainly use three survival strategies: entering diapause, migrating to a new habitat with favorable conditions, or dispersing on a local scale by 
moving to adjacent fields and colonizing new hosts or a host in a suitable life stage. (a) Crop season has abundant resources that support the 
development and reproduction of crop pests. (b) Crop off-season (crop has completed its growth cycle or been harvested), limiting or preventing the 
development and reproduction of crop pests. (c) Hypothetical stink bug species that survives off-season employ facultative adult diapause 
coordinated by photoperiod (core clock genes) and is characterized by reproductive halt. During favorable conditions and photoperiod, the species 
reproduce and develop on crops. Adult diapause is regulated by JH and ILPs. In stink bug diapause, essential genes include clock genes, the 
neuropeptide gene pigment dispersion factor (pdf), and Krüppelhomolog 1 (Kr-h1), an early JH-response gene. (d) Presents a hypothetical 
lepidopteran insect that migrates and flies long distances to avoid adverse conditions. Insects must orient themselves to migrate in the right direction, 
avoiding a dead-end migration. Genes like cryptochrome 2 (cry2) and magnoreceptor (MagR) are involved in moth orientation. (e) Shows a 
hypothetical lepidopteran moving between agroecosystems. The dispersal insect must be capable of finding suitable hosts or oviposition sites during 
movement. Various enzymes and genes are involved in recognizing and using host organisms. OBPs, ORs and opsins identify and select a suitable 
host. GRs assess nutrient quality, and enzyme families (CYPs, UDP-Glycosyl transferases [UDPs], ABC transporters [ABCs]) process nutrients and 
detoxify chemicals in the host. VOC = volatile organic compounds.   
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organism activates or inactivates endocrine effectors to 
induce developmental or reproductive arrest. Tran-
scriptomic and reverse genetic studies of insects exposed 
to environmental conditions that induce diapause re-
vealed the crucial role of photoreceptors, neuropeptides, 
and neurotransmitters [5,6]. These changes, which ei-
ther inactivate or activate hormones, lead to a significant 
decrease in insect metabolism and a halt in development  
[1]. Functional analyses using RNAi and CRISPR/Cas9 
validate the role of crucial genes associated with neural 
signs, hormones, and metabolic pathways and their im-
pact on diapause phenotypes in insects [1,7] 
(Supplemental Table S1). 

Photoreceptors such as opsins and cryptochrome inter-
pret and transfer photoperiodic information to the cir-
cadian clock [8,9,10]. The clock is an endogenous timer 
that interprets daylength. It relies on negative tran-
scriptional/translational feedback loops that are mainly 
conserved among insects, with slight differences among 
insect taxa [6]. The circadian clock’s output is sent to the 
brain through neuropeptides or neurotransmitters  
[10,11]. One of the best-characterized neuropeptides is 
the pigment dispersion factor (PDF), which bridges the 
information from the clock neurons to the neurosecre-
tory cells in several insect groups [10,11,12•]. For in-
stance, in heteropterans, knocking down or knocking out 
pdf disrupts the photoperiod-dependent diapause phe-
notype [12•,13]. 

Insects enter diapause during a species-specific devel-
opmental time point that can occur during the em-
bryonic, immature, or adult stages (see Supplemental 
Table S1). Some aphid species undergo embryonic dia-
pause when short-day conditions (SD) trigger a switch 
from asexual reproduction to sexual reproduction 
(equivalent to diapause induction), after which the fe-
male mates and lays cold-hardy, diapausing eggs ([14,15] 
and references therein). Evidence shows that melatonin 
triggers sexual development in pea aphids Acyrthosiphon 
pisum (Hemiptera: Aphididae), with associated genes 
being more active during short days [16]. 

The most conspicuous feature of diapause in immature 
insects is the failure of production and release of neu-
rohormones, such as prothoracicotropic hormone, in-
sulin-like peptides (ILPs), and transforming growth 
factor beta (TGFβ), which has been extensively vali-
dated in lepidopterans (more details in Ref. [1]). The 
gene Forkhead box O (FoxO) encodes a transcription 
factor identified as the master regulator of diapause in-
duction of the cotton bollworm (CBW), Helicoverpa ar-
migera (Lepidoptera: Noctuidae), a pest in the tropics 
and temperate regions. In CBW diapause-destined 
pupae, FoxO is activated by reactive oxygen species 
(ROS) and inhibited by AKT protein, a crucial protein in 
the insulin-signaling pathway [17]. Deleting the FoxO 

gene activates ubiquitin-protease, which decreases 
TGFβ receptor expression, blocking developmental sig-
naling and leading to diapause [18••]. 

Adult diapause is characterized by arrested reproductive 
development and is regulated by low levels of juvenile 
hormone (JH) and ILPs in several insect groups [1]. 
Females of the bean bug, Riptortus pedestris (Hemiptera: 
Alydidae), enter a facultative diapause in response to 
short photoperiods (SD) with low levels of JH and ILPs  
[19]. The Krüppel homolog 1 (Kr-h1) gene encodes a 
zinc finger transcription factor, and its transcription is 
regulated by Methoprene-tolerant 1 (MET1) and 
Taiman (TAI) in a JH-dependent fashion [20]. Ad-
ditionally, under long photoperiods (LD) conditions, 
RNAi targeting the clock (Clk) gene inhibits ovarian 
development and reduces Kr-h1 expression, while under 
SD conditions, RNAi targeting the Cry-m (a.k.a. cry2, 
which is light insensitive) transcripts promotes ovarian 
development and increases Kr-h1 expression [21]. RNAi 
against Met and Tai stops ovarian development and de-
creases vitellogenin gene expression in the fat body of 
female linden bugs, Pyrrhocoris apterus (Hemiptera: 
Pyrrhocoridae), raised under conditions that induce re-
production (i.e. long-day conditions or LD) [22]. 

Some insect species, including many pests, have wide 
geographic distribution with populations or strains with 
distinct frequencies of adaptive diapause traits. The 
European corn borer, Ostrinia nubilalis (Lepidoptera: 
Crambidae), in the United States, presents populations 
with one or two generations that are mediated by differ-
ences in the duration of their postdiapause development  
[23]. Kozak et al. [24] used the quantitative trait locus 
approach to show that the circadian clock gene period and 
pigment dispersion factor receptor differ in allele frequency 
among populations with one or two generations. Moreover, 
studies on two populations of CBW with differing diapause 
phenotypes have unveiled a chromosomal inversion asso-
ciated with the control of diapause. This inversion contains 
three clock genes (per, Clk, and cyc) that show mutations 
specific to each population, offering insights into the ge-
netic foundations of diapause characteristics of this major 
pest [25••]. Several other pests, such as the Asian corn 
borer (ACB), Ostrinia furnacalis (Lepidoptera: Crambidae)  
[26], the Neotropical brown stink bug, Euschistus heros 
(Hemiptera: Pentatomidae) [27], and bird cherry-oat aphid 
Rhopalosiphum padi (Hemiptera: Aphididae) [28], illustrate 
geographical variation in diapause expression among po-
pulations, but we still lack molecular characterization of 
these differences. 

Migration 
Long-distance migration is employed to circumvent 
unfavorable conditions. Seasonal cycles significantly in-
fluence migration, enabling organisms to anticipate 
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environmental shifts and engage in migratory behaviors 
(reviewed in Ref. [29]), which makes migration a type of 
diapause. Migration significantly impacts an organism’s 
life cycle, including morphological adjustments (wings), 
a demand for an ample energy supply, and delayed oo-
genesis. Migration also requires a geographical orienta-
tion system to direct flight. Below, we present two 
examples of important pest groups employing migration. 

Wing polyphenism is a key aspect of migration in 
planthoppers such as the brown planthopper (BPH), 
Nilaparvata lugens (Hemiptera: Delphacidae), and the 
white-backed planthopper, Sogatella furcifera 
(Hemiptera: Delphacidae) [30,31]. Both species have a 
northern latitude breeding limit where they cannot 
survive winter and must migrate [32]. Both species 
present the long-winged (LW) type that can migrate 
long distances, while the short-winged type cannot fly. 
Senescent rice plants increase glucose content, which in 
turn increases insulin secretion in the feeding BPH, and 
eventually inhibits FoxO activity, resulting in LW in-
dividuals. Conversely, when the glucose content of rice 
plants is low (rice vegetative stages), there is less insulin 
secretion, and the FoxO is in the activated state, indu-
cing the resident short-winged individuals [31,33•]. 
RNAi and CRISPR/Cas9 revealed that the rotund 
homolog (Rn) transcription factor interacts with FoxO in 
N. lugens and that inhibiting Rn activity suppresses LW 
development [34••]. 

The noctuid moths Agrotis ipsilon (Lepidoptera: Noctuidae) 
and Mythimna separata (Lepidoptera: Noctuidae) engage in 
long-distance flights to avoid unfavorable habitats. 
Transcriptome analysis of the black cutworm (BCW) A. ip-
silon, which is distributed throughout the tropics and tem-
perate regions, revealed that moths use carbohydrates to 
fuel short-distance flights and lipids to fuel long-distance 
flights [35,36••]. Moreover, oogenesis and sexual maturation 
are mainly regulated by JH in migrant moths. In temperate 
and subtropical populations of the oriental armyworm, M. 
separata, moderate flight intensity (no longer than 2 days) 
stimulates allatotropin gene expression, promoting JH 
synthesis and reproduction. Meanwhile, the transcript 
abundance of allatostatin, which inhibits JH synthesis and 
reproduction, increased when M. separata were forced to fly 
for more than 2 days [37••]. In addition to energy meta-
bolism and reproductive functions, precise navigation and 
flight directions are essential for migrants. In the BCW and 
M. separata, the magnetoreceptor (MagR) gene and the clock 
gene cry2 are upregulated in migrant moths [36••,37••]. 
Moreover, knocking down MagR and cry2 with RNAi im-
paired the migrant M. separata from properly orientating 
their flight [37••]. 

Local-scale dispersal 
Another survival tactic agricultural pests employ during 
the off-season is to disperse locally (Box 1). A portion of 
the population usually initiates local-scale dispersal, 
seeking new plant hosts throughout the year, but this is 
less noticeable because the dispersing individuals be-
come integrated with the resident population (discussed 
in Refs. [38,39]). This is especially relevant for (sub) 
tropical species that fly to locate primary or alternative 
hosts. In Brazil, for instance, staple crops such as soy-
beans and maize have growth cycles that span 3–4 
months. These crops can be found in cultivation 
throughout the year; however, this is influenced by re-
gional differences across the country. Factors like lati-
tude (photoperiod) and climate (rainfall and 
temperature) are crucial in determining the growing 
season, nutrient composition, and plant senescence. In 
this context, local-scale dispersal significantly affects 
pest dynamics. 

After host deterioration/senescence, pests leave their 
habitat and begin searching for potential hosts. Odorant- 
binding proteins (OBPs) and chemosensory proteins 
play a crucial role in transporting external odorant mo-
lecules to odorant receptors (ORs) in the sensillum 
lymph [40]. The function of ORs depends on an es-
sential partner known as the odorant receptor co-re-
ceptor (Orco), which is an OR itself [41]. Studies have 
shown that CRISPR/Cas9 null mutants of H. armigera 
and Spodoptera litoralis (Lepidoptera: Noctuidae) lacking 
the Or42 and Orco genes, respectively, could not detect 
their host plants [42••,43]. After an odorant binds to a 
receptive OR, it triggers a cascade that sends signals to 
the brain; moreover, odorants must be deactivated 
quickly to prevent overstimulation. There is substantial 
evidence indicating that various odorant-degrading en-
zymes such as cytochrome P450s, glutathione S-trans-
ferases (GSTs), carboxyl/cholinesterases (CCEs), UDP- 
glycosyltransferases (UGTs), and aldehyde oxidases play 
a significant role in resetting the insect olfactory system 
by breaking down odorant molecules [44]. 

Vision represents another interface of host recognition for 
dispersing insects. Insect opsins are part of the G-protein- 
coupled receptor superfamily and play a crucial role in the 
visual process, including host selection. Evidence of the 
significance of vision in host selection was observed in the 
CBW, where knocking out a long-wavelength sensitive 
opsin with CRISPR/Cas9 changed the oviposition pattern of 
female moths [45]. Additionally, knocking out the long- 
wavelength sensitive opsin and blue-sensitive opsin altered 
host selection in the tomato leafminer, Tuta absoluta (Le-
pidoptera: Gelechiidae) [46•]. 

After interpreting host volatiles and visual cues, chemor-
eception (collectively called taste) provides information 
about essential nutrients. Gustatory receptors (GRs) can 
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detect multiple tastants, including carbon dioxide (CO2), as 
a cue to identify healthy plants; sugar, which is crucial for 
assessing the nutritional value; and bitter compounds, used 
to identify potentially harmful properties of the host [47]. 
RNA-seq and quantitative reverse transcription polymerase 
chain reaction have identified specialized genes in adult 
moths of CBW and tobacco cutworm, S. litura (Lepidoptera: 
Noctuidae), for sensing CO2 [48,49]. Furthermore, Gr43a 
transcripts, encoding a fructose GR, are mainly located in 
Asian Corn Borer mouthparts, and targeting this transcript 
with RNAi caused larvae to lose their preference for fructose  
[50••]. Chen et al. [51] used the Xenopus oocyte expression 
system to determine that the bitter receptor GR180 from 
CBW responds to coumarin. They also discovered that 
GR180-null CBW larvae were no longer deterred from 
consuming coumarin. 

After the insect ingests the host plant, the peritrophic 
matrix protects the midgut epithelium from micro-
organisms, mechanical damage, and large plant–defen-
sive chemicals [52]. In addition, the plant metabolites 
are detoxified through oxidation, hydrolysis, and reduc-
tion reactions performed by cytochrome P450 mono-
oxygenase proteins (CYP) and CCEs; lipophilic 
compounds are converted into more hydrophilic forms 
by GSTs and UGT; and detoxified compounds are ex-
creted the ATP-binding cassette (ABC) [53•]. For ex-
ample, the 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3- 
one (DIMBOA) is the major benzoxazinoid in maize and 
rice, and in vitro gene expression assay found that fall 
armyworm (FAW) Spodoptera frugiperda (Lepidoptera: 
Noctuidae) UGT genes are highly expressed in the 
midgut and fat bodies. The knocking down or out of 
FAW UGT33 with RNAi or CRISPR/Cas9 significantly 
reduces the metabolization of DIMBOA [54,55••]. 

However, it is worth highlighting that the above-mentioned 
molecular mechanisms are mostly related to how agricultural 
pests locate, ingest, and detoxify their preferred hosts. As 
insects likely use different mechanisms during the off- 
season, several opportunities exist to understand how insects 
that disperse locally recognize, select, and develop on non-
preferred hosts. This enhanced understanding can be uti-
lized to develop new control tactics. 

Opportunities and future directions 
Integrated pest management entails a comprehensive 
strategy that considers various ecosystem factors. The 
off-season represents a particularly vulnerable period for 
pests and an opportunity to manage them. Thus, we 
present examples of how pests circumvent environ-
mental stresses and lack of host availability during the 
interseason by entering diapause, migrating, and dis-
persing locally. This knowledge can help us identify 
effective strategies and/or targets to manage resistance to 
insecticides and genetically modified plants, adjust crop 

rotation, and effectively deploy control tactics, including 
pheromones, autocidal control with genetically modified 
insects, and biological control agents. 

Although consistent progress has been made (Supplemental 
Table S1), diapause research in insects is primarily limited 
to model species, with a significant knowledge gap in non-
models, such as agricultural pest insects. Nonetheless, 
gaining a deeper understanding of how clock genes regulate 
hormone release during diapause is imperative. The mole-
cular and endocrine regulators of diapause in most insect 
pests that diapause in the embryonic stage are particularly 
unclear. Additionally, it is crucial to understand how insect 
pests terminate diapause and resume activities so they can 
be effectively controlled. Despite the widespread occur-
rence of diapause in tropical and subtropical species, 
knowledge of diapause in species found in multiple climate 
ranges (Supplemental Table S1), such as the CBW, BCW, 
and aphids, is limited to temperate regions. 

Another crucial aspect to consider is the migratory behavior 
of several pest species, about which little is known at the 
molecular level. It is essential to understand the factors that 
lead to migration, the genes that regulate processes such as 
arrested oogenesis, and what drives the flight orientation of 
migrants. Furthermore, research regarding the molecular 
mechanisms that regulate and enable local dispersal is a 
pivotal aspect and can offer opportunities for crop rotation to 
avoid pest outbreaks. We urgently need to broaden our 
understanding of how insects locate and develop on non-
preferred host plants because we know little about how 
agricultural pests recognize, select, and detoxify secondary 
metabolites from nonpreferred hosts during the off-season. 

Additionally, most insights into pest dynamics during 
off-seasons have been gathered from temperate regions. 
We currently have a limited understanding of how pests 
survive in tropical and subtropical areas during those 
periods, where resources such as crops are less restricted 
and climatic conditions are less severe [56]. In this sce-
nario, pests can continue reproducing without significant 
restrictions because they can find other crops nearby or 
search for additional, noncrop resources available in the 
landscape. However, there have been increasingly 
common reports of behavior changes and host range 
expansion in agricultural pests during the off-season 
period [26,57]. Thus, improving our knowledge of the 
genetic mechanism of host selection and adaptation in 
agricultural landscapes, especially in regions where 
agriculture is expanding and/or intensifying, is crucial to 
predicting new pest invasions and population outbreaks. 
Finally, climate change demands extra attention since it 
can alter the overwintering patterns, phenology, and 
voltinism of significant agricultural pests [4,58,59,60]. 

Furthermore, few studies on agricultural pests have been 
associated with changes in insecticide tolerance and 
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allele frequency of the genes related to Bt and in-
secticide resistance during the off-season. For example, 
adult stink bugs in Brazil move to other areas and use 
cotton and maize as alternative hosts during soybean off- 
season ([27] and references therein). These populations 
are exposed to insecticides used in these crops to control 
different pests, and these individuals will colonize the 
following soybean crops, which can significantly impact 
the allele frequency of genes associated with insecticide 
resistance. Similar insights should be considered for 
populations of polyphagous pests in tropical and sub-
tropical regions that use different crops across years/ 
seasons. 

The rapid development of sequencing technologies has 
opened new possibilities, such as whole-genome re-
sequencing using low-coverage sequencing (see [61]). 
This approach allows genome exploration of numerous 
individuals at relatively low financial costs. This opens a 
window of possibilities for large-scale genomic studies to 
characterize genetic architectures, reveal genes asso-
ciated with diapause, migration, and especially local 
dispersal phenotypes, and provide insights into their 
molecular regulation that can be subsequently studied. 
These underutilized approaches bring new insights into 
how genomic alterations and evolution drive the mole-
cular mechanisms associated with insect survival during 
the off-season. Furthermore, monitoring these genes and 
alleles in species and populations may help predict 
adaptive events, similar to genomic monitoring for re-
sistance. Applying low-coverage whole-genome re-
sequencing across different populations of agricultural 
pests presents a prime opportunity to better understand 
the genetic mechanisms that allow insect pests to adapt 
and survive during the off-season. Uncovering these key 
genes can lead to finding targets that could be employed 
in biotechnological programs for regional pest sup-
pression. 
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