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AllSTH ACT. Representation theory is developed for the class of Galois algebras introduced 

recently by the authors. In particular, categories of Harish-Chandra modules arc stud­

ied for integral Galois algebra~ which include generalized Wey! algebras, the universal 

enveloping algebra of gl,,, the quantization and Yangians for gl2 • 
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1. INTRODUCTION 

The important tools in thr. wpresentation theory of algebras me the restriction of repre­
sentations onto subalgebras and the induction from subalgebras. The choice of a suhalgehra 
is essential in order to have an dfoctive representation theory. Commutative algebra pro­
vides the following classical example. An integral extension A c B of two commutative 
rings induces a surjective map r.p : Spec B --+ Spec A, i.e. the fiber of r.p is non-empty for 
evrry point of Spec.A. For example, this is the case when A = BG, where G is a finite 
subgroup of the automorphism group of B. lvloreover, if B is finite over A then all fibers 
({J- 1(1), I E Spec.A are finite. Ju particular, r.p induces a surjection from the maximal 
spectrum of B to the maximal spectrum of A. Hence every character of A, i.e. a ho­
momorphism into a field, can be extended to a character of any integral extension of A, 
and the number of different extensions is finite if B is finite over A. The Hilbert-Nocther 
theorem provides an example of such situation with B br.ing the symmetric algebra on a 
finite-dimensional vector space V and A being the G-invariants of B, where G is a finite 
subgroup of GL(V). 

The primary goal of this paper is to generafo:e these results to the "semi-commutative" 
case r C U where U is an associative non-commutative Galois algebra with respect to an 
integral domain r. The canonical embedding r c U induces a multi-valued "function" 
from the set L Specm U of left maximal ideals of U to Specm r. The goal is to find natural 
sufficient conditions for the fibers of this map to be non-empty and finite for any point 
in Specrn r. Essential techniques in the development of such approach arc based on the 
theory of categories of Barish-Chandra U-modules with respect tor, developed in [DFO]. 

Let I( its field of fractions, [{ C L a finite Galois extension, G = G(L/ K) the corre­
sponding Galois group, M C Aut L a separating (cf. Definition 2) submonoid. Assume 
that the group G acts on M by conjugation and this action skew commutes with the action 
on L. Then G acts on the skew group algebra L * M by isomorphisms. Denote by L * MG 
the subalgebra of G-invariants in L * M. A finitely generated I'-subalgebra U C L * MG 
is called a Galois algebra with respect to r if KU = U I< = L * MG [FO]. Hence, a Galois 
algebra U with respect to r is simply a f-order in L * MG. The properties and the struc­
ture theory of Galois algebras have been studied in [FO]. Well known examples of Galois 
algebras include generalized Wey! algebras over integral domains with infinite order auto­
morphisms, such as n-th Wey! algebra An, quantum plane, q-deformed Heisenberg algebra, 
quantized Wey! algebras, Witten-Woronowicz algebra among the others [Ba], [BavO]; the 
universal enveloping algebra U(gln) with respect to the Gclfand-Tsetlin subalgebra; quan­
tized enveloping algebra U'q(gli) with respect to Gelfand-Tsetlin subalgebra [KS]; restricted 
Yangians with respect to Gelfand-Tsctlin subalgebras for gl2 [FMO]. 

Note that the algebra L * M 0 has the canonical decomposition into the sum of pairwise 
non-isomorphic finite dimensional left or right. K-modules (cf. (2)). For a class of Galois 
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algebrns the algebra U itself decomposes into the sum of pairwise non-isomorphic finitely 

generated f-bimodules (Corollary 3.3). Aft.er th<\ localization this decomposition coincides 

with the decomposition of U[S-1
] (or [S- 1]U). These algebras satisfy.some local finiteness 

condition and they arc defined as follows. 

Definition 1. A Galois algebra U with respect tor is called right (respectively left) integral 

if for any finite dimensional right (respectively left) K-subspacc W C U[s- 1] (respectively 

W C [S-']U), W n U is finitely generated right (respectively left) r-module. A Galois 

algebra is integral if it is both right and left integral. 

If r c U c I{ c L and U is fiuitely generated over r, then U is clearly Galois algebra 

with respect to r. Moreover, U is integral if and only if U is an integral extension of I'. 

All Galois algebras listed above are also examples of integral Galois algebras with respect 

to corresponding subalgebras. If U is a Galois algebra with respect to r, which is free as 

a right (left) f-module then U is right (left) integral (cf. Proposition 3.1). 

The properties of integral Galois algebras arc studied in Section 3. Their representations 

are discussed in Section G. 
Our first main result is the following 

Theorem A. Let. U be a right intcgra.1 Galois algebra with respect to an integral domain 

r, <p : I' -+ U a canonical embedding and <p* : L Specm U -+ Spccm r the induced multi­

valued function. Then the fibers of <p* nrc non-empty for any point of Specm r. 

Our second main result gives sufficient conditions for the the fibers of <p* to be finite. 

Consider an induced action of JV( on Specm rand for m E Spccm r denote by StM(m) the 

stabilizer of m in JV(, 

Theorem B. Let r be an integral domain which is finitely generated as a !le-algebra, U 

an integral Galois algebra with respect tor. If StM(m) is finite then the fiber (<p*}-1(m) 

is finite. 

These two theorems guarantee that an integral Galois algebra with respect to r has a 

nice theory of Barish-Chandra modules with respect to r (cf. Section 6.4 ). Moreover, 

integral Galois algebras allow to study effectively the whole category of modules. vVc arc 

going to address this question in a subsequent paper. 

The following result shows that generic maximal ideals of r parametrize simple Harish­

Chandra modules. 

Theorem C. Let JV( be a group, r a noetherian normal lk-algebra, U an integral Galoi:; 

I'-algebra. Then there exists a massive subset W c Specm r such that for any m E TV, 

I ( <p* J- 1 
( m) I = 1 and hence there exists a unique simple U-module Lm whose support 

contains m. Moreover, the extension category generated by Lm contains all indecomposable 

modules whose support contains m and is equivalent to the category rm - mod of modules 

over the completion of r with respect to m. 

As an application of a developed theory we obtain the following generalized version of 

the Barish-Chandra theorem. 
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Theorem D. Let M be a group, r a noetherian normal lk-algebra, U an integral Galois 
f-algebra. Then for any nonzero u E U there exists a massive set of non-isomorphic simple 
Barish-Chandra U-rnodulcs on which 11. acts nontrivially. 

2. PRELIMINARIES 

All fields in the pa.per contain the base algebraically closed field 1k: of characteristic 0. 
All the algebras in the paper are lk:-algebras. If I{ is a field then R will denote the algebraic 
closure of K 

2.1. Categorical setup. If A is an associative ring then by A - mod we denote the 
category of finitely generated left A-modules. Let e be a category, i, j E Ob e. Sometimes 
we will write C::(i, j) instead of Home(i, j). 

Recall, that a category e is called the category over lie, provided that all Home-sets arc 
endowed with a structure of a lk:-vector space and all the compositions are lk-bilincar. 

The category of e-modules e - Mod is defined as the category of D.-linear functors 
M : e -. D. - Mod, where & - Mod is the category of &-vector spaces. The category of 
finitely generated e-modules we denote by e - mod. If Ob e is finite, then the categories 
e - Mod and A(f-) - Mod are equivalent. 

2.2. Integral extensions. Details of the facts listed in this section can be found in [Mat], 
[AM]. 

Let A be an integral domain, !( its field of fractions and A the integral closure of A in 
K. The ring A is called normal if A = 1l. 
Proposition 2.1. Let A be ri normal noetherian ring, ]( c L a finite Galois extension, A 
is the integral closure of A in L. Then A is a finite A-module. 

Corollary 2.1. • If A is noetherian then A is finite over A. 
• If A is a finitely generated lie-algebra then A is finite over 1-1. In particular, .4 is 

finite over A. 

Denote by SpecrnA (Spec A) the space of maximal (prime) ideals in A, endowed with 
Zarisky topology. Let i : A '-+ B be an integral extension. Then it induces a surjective 
map Specrr1 B -, Specm A (Spec B -. Spec A). In particular, for any character X: A-► & 
there exists a character x : B ➔ & such that XIA = x, If, in addition, B is finite over A, 
i.e. finitely generated as an A-module, then the number of different characters of B which 
correspond to the same character of A, is finite. Hence we have in particular 

Corollary 2.2. If A is a finitely generated k-algebra then for any character X : A ➔ k 
there exists finitely many characters x : A ➔ 1k: such that XIA = x. 
2.3. Skew (semi)group rings. Ld R be a ring, J\1 a semigroup and f : J\1 -➔ Ant(R) 
a homomorphism. Then J\1 acts naturally on R: r9 = f(g)(r) for g EM, r ER. 



GALOIS ALGEBRAS 

The skew semigroup ring, R * M, associated with the left action of M on R, is a free left 
R-module, E9 flm, with a basis M and with the multiplication defined as follows 

{r1m1) · (r2m2) (r1r;1')(m1m2), m1,m2 EM, r1,r2 ER 
If the action of Mis trivial on R then R * M coincides with the sernigroup ring fl[J\f]. 
If x E R *Mand m E M then denote by Xm the element in fl such that x = LmeM X,nm. 
Assume, a finite gronp G acts by automorphisms on Rand by conjugations on M. Then 

C acts 011 R * M and R "'J\1c will denote the ir1Yariants under this action. 
Denote 

suppx {m E Mix,,. i U} 
the support of x. Hence x E R * MG if and only if Xm, = xf;. fur m E M, g E G. If 
x E R * Jr1G thtm supp x is a finite C-invariant subset in J\,1, 

For '{J E Autl?. and a ER set H'I' = {h E Glcph = cp} and 

(1) [ai,o] := L a9yii ER* Mc. 
gEG/IIVJ 

Thrm 

(2) 

Clearly, 

(3) 

R *Ma= E9 {R * M)~, where 
,pEG\.M 

(R,i,'.M)~ = {[a'P]la E RIT,, }. 

[arp] = L a9ipD L 'PD(grp-1g-1ga) = L rpY(a"'-')9 = [cpa,,,-']. 
9EG/lf,, gEG/H, gEG/II,, 

For a, b E RH~, 7 E Ra denote 

(4) [wpb] L a9 ipq/>9, 
gEG/II, 

-y[aipb] = [('Ya)rpbJ = [aip(b-y1P-')], [a'Pbh = [('Y"'a)rpb] [a,p(l>-y)]. 
2.4. Galois algebras. We will assume that r is an integral domain, I< is the field of 
fractions of r, J( c L is a finite Galois extension with the Galois group G, i : I( -t L is a 
natural embedding, f' is the integral closure of r in L. 
Definition 2. ( 1) Monoid M C Aut L is called separating (with respect to I{) if for 

any m1, m2 EM from 
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(2) An automorphism 'P: L -► L is called separating (with re.spect to I<) if the rnorw·id 
generated by { 'Pq I g E G} in Aut L is separating. 

Note that if :M is separating then Jy( n G = { e}. The COil\'crse holds if J\ '[ is a group. 
Remark 2.1. The following conditions are equivalent 

(1) lvfonoid J\,'[ is separating with respect Lo J(, 
(2) For any m E M, m fc e there exists I E K such that "t' f- 1 , 
(3) If Gm1 G = Gm2G for some m1, m2 E M, then there exists g E C such that 

m1 =mf 

\Ve will assume that J\,'[ C Aut Lis a separating monoid on which G acts by conjugations. 
Let U be a Galois algebra with respect to r. 

Lemma 2.1. [FO] 
Let u E U be nonzero element, T = supp u, u = L [amm]. Then 

mE1' 

K(rur) = (rur)K =Ku!(= EB \/(a.mm), 

In particular it shows that for every m E Jy( the algebra U contains the elements [b1ml,,.,, [bkm] where b1,.,,, bk is a I<-basis in Lll"'. 
Let e E J\{ be the unit element, Le C L * M and Ue = U n Le. 

Theorem 2.1. [FO] Let U be a Galois subalgebra in L * M. Then 
(l) Ue c K. 
(2) Un I< is a maximal commutative Il..-subalgebm in U. 
(3) Tlw center Z(U) of algebra U equals Un J(M. 

3, INTEGRAL GALOIS ALGEilRAS 

3.L Characterization of integral Galois algebras. Let M be a right r-submodule in 
a Galois algebra U. Set 

]D)r(M) = { u E U I there exists I Er, 1 ::j:. 0 such that u · 1 E M}, 
This is clearly a right r-module, which we call the module of denorninator.s of M. If M1, M2 arc r-submodules in a U, then the notation A1 1 + M2 means M1 + M2 and M1 nM2 = 0. 

Lemma 3.1. For right I'-subrnodules of U holds the following. 
(l) MC ]D)r(M), ]l))r(]l))r(M)) = ]D)r(M). 
(2) ]l))r(AJ) =MI( n U. 
(3) If NC M then ]D)r(N) c ]D)r(M). 
(4) If N n M = 0 then ]D)r(N + A1) = ]l))r(N) + ]l))r(M). 
(5) ]l))r(l') = U,. 



GALOIS ALGEBRAS 7 

Pruuf. Statements (1) and (3) are obvious. Statements (2) and ( 4) follow from the fact 
that U is torsion free over r. Theorem 2.1 (1) claims that U, c ](, implying (5). □ 

vVe have the following characterization of right. integral Galois algebm~. The case of left 
int1:gral algdJras is considered analogously. 

Lemma 3.2. A Galois algebra U with respect to n. rwetherian r is right integral if and 
only if for every finitely generated right f-modulc M C U, the right f-m.odule Dr(M) is 
finitely generated. 

Proof. Assume U is right integral. Then MK is a finite dimensional right I<-vector space, 
hence D,.(M) = M I<nM is finitely generated right f-module. Conversely, let W c Ldv(G 
be a finite dimensional right K-vector space. Choose a basic w1 , ... , Wn E W. Then for 
each 'i 1, ... , n there exists 'Yi E I', such that wn; E U. Hence, for finitely generated 
f-modulc M wn1 I'+ · · · + Wn'Ynf holds MI( = W. By conditions Dr(M) MI( n lv! 
is finit.ely generated over r. Therefore U is right integral. □ 

Corollary 3.1. If U is right (left) integral then r C Uc is an integral extension. In 
parliculaT' Ur is a nonn.al ring. 

Proof. Lemma 3.1, (5) shows that U, Un Le C I( is finitely generated right (lrft) 
f-module. )'v[oreover, it is finitely generated as left and right I'-rnodule simultaneously. 
Clearly, the statement now follows from Corollary 2.1. □ 

The notion of integra!ity of U has the following immediate impact on the repreoent.ation 
theory of U. 

Lemma 3.3. Let M be a f-module. Then 
(1) If N c i\1 is a right !'-submodule, ]D),(M) = lVl and ]D)r(N) = N, thf'.n there exists 

a right submodule N' C M, such that 11,f = N + N'. For such submodule holds 
l[J)r(N') = N'. 

(2) Let U be a right integral Galois algebra with respect to r, m E Specm r. Then 
Um-/ u, OT' equivalently U 0r f /m =/= 0. 

Proof. Choose n maximal right f-submodule N' C M, such that N n N' = 0. It exists by 
the Zorn lemma. Then for every nonzero m E M holds N n (N' + mf) ,f 0, or equivalently, 
for some nonzero 'YE r holds m1 E N-L'V'. Hence lvl C lilir(N +N') = ID',(N) +]D)r(N') C 
lll1r(M) = M. It proves (1). 

ri 

To show (2) assume the opposite. Then 1 E Um, i.e 1 = L U;/li, Ui E U, /Li E m. 
i=l 

" Consider the module of denominators M = lilir(L u;f). Then u; E lvl for all i = 1, ... , n 
i=I 

and 1 E Mm. Note lhat M contains a !'-submodule Ue = Dr(r). Applying (1), we 
obtain that M ::: Ue + N for some right f-submodnle N c M. Note that r C U, is an 
integral extension of finite rank, and hence U,m i U,. In particular 1 </. U"m. Rut then 
1 r/. Mm= U,m + Nm, which is a contradiction. D 
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3.2. Examples of integral Galois algebras. 
Example 3.1. Following Section 7.1 in [FO], commutative Cairns algebras with respect 
to r are just finitely generated over r subring8 in K. Such Galois algebra is integral only 
if the extension r c U is integral. Indeed, assume that U is integral. Let u E U be o. 
non-integral element. Then r[u] is not a finitely generated f-module. On the other hand, 
let 

aoun + C!(lln-l + ... + C!n = 0, ao, ... , a" E r, <lo =I 0. 
Set M =run-I+ run- 2 + ... + r. Then llJ\(M) = r[u], since a.;-n+luk E Af, for all k 2: n. 
Since M is finitely generated we obtain a. contradiction with the integra.lity of U. 

Suppose now that the extension r C U is integral and r is noetherian then immediately 
U is integral over r, since any r -submodule in f is finitely generated. 

Next we establish the following convenient sufficient condition of the integrality. 
Proposition 3.1. Let U be a Galois algebra with respect to r. If U is free as a right (left) 
r -module o.nd r is a. noetherian algebra then U is right (left) integrnl. 
Proof. Indeed, every finitely generated right I'-submodule M C U belongs to F, where 
U = FEB F', F, F' arc free right modules and F is of finite rank. Then l]J)r(M) C F. 
Moreover, it is finitely generated, since I' is noetherian. D 
Example 3.2. Recall tho.t U(gln) is a Galois algebra with respect to its Gelfand-Tsctlin 
subalgebra, [FO], Corollary 7.2. Hence U(gln) is integral due to Proposition 3.1 o.nd [Ov]. 
Example 3.3. If U = Y p(g12 ) is a restricted Yo.ngian of level p for gl2 ~FMO]) then U is 
a Go.Lois algebra with respect to the Gelfand-Tsetlin subalgcbra r (ef.[FO], Section 'l.3.2). 
Moreover, U is free over I' by [FMO], Theorem 3.4, Applying Proposition 3.1 we conclude 
tho.I U is integral. 

Example 3.4. Jf U = D(a, a) is a genernlizcd Wey/ Algebra ([FO]), then due to Proposition 
3.1 U is o.n integral Galois algebra. 

Example 3.5. Let ]Y( be a separating subgroup in Aut L, ]Y( • [' = f', <p1, ... , <,On E M a set 
of generators of M as a semigroup, a1 , ... , an E f. If r is normal then the subo.lgebra U 
in L * Jvt:0 generated by r and [<,01], ... , [<,0n] is an integral Galois algebra with respect tor. 
Indeed, since M · f = f, for any u E U, 

u = L [0.111ml, 

o.ll a."' are in f. In particular, if u E U, then u = [a.,e], where a, E J( n f'. Since r is 
normal then a, Er and Ue = r. Applying Theorem 3.2, (2) we obtain the integrality of U. 
3.3. Barish-Chandra subalgebras. A I'-bimodule V we call quasi-central if for any 
v E V, the f-bimodule rvr is finitely generated both as a left and as a right I'-rnodule. In 
particular, commutative subalgebra r C U is called a Harish-Cha.ndra subalgebra in U if 
U is a quasi-central r-himodule [DFO]. 

We have the following characterization of Barish-Chandra subalgebras in Galois algebras. 
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Proposition 3.2. A8.rnme that r is finitely generated as an aluebra over lie Then r c 
UC L * M is lfruish-Chandm if a.nrl only if m • r""' f for every m E '.M. 

Proof. Note that t if finitely generated as f-rnodulc. Suppose first. ·rn • [' = F for evcrv 
m EM. Note that m- 1 

• f = f'. It is enough to prove that I'[wp]r is quasi-central for any 
standard generator [a,p] of U. Then 

(5) r[acp]f = [fmpf] = [r. ip(r)a<p] ~".: [mpl'. 'P-I (I')] 
i8 finitely generated over r from the left, since cp([) Cf, and it is finitely generated from 
the right, since Ip-I (l') C r. 

Conversely, assnmc r[aip]f is finitely generated right f-n!odule for any gcncrntor_ [wp]. 
By (5) it means that f . .p- 1(f) is finite over r, i.e. 1p-1(r) c r. Analogously, rp(r) c r. □ 

The following example shows that the condition :M · r C t' does not imply the condition 
M-1 • r c r. 
Example 3.6. Let I'= r-.[.x,y], l( = lk(x,y), L = lk(y'x,Jy). Then t· = r[vx,Jv]. 
Con.sider an element <p E AutL such that x H x, y H xy, y'x H .Ji; and 1 H v'Y· We 
Bee that ip(T') c [' but <p-1 (f) does not belong to f'. 
Example 3. 7. Let g be a simple finite-dimensional Lie algebra, H a Cartan S11balgebra of 
D, U(g) and U(H) are universal enveloping alyebrrM of g and H respectively. Then U(H) 
is a Harish-Chandrn s11balgebra in U(o). But U(JI) is not maximal commutative subalgebra 
of U(g). Hence U(o) is not Galois algebra with respect to U(H) by Theorem 2.1, (2). 

Proposition 3.3. If U is a right (left) integral Galois algebra with respect to noetherian 
r then for any m E :M holds m- 1(f) cf' (m(r) cf'). 

Proof. Let U be right iutcgral and [/L(p) a. standard generator of U. It is enough to check 
that 97- 1(I') C r. Assume I E f is such that x = 47- 1(1,) I/: r. In particular, it implies 
that the right f-submodulc of U, 

00 00 

M = L n/[aip]r = L[a<pxir], 
i=O i=O 

is mit finitely generated. On the other hand, x is an algebraic over r. Let ')'oXn + ,1x"-1 + 
· · · + "Yn == 0, 1; Er, 10 i= 0. Consider the following finitely generated right f-module 

11.-1 n-1 

N = L ,i[a1,0]r = I:[aipxif]. 

Since U is right integral then lillr(N) = kl is finitely generated, which is a contradiction. 
Hence \0-1 (r) c t. The case of left Galois algebras can be considered similarly. □ 

i,From Proposition 3.3 and Proposition 3.2 we immediately obtain 

Corollary 3.2. Let r be a noetherinn &-algebra without zero divisors and U rm integral 
Galois algebrn with 1·nper:t tor. Then r is a Harish-Chandm .rnbalgcbra in U. 
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Remark 3.1. Note that the converse statement in Proposition 3.3 is not true in general. 
We will show it for right integral Galois algebras. Consider the case when r is inleqrally 
closed in I{ and there is an automorphism '-P : J( ------t 1( of infinite order, such that r_p(r) is 
a proper subset in I'. In this case set V = I<\?. Then J., = K, M = {cp"ln 2'. O} and L * M 
is isomorphic to the skew polynomial algebra K[x; \D] ~MCR]). Its .mbalgebra. U generated 
by r and x is a Galois algebra. l,et U,, C U be the r-subbimodule of monomials of degree 
n 2'. 0 and rm C K, m 2'. 0, the subalgebra generated by all \Di(r), where i = -rn .... , 0. 

Then we have 

(6) 

Since cp(r) is a proper subset in r, then for some 'YE r, a= r_p- 1 ("1) (/:. r. Hence, for 
any n > 0, r n contains 11 non-integral over r element an = '-P-n('Y). 

Consider a right I'-rnodule xr generated by x. Then llll,(xr) contains xr[a], which is not 
finitely generated, since the extension r C r[a] is not integral. Hence ][J)r(xr) is not finitely 
generated and thus U is not right integral. On the other hand, clearly, U is left integral. 
Example 3.8. As an example of the situation in Remark 3.1 one can consider r = 
lk[x1, x2], I< = lk(x1, :r:2 ), and an automorphism r_p E Aut I< such that rp(x1) = X1 and 
rp(x2) = X1X2-

3.4. Properties of integral Galois algebras. Let U be a Galois algebra with respect 
tor. 

Let S C M be a finite G-invariant subset. Denote U(S) = {u E U I suppu C S}. 
Obviously, it is a r-subbimodule in U and ][J)r(U(S')) = ][])1(U(S')) = U(S), since the 
multiplication on O f 'Y E r does not change the support. 

For every f E r consider f's C r 0;. I< (respectively Ji c I< 0t I') as follows 

IS! 
(7) Is= ITU 01- l@f'-

1
) = Lfl5l-i 0 T;, (To= 1). 

(respectively J}; = IT,EsU' 0 1 - 10 !)). 
The following lemma describes the properties of f's-

Lemma 3.4. [FO] Let SC M be a G-invariant subset and m-1(r) cf' for all m E :M. 
For any subset X CM se.t f X = fx-

(l) Let u E U. Then u E U(S) if and only if f s · 11 = 0 for every f E r. 
(2) LctuEUandT=suppu\S'. Thenfr·uEU(S). 

n 
(3) Let SC T be G-invariant subsets in M, f Er, h,s = L f; 0 g; Er ©k r, a EL, 

n 

m EM. Then h,s ·[am]= [(L f;g;"a)m]. 
i-=1 

n n 
(4) If f Er, S = {e} and f-1'\S = L f; 0 g, EI' 0:. r, then fT\S · u = (L f;g;)u. 
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(5) Let S be_ a G-orbit. The ,r-bi7::odule f~omornorphism Pf : U(T) -► U(S), u H 

/r\s · 11 zs either zero or h.er P'f, = U(1 \ S) (both cases arc possible, cf. (l)}. 

(6) Let S = S1U· · ·US" be the dcr.omposition of Sin G-orbits and fff, : U(S)---, U(S;), 

·t = l, ... , n are defined in (5) nonzero lwrrwmorphisms. Then the homomorphism 

n 

(8) P8
: U(S) -► EB U(S;), P5 =(Pi,\, ... , PlJ, 

i=l 

is a monomorphism. 

The case of Ji, is treated analogously, substituting m- 1(r) C f' by m(r) c r in the 

conditions of lemma. In particular all statements arc valid in the case when r c U is a 

Harish-Chandra subalgebra. 

Corollary 3.3. Assume U is a right (respectively left) integral Galois algebra with respect 

tor, {(')i}iEN is an ordering of the orbits of M with respect to the G-action. Then there 

c1:ists a right (respectively left) r-module decomposition, 

00 

(9) u = EBu;, 
n n 

such that EB U; = U(LJ (');) for any n 2: 0. 

i=O i=O 

Besides 
n n n n 

EB U;I{ == EB(L * M)~. (respectively EB KU; == EB(L * M)i.), 

i=O i=O 

where rp; E 0;, i = 0, ... 1 n. 

Proof. Following Lemma 3.3, (1) one can choose U; as a a right (respectively left) comple-

n-1 n 

mcnt to the submodule U(LJ ('.);) in U(LJ (');). The necessary decomposition is obtained 

i=O i=D 

by induction on n. The second statement follows from (2). □ 

Our goal now is to prove the following 

Theorem 3.1. Let U be a Galois al_qebra with respect to 11 noethcrian l!arish-Chandra 

subalgebra r. Then the following 8fatr-;rnent8 are equivalent. 

(1) U is right (respectively left) integral. 
(2) U(S) is finitely generated right (respectively left) r-module for any finite G-invariant 

ScM. 
(3) U(G. m) is finitely generated right (respectively left) r-module for any rn. E M. 

Proof. Assume U is right integral. Consider a G-invariant finite subset 8 C M. Since the 

dimension dim~( U(S)K is finite (cf. [FO]), there exist u 1, ... , 11k E U(S), which form a 
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basis of U(S)K as a right K-space. Then 
k k 

]IJ)r ( L u;r) = ( L u;I')K nu= U(S)K nu= ])J)r(U(S)) = U(S). 
i-1 i=l 

k 

Therefore, U(S) = ]IJ)r ( L u;f), which proves (2). Obviously, (2) implies (3). 
i.;c.;;l 

Assume (3) holds. We will show that U is right integral. Let. M be a finitely generated 
right f-suhmo<lnlc in U. Then J\1 C U(S) for some finite G-invariant subset SC :M, and 
])J)r(M) C ])J)r(U(S)). Since ])J)r(U(S)) = U(S), it remains to prove that U(S) is finitely 
generated as a right f-module by Lemma 3.2. Let S = S1 U · • · U Sn be the decomposition 
of S into G-orbits. Then following Lemma 3.4, (6), we can identify U(S) with its image 
under the monomorphism P5 . Since U(SJ is a finitely generated right f-module for every 
i = 1, ... , n, we conclude that U(S) is finitely generated right r-module, which completes 
the proof. D 
Theorem 3.2. Assume that U C L * :M0 is a Galois algebra with respect to a rwrthcrian 
r and :M is group. 

(1) If Ue is integral extension of r and m- 1 (f) c f (respectively m(r) c f), then U is 
right (respectively left) integral. 

(2) If Ue is integral extension of r and r is a Harish-Chandra subalgcbra in U, then U 
is integral. 

Proof. We will prove (1). Assume that Ue is an integral extension of r, m- 1 (I') Cf", but 
U is not right integral. Following Theorem 3.1, (3) there exists m E J\1, such that ]IJ)r(M) 
is not. finitely generated, where lvl = U(G · m). Consider in llJ\(1\1) a strictly ascen<lillg 
chain of right r-modulcs 

(10) 

where h, k ~ 1 are right f-submo<lules in L. 
Since J\1 is a group, then following Lemma 2.1, there exists [bm- 1] E U. The multipli-

cation by [bm-1
] is injective on [mL], since ([bm-1 ][ma])e = JQl__ba. Hence, multiplying 

IHml 
(10) by [bm- 1

] from the left we obtain the strictly ascending chain of right I'-modulcs 

n 

Let 8 = t>m-1 t>m. Since m-1 (r) C f there exists F = L j; @ Yi E r @k r (by Lemma 
i~l 

3.4, (3)), which defines a nonzero morphism P/ : U(S) --t U( { e}) = Ue. Applying P/ to 
the sequence (11), we obtain an infinite strictly ascending chain of right f-submodu!cs in 
l!J'r(Ue), 
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71. 

where "/ = L f;g;, which is a contradiction. Statement (2) follows irnmcaditely from 

i.=:l 

Proposition 3.2. D 

Corollary 3A. Let UC L * M be a Galois a.lgebrn over noetherian r. Assume that M is 

1L group and r is a. normal k-a.lgebra.. Then the following statements a.re equivalent 

(l) U is integral over r. 
(2) r is a l!arish-Clwndm subalgcbrn. and, if for u E U there exists a nonzero I E r 

such that ,·u f f or u, f f, then 1l E f. 

Proof. Assume (1). Then r is a Barish-Chandra subalgebra by Corollary 3.2. Suppose 

that 1L, E r for some u E U and 'Y E r. Then (2) follows from Corollary 3.1, since 

u E ][J)r(f) = Ue = r. To prove the opposite implication consider u E Ue, Since Ue c I{ 

(Theorem 2.1, (1)), there exists, E r, such that 'YUE r. Thus, u E r. Theorem 3.2, (2) 

completes the proof. 
□ 

The last corollary can be viewed as a non-commutative analogue of the following state­

ment, which is probably well known. For the convenience of the reader we include the 

proof. 

Proposition 3.4. Let i : A C B be an embedding of integral domains over k, such that A 

is non-singular. If the induced morphism of varieties i* : Specm B --+ Specm A is sur:fective 

then for any b E B such that ab E A, for some nonzero a E A, follows b E A. 

Proof. We can assume that i induces an cpimorphism of the Spec B onto Spec A and will 

use the following property of non-singular rings: for every m E Specm A the localization 

Am is a unique factorization domain. Assume ab= a' EA and fix m E Specrn A. Consider 

this equality in the ring Bm- We can assume that a and a' are coprime in Am. If a is 

invertible in Am then b E Am, In the opposite case there exists P E Spec A such that 

a E P and a' rf. P, which shows that P does not lift to the point of Spec B. Since b E Am 

for every m E Spec A, it implies b E A. □ 

In particular, Proposition 3.4 holds in the case of an integral extension A C B with 

nonsingular A. 

4. BARISH-CHANDRA CATEGORIES 

4.1. Harish-Chandra modules. Denote by Specrnf the set of maximal ideals of r. A 

module ME U - mod is called llarish-Chandra module (with respect tor), provided that 

Mir is a direct sum of a finite dimensional I'-modulcs EB M(m), where mkM(m) = 0 

mESpccmr 

for some k == k(m) 2: 0. 

When for all m E Specm r and all x E M(m) holds mx = 0 such Barish-Chandra 

module M is called wei_qht module (with respect to I'). 

All Harish-Chandrn modules form a full abc!lian subcategory TITI(U, f) in U - mod. A 

full subcategory of H(U, I') consisting of weight modules we denote by HlV(U, r) . ThC' 
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support of a Barish-Chandra module M is a set supp M c Specm r consisting of such m 
that Al(m) f 0. For DC Specm r denote by lHl(U, r. D) the full subcategory in H(U, I') 
formed by M such that supp M c D. For a given m c Specm [' Jet Xm : r ---+ I'/m be a 
character of l'. If there exists an irreducible Barish-Chandra module ,\1 with M (m) I 0 
then we say that Xm extends to 11!. Since for any character x : r -, 1.:, Ker x E Specm f, 
we will identify the set of all characters of r with Spccm r. 

Suppose that r is a Barish-Chandra subalgebra in the algebra U. For a E U let 
(12) Xa = { (m, n) E Spccm r x Specm r I 

r /n is a subquotient of l'aI'/I'am {=} (f /n) @r rar @r (f /m) f O} 
Denote by 6. the minimal equivalence on Specm r containiug all Xa, a E U and by 

6.(U, r) the set of the 6.-equirnlence classes on Specm r. Then for any a E U and m E 
Specm f holds 

(13) 11.M(m) C L M(n), H(U, f) = EB H(U, r, D). 
(m,n)EXa DCl>(U,r) 

In particular if X is a finite-dimensional f-module then the module U 0r X is a Harish­
Chandra module. 

4.2. Correspondences associated with a bimodule. The situation described above 
allows the following generalization to the case of prime ideals. Let p E Spec r, S = Sp = 
f \ p, <p E Aut r, T =Tr,,,,= IT <p9 (S). 

g~G/ II~ 
Assumer is noetherian. Let M be a finitely generated left (resp. right) module over r. 

For m E M denote Annr(m) the ideal of , E r such that -ym = 0 (resp. m, = 0). Dy 
Ass(M) ( = Assr(M) c Spec r) we denote the set of prime ideals pin r associated with M, 
i.e. there exists m EM, such that Annr(m) = p. In particular any maximal annihilator is 
in Spec I'. 

Let r be a commutative ring, V a quasi-central f-bimodulc. Denote by Xv c Spec r x 
Spec r the associated with V relation 

(14) '.Xv= {(p,q) Ip E Speer, q E Ass(V 0r f/p)}. 

Remark 4.1. Note that Xv can be dually defined as 
(15) Xv= { (p, q) I q E Spec r, p E Ass(f /q 0r V)}. 

For p E Spec I' denote by f P the localization off by the multiplicative set Sp = f \ p. 
Abusing notation we will denote again by p the corresponding ideal in r p· Denote by l<q 
the fraction field r p/ p. 

Define the category A = A(U, f) as follows 

ObA = Speer; A(p,q) = l.i.!!1A1,m(P,q), where 
(1G) 1,m 

A1,m(p,q) = fq/q"' 0r U 0r I'p/p1
. 
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Any element .r E r q 0r U 0r r P can be presented in the form .r = 11 0 u1 0 1 and in the 

form .T = l 0 u2 0 ,2, for some ~/1, 12 E r, u1, u2 E U. vV1~ prove the first statement, the 

second is analogous. For s;10 u 0 Sq there exists u' E U, s E r, such that squ' = us. Then 

s; 1 @u 0 s;1 = s~-l@ SqU
1 0 ,,.-18;1 = 10 u' 0 s-1s;1. 

Lemma 4.1. Assume, that if for· nonzero u E U holds (p, q) r/ Xv, where Set 

V = r 0r u 0r r ::: rur, 

then A(p, q) = 0. 

Proof. Consider u E U such that its class in Ai,m(P, q) is nonzero. There is enough to prove, 

that if (p,q) r/. Xv, then W = rq/qm ®r u 0r rp/p1 = 0. Remark, that rq/qm ®"' rp/pL­

module Wallows a filtration, induced by multiplication on the ideal m = q/qm0kfp/pL+ 

fq/qm 0&. p/pL 

w J m. iv J m 2 • vv J ... J w. mm+n-l J iv . mm+n = 0. 

The factors of this filtration nre isomorphic to the factors of the fq/qm 011r. fp/PL-module 

Kq @r V ®r I{p· Hence it is enough to prove, that Kq 0r V 181r I{P = 0. Consider any s E q, 

then there exist s 1r, u1 E V, such that su1 = 1181. Hence in I{q 181r V 0r Kp holds u · s1 , 

where il is the class of u. If 81 ¢ p, then 81 acts bijectively, hence u = 0. So 81 E p and 

p E Ass(W/qW). 
□ 

The composition of morphisms is defined as follows. Let 11 E A(p, q), b E A(q, r). Choose 

for any I, m, n E N their representatives 1 181 a1,m 0 8~
1 E A1,m(P, q) and s;-1 181 am,n 0 1 E 

Am,n(q, r). Set (ba)1,n = lE!,18,-1 0 bm,n11t,m 181 s~1. We prove that the limit exists, i.e. there 

exists M = M(a, b,p, q) s;~
1

ch that form> 1Vl the element s,- 1 181 bm,nal,m 0 s~1 E A1,m(P, r) 

docs not depend on m and on the choice of a,,,,n and b1,m• This follows from the fact that 

there exists M, such that for every m > M holds 

10 Uqmu 01 C rn 0 U + Up1. 

We define the functor F : U - mod --t Jl - mod as follows: 

F(M)(p) = li!£1fp/pn 181r M, ME U - mod, p E Speer, 

(17) 
n 

for f E Homu(M, N) F(J) = l,i:.!!_1 llr,/p" 0r f: F(M) -+ F(N). 
n 

It is easy to check, that F is a functor. 

4.3. Case of the maximal spectrum. Let r be an integral domain and a lk-algebra and 

U a Galois algebra with respect to r. We assume that I' is a Harish-Chandra subalgcbra 

in U. 
Define a category A = Au,r with objrc:ts Ob A "-' I' and the spar,c of morphisms from m 

ton being 
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(18) A(m,11)-,--- Jim U/(n"U+Umm). 
t-n,rn 

Then we have A = EB AD, where ATJ is the restriction of A on D. For m E 
DEl>(U,r) 

Specm r denote by D(m) denote the class of 6-equivalcncc, containing m. The category 
A is endowed with the topology of the inverse limit and the category of lk-Yector spaces 
(lk -- mod) with the discrete topology. Consider the category A - modd of continuous 
functors M : A-,ik - mod ( discrete modules in [DFO], 1.5). For any discrete A-module 
N define a Harish-Chandra U-rnodule IF'(N) = EBmESpecrnrN(m) and for x E N(m) and 
a EU define 

ax= L anx 
nESpecm r 

where an is the image of a in A(m, n). If f : M ~N is a morphism in A - modd then 
define IF'(!)= EBmESpecmrf(m). Hence we have a functor IF': A - modd ~ IHI(U,r). 

Theorem 4.1. ~DFO], Theorem 17) The functor IF' is an equivalence. 

We will identify a discrete A-module N with the corresponding IIarish-Chaudra module 
IF'(N). Let rm = Jim r /mm be the completion of r by rn E Specrn r. Then the space +-m 
A(m, n) haB a structure of r n - r m-bimodule 

For m E Specm r denote by m a completion of m. Consider a two-sided ideal I C A 
generated by m for all m E Specm r and set A(W) =A/I. Then Proposition 4.1 implies 
the following statement. 

Corollary 4.1. The categories IHIW(U, f) and A(W) - mocld are equivalent. 

The subalgcbra r is called big in rn E Specm r if A(m, m) is finitely generated as 
rm-module. 

The importance of the concept of a big subalgebra is described in the following statement. 

Lemma 4.2. nDFO], Corollary 19) If r is big in m E Spccm r then there exists finitely 
many non-isomorphic irreducible Harish-Chandra U-modules Al such that l\l(m) i 0. 
For any such module M, dim M(m) < oo. 

Note that the regular A-module does not belong to the category A - modd. This leads 
to the following generalization of the category ll-ll(U, r). A U-module is called topolo­
gized Harish-Chandra module (with respect to r), if Mir is a direct sum of r-modules EB M(m), such that M(m) is a complete separated (i.e. Hausdorff) in m-adic topol-
mESpecmr 

ogy. A morphism J : M ➔ N of two such modules is a homomorphism such that 
f = (])mESpecmrfm, where fm : M(m) ➔ N(m) is continuous in m-adic topology. The 
category of such modules TlHI(U, r) contains H(U, r) as a full subcategory. When neces­
sary we will work within of the category TH(U, l'). 
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. A fur:ctor F : A ➔ Il, - l'vlod is called topologiicd if F(m) is complete and scparatrd 

m m-ad1c topology for any m E Spccm r. Let TA - Mod be the category of topologizcd 

fnnctorn. Then 

TH(U, r) ~ 'l'A - J\lod. 

We will show next that an integral Galois algebra acts faithfully in the category of 

Barish-Chandra modules. First wr) need the following lemma. 

Lemma 4.3. Let r be noetherian and M a finitely generated right [-module. Then the set 

of m E Specm r such that Tor; (M, r /m) = O contains an open dense subset in Spccrn r. 

Proof. Let 

(HJ) 

Let (HJ) be a free resolution of M. It induces the resolution R• @r J( of M @r ](. Denote 

r = dimg Im(d1@11.K) = I<er(d0 @1!.l< ). Denote by D; the matrix of di and form E Specm r 
by Di(m) the specialization of D; in m, i = 1, 2. Then always 

rankD2 (m)::; r 

and the set 

V = {m E Specmr I rankD2 (m) = r} 

is open dense. Analogously, 

and the set 

V' = {m E Specmr I rankD1(m) = n, -r} 
is open dense in Specm r. Hence for any m E V n V' the first cohomology of the complex 

R• @r I'/m equals 0. 
□ 

Proposition 4.1. Let U be an integral Galois algebra with respect to a noetherian algebra 

r. Then for every u E U, u ,J O the set Ou of m E Specrn r for which there exists 

n E Specrn r, such that the image of u in A(m, n) is nonzero, contains a massive subset. 

Proof. We prove a stronger statement: there exists a massive set X,, C Spccrn r such 

that for every m E Xu the image i1 oftt in U/Um is nonzero. Fix m E Specmf and let 

N = uf c:= r. Then i1 = 0 if and only if 

n 

u = L u;m;, 'lli EU, m; Em, i = 1, ... , n. 

icol 

n 

Assume this the case. Let S == LJsuppu; and Af = U(S). Then the exact sequence of 

right f-modulcs 

(20) o ---, N -► M -► M / N -r 0 
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becoms non-exact after tensoring with f/m, i.e. Torf(M/JV,r/m) :f 0. But the set 
U(u,S) of m E Spccmr, such that Torf(M/N,r/m) --c O contains an open in Specrnf 
subset (Lemma 4.3). Hence for the massive set 

Xu= n U(u,S) 
ScM 

the element u E U acts non-trivially on U /Um. Now the statement follows from Theo­
rem 4.1. D 

5. REP!lESENTATIONS OF GALOIS ALGEnRAS 

Let U be a Galois algebra with respect to r in L * JV(. 

5.1. Extension of characters. We would like to know for which m E Specm r, the 
character x = Xm extends to an irreducible Harish-Chandra U-module. Denote by Ux 
the left module U/(UKerx). We will call Ux the universal module, generated by ax­
eigenvector. As we saw above Ux E ll::II(U, r) if r is a Harish-Chandra subalgebra. The 
problem is that in general we can not guarantee this. Moreover, Ux could be zero. 

It is more convenient to work with the following extension of r. Denote by IL the 
subalgebra in L generated by all "t'i where m runs J\1 and I runs r. If Il.., C r, i.e. cver_y 
m E J\1 is integral, then any character on r can be extended to a character on IL. In tlus 
case the ex~ension r C IL is analogous to the extension Sym[x 1, •.• , :1: 11 ] C _!k[x1, • • ·, xn)· 
Denote by lL the integral closure of lL in L. Then L is a field of fractions of lL. If r C IL is 
an integral extension then f = JL and any character of r can be cxtcn<lcd to a character 
on JL. 

Let £., = Specm JL. The elements f of£., will be called tableau. The canonical embedding 
r '-+ IL induces the projection 1r : £., --+ Spccm r. The Galois group G acts on £., and 
the orbits of this action are in the canonical bijection with Specm r, i.e. for m E Specm r 
the group G acts transitively on 1r-1(m) (cf. Proposition 2.1, chapter VII, [La] ). If 
m E Specmf and JG• ml= JGJ then the tableau e E £.,, such that 1r(f) = m, will be called 
regular; otherwise the tableau e is called non-regular. If m E Specm r then we will denote 
by Rm an element of£., such that 1r(Cm) = m. We will say that fm lies over m. 

Since r i~ a subalgebra in JL, we can for I E rand e E £., write 1 (€) instead of ,(1r(C)). 
If <p E AutIL and I E r, then there holds,"'(€)= 1 (ip- 1 . e). 

We will use the following localizations of IL. Let AM be the set of all a 771
, where m §: M 

and [a<p] run all standard generators of U. Denote by A1 an algebra generated over IL by 
A11\ and let A2 be an algebra generated over A1 by all a -1, a E AM. Denote£.,; = Spccm A;, 
St;= 1r(l;), i = 1, 2. Then we have the following standard embeddings: 

l2 C l1 Cl, S12 C S11 C Spccm f. 

By lr c l denote the set of e = Cm, such that J\1 acts on e without stabilizer and 
J\1-£nG • C consists just of e. In other words, form = 1r(£m) E Specm I' holds S(m, m) = { e} 
(sec 6.1) Set 11r = 1r(l,.). 

The following useful fact is obvious. 
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Lemma 5.1. If £1, £2 E ,C belong to different orbits of G, then there exists I E r, such 

that 1(f1) c/ 1(f2), in other words r distinguishes the orbits of G. 

_ Let X be a character of JL, and hence of r, m = Ker x. It defines a representation Afx of 

IL * M C L * M 11B follows: 

(21) Mx = (i * M) @[ (JL/m) :::-: E9 JL/n, 

when~ C)m is the orbit of m in Specm JL with respect to the action of M. For any Harish­

Chandra module M generated by a x-eigenvcctor v E l'v!, supp Af C C)m, In particular, 

if U.'<. # 0 then Ux is a Harish-Chandra module and supp Ux C C)m, In this case Ux is 

isomorphic to Jvfx as JL * M-module. 

Example 5.1. In the case of Generalized Weyl algebras, lL = r, and the the structure of 

U-module on Mx can be defined for any character x of r, identifying Afx with the universal 

module Ux (cf. [BBF]). 

Consider a skew semigroup algebra A1 * M C L * M. Clearly A1 * JV( contains the Galois 

algebra U. If x: A1 -, 1k is a character then we can construct the universal A1 * J\1-module 

M(x) =(A,* M) ®A, Ai/ Kerx. 

Denote by M(U, x) the restriction of M'(x) on U. The properties of U-module M(U, x) 

are collected in the following statement. If M = EBmEM.Mm is a M-gradcd module then 

its support O = {m E Ml Mm -:J O} is called oriented connected if for any rp, ij; E O there 

exists u E U such that O f= uM'i' C Mi/!. 

Theorem 5.1. Let X: A, -t 1k be a character, X = xlr-

(1) M(U,x) is a Harish-Chandra (with respect to f) U-module. 

(2) Ux f= 0 and Ux c M(U, x). 

(3) Module Ux has a unique M-graded maximal submodule and unique graded irreducible 

quotient. 
( 4) The module Ux is graded irreducible if and only if its support SUPP:11t Ux as a M-

graded module, is oriented connected. 

Proof. The module M(U, x) is a Harish-Chandra module by construction. It has a U­

submodule isomorphic to Ux, which is obviously nonzero. Also, Ux is M-gradcd module 

with I-dimensional components. Note that this gradation may not coincide with the grada­

tion by M•x as a Harish-Chandra module. This happens when some rp E M act periodically 

on X· As a result the components in M·x-gradation can be more than 1-dimensional. Since 

all components in M-gradation are 1-dimensional, Ux has a unique M-graded maximal sub­

module which docs not intersect the x-component. The basis elements of Ux are labelled 

by the elements of J\1 and thus suppM Ux = J\t. Clearly, Ux is generated by any M-graded 

component if and only if its support is oriented connected. □ 

Corollary 5.1. A character X: [' ➔ 1k ca.n be extended to an irreducible Jforish-Chandra 

module if X = xlr for some character X: A1 -t lk. 



20 VYACHESLAV FUTORNY AND SERGE OVSIENKO 

Recall, that a non-empty set X c Specm r is called massive, provided that X is a 
complement of countable many subvarictics of X of nonzero codimension. If the field 1k is 
uncountable then a massive set is dense (in Zariski topology) in Spe,crn r. We will show 
that there exists a massive subset of characters in Spccm r which can be extended to 
Harish-Chaudra U-modules. We will use the fo\lo\\'ing standard fact. 

Lemma 5.2. let 1r : Spcr.m lL '--+ Specm r be the canonical projection. If X C Specrn IL is 
a massive subset then 1r(X) is massive in Spccrn r. 
Proof. Since X is massive in Spccm lL then X = n;EzU;, where U; is open in Specm IL for 
any i E Z. Moreover, 1r(U;) contains an open set Uf C Spccm I' for every i, and hence 

1r(X) :J nu;, 
iEZ 

i.e. rr(X) is massive in Specmr. D 

Corollary 5.2. Suppose that M • r c f. 
(1) Given x : r ➔ 1k there exists finitely many (possible none} x : f [11111] ➔ 1k such that 

x= xlr-
(2) There exists a massive set X C Spccm r such that any x E X can be extended to a 

chamcter XE Specm f'[A]\1] such that X == xlr, 
Proof. We have that lL C f and lL = f. Hence any character of r bas finitely many 
extensions to the characters of f, and for any character of f there either exists a unique 
extension to a character of f'[AM] or none. This implies (1). The statement (2) follows 
from the fact that Lis the field of fractions off. D 

Note, that if M • r c f then any m E M defines an automorphism of IL = f' and, 
hence induces a continuous automorphism of£.,, In particular, this holds when f is a 
Barish-Chandra subalgebra. 

Lemma 5.3. Suppose that the field 1k is uncountable. Then the sets £.,; C £., and O; C 
Specm f, i == 1, 2, are massive. Moreover, if M · r C f then £.,r and nr are massive. 

Proof. Note that 1\1, i\2 are countably generated over IL. Due to Lemma 5.2 it is enough 
to show that the corresponding subsets are massive in Spccm JL. 

The sets £.,1 and £., 2 can be characterized in the following way. Let Z1, ... , ZN be the 
canonical generators of U (Zi = [ai<p;], i = I, ... ,N). Let I= (i1, ... ,i,,) E {l, ... ,N}k, 
k ~ 0, W1 = Z;1 ••• Z;. == I)x~h], xf, E L. If xf, f O then it defines a rational function on 

hEM 
Specm IL. Let D(x{) be the domain of regularity of xf,, and 0 0(!) = nhEJ\!D(xfJ Set 

01 (/) = {p E Oo(/) I x{,(p) IO for any h E supp wi}, 
where supp w1 consists of those h E M for which xf. i 0. Kote that both 0 0 (/) and 01 (/) 
arc nonempty open sets in Specm IL. 
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Denote by '.J the space of all sequences I = ( i1, ... , ik) for all k 2'. 0. Then .c I = n Oo (I) 

and .C2 = n 01 (I). Hence .C; C Specm lL is massive for i = 1, 2. 

/fJ 

For any m E M, m j e, set 

Xm = {PE .Clm. e E G. e}. 

IE, 

Then Xm is a proper closed subset in .C. It is obviously closed since G is finite. If m E M 

and g E G then denote by .c(m, g) the set of those e for which m • £ = g . e. IIencc, 

Xm = U9Ec.C(m, g). Assume that .C = Xm for some m E M. Since the variety Specm JL is 

irreducible, we conclude that .C(m,g) = .C for some g E G, and hence m = g. But this is 

impossible, since M is separating. Thus LJ Xm is the complement of Or in .C and Lr 

mEJl(,mfe 

is massive. The sets O;, i = 1, 2, r, are massive by Lemma 5.2. D 

We have the following stronger version of Theorem 5.1. 

Theorem 5.2. Suppose that the field 1k is uncountable. 

(1) There exists a massive subset X1 C Specmr, such that for every x E X 1, Ux is 

nonzero llarish-Chandra module and supp Ux C ('.)m, where x = Xm· 

(2) If M is a group, then there exists a massive set X2 C X1 , S'Uch that for any x E 

X2 the module Ux is a u,nique CJm-graded irreducible U-module generated by a x­

eigcnvector and supp Ux = CJm · 

(3) If M is a group and M · r C f', then there exists a massive set Xr C X2, such 

that for any x E Xr the module Ux is irreducible U-module with all I-dimensional 

components, In this case there is a canonical isomorphism of lk-vector spaces lid\{ '.:::'. 

Ux. 

Proof. Let X 1 = 0 1. Then for every x E X1, Ux =I= 0 by Theorem 5.1. Hence Ux is 

a Barish-Chandra module. Moreover, since Ux is SpccmlL-gradcd, it has an irreducible 

quotient with a nonzero x-eigenvector. This implies (1). 

Assume now that M is a group and set X2 = 0 2 , Let x E X 2 and Z = L[xhh] is 
hEJI( 

a generator of U. l3y assumption, for every n E M • m holds xh(n) =I= 0, hence every 

component of Ux, x = Xm, generates the whole Ux. Therefore, Ux is irreducible as CJm­

graded U-module. Moreover, since Ux is the universal module generated by ax-eigenvector, 

it is a unique such graded irreducible module, implying statement (2). Note that if M acts 

on m with a nontrivial stabilizer then Ux is not irreducible. 

Suppose now that M · r c f', Then nr is massive by Lemma 5,3, Consider a subset Xr = 

X2 nnr, Since r distinguishes the components by Lemma 5.1, it implies the irreducibility 

of llx for any x E Xr, The basis clements of U,. in this case arc labelled by the clements 

of lkJY( which completes the proof of (3). 0 
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6. REPRESENTATIONS OF INTEGRAL GALOIS ALGEBRAS 

G. l. Extension of characters for integral algebras. We are in the position now to 
prove Theorem A stated in the Introduction. 

Let U he a right integral Galois algebra with respect to r. Consider an arbitrary char­
acter x : r -> 1k and let m == Ker x E Specm I'. Then by Lemma 3.3, (2) the module 
U /Um is nonzero. Denote by v the image of 1 in U /Um. Then mv = 0 which defines a 
gradation on U /Um by Spccm r. Any non-zero graded simple quotient of U /Um satisfies 
the theorem. Therefore, there exists a simple U-module M extending the character X and 
proving Theorem A. 

The following corollary generalizes Theorem A for Spec r. 
Corollary 6.1. If U is right integral then for any p E Spec r there exists a U-rnodule N, 
such that p E Assr(N). 

Proof. If N = U0rKp i O and I= 11811 EN then f-I ::::= r /p. Note that N ::::= (U/Up)[S/]. 
Hence I = 0 in N means that s E Up for some s E Sp. Write 

(22) 
n 

s = ~ u;p;, u; E U,p, E p. 
i~l 

Then there exists m E Specm r such that J!i(m) = 0, i = 1, ... , n, s(m) f 0. Consider the 
character x : l' -+ r /m and a simple U-module M with a nonzero clement v such that 
mv = 0. Applying the equality (22) to v we obtain a contradiction. 0 

Of course the property of a Galois algebra to be right integral is not a necessary condition 
to guarantee an extension of an arbitrary character of r to a U-module. On the other hand 
we have the following 

Lemma 6.1. Let U C L * M be a Galois algebra with respect to a noethe.rian r. If every 
character X : r -+ 1k extends to a representation of U then Ue c f' n I<. If in addition M 
is a group and r is a Harish-Chandra subalgebra then U is integral. 

Proof. If X extends to a representation of U, then it extends to a representation of Ue C K 
in particular. It implies that U, belongs to the integral closure of r in I<. The second 
statement follows immediately from Theorem :3.2. □ 

The following corollary gives a module-theoretic characterization of integral Galois al­
gebra. 

Corollary 6.2. Let U be a Galois algebra with respect to a noethcrian algebra r, M a 
group and m-· 1 (f) C f for any m E M. Then every character x : r ---, !k liits to a simple 
left (right) U-rnodv.le if and only if U is right (left) integral. 

G.2. Harish-Chandra modules for integral Galois algebras. We assume that. r is 
normal and that it is finitely generated as an algebra over 1k. In particular, r = f' = Ue 
and f' is finite over r by Corollary 2.1. 
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Let _£m and fn be some maximal ideals off, lying over m and n correspondingly. Note 

that given rn E Spccm r the number of different Pm is finite due to Corollary 2.2. i\louoid 

~ acts on both Specm rand Specm ['. Denote by S(m, n) the followi1rn G-invarianL snbset 

m:M 

(23) S(m, n) = {m EM I fn E GmG. Pm}= {m EM I ene;;;1 E G111G}. 

Note that the set S(m, n) can be empty and it does not depend on the choice of Pm and Pn, 

Really, if l'~, f~, lying over m and n correspondingly, then ([Mat], Theorem 9.3, III)) there 

exis'. g',g", such that fi~ = g'€m, £~ = g"l'n- Hence £~(€~)- 1 belongs to GmG. 

Given m E Spl'cm r denote by St.M(m) the stabilizer of m (as a set.) in M. 

Lemma 6 .2. Let m E Specrn r. The set S( m, m) is finite if and only if St::-v! ( m) is finite. 

Moreover, if M is a group and StJl1 (m) is finite, then for any n E Specm r both S(m, n) 

and S(n, m) arc finite. 

Proof. Since the Galois group G is finite the proof follows immediately from Corollary 2.2. 
D 

For m E Specm r denote by rm the completion of r by m. 

Proposition 6.1. Let U be an integral Galois algebra with respect to r. Then for any 

m, n E Specm I', such that S(m, n) is finite, the l'n - r m-bimodule 

(24) A(m, n) = Jim U/(n"U + Umm) 
t-n,m 

is finitely generated. 

The proof of the proposition is based on the following lemma. 

Lemma 6.3. Let r be a Harish-Chandra subalgebra in U, m, n E Spccm r, S = S(m, n), 

rn, n ::::: 0. Then 

U = U(S) + nnu + Umm. 

Proof. Fix u EU and denote T = suppu \ S. If T = 0 then u E U(S). Let T #- 0. We 

show by induction in k, that there exists uk E U(S), such that 

k 
k 

(25) u E uk + I>k-iumi, Uk E U(S) ( hence Uk+I - u,. E I:nk-ium'). 

;~ ~o 

Since e~ and Cn belong to different G-orbits if t (/; S, then by Lemma 5.1 there exists 

f E r such that f (fn) f f ( £~) for every t E T. Without loss of generality we can assume 

that h-(n, m) = ITU(fin) - f 1
-

1
(fim)) o:: 1, which implies h- E 1 + n 0 r +I'® m. Set 

t~T 

1t1 =:: Ir· 1t. Then u1 belongs to u + n1LI' + furn and, hence, u E u 1 + nuf' + rum. '.\lorcover, 

by Lemma 3.1, (2) u1 E U(S). 



24 VYACHESLAV FUTORJ\:Y AND SERGE OVSIE~KO 

We prove the induction step k ⇒ k + 1. Writing in (25) the expression for 11 in the right 
hand side W(~ obtain 

k k k k+l 
u E u.1, + I>k -i (uk + 2::>k- jumj)mi C Uk+ 2::>k- iukmi + 2:::n k ➔ 1- iumi , 

i=O j=O i=O i=O 

that finishes the proof of the induction step, since nk + I;~=0 nk-iukmi C U(S). D 
In the assumptions of Proposition G. l we have 

A(m, n) = Jim U/(nnU + Umrn) '.::'. 
+--n,m 

(2G) Jim U(S)/(n"U + Umm) n U(S). 
+-n,111 

Since U(S) is a noetherian f-bimodule by Theorem 3.1, the generators of U(S) as a f­
bimo<lule generate any lim U(S)/(n"U+Um"')nV(S) as a r-l>irnodule, and hence generate 

◄ · · TL,Tlt 

A(m, n) as I'" - f' m-bimodule. This completes the proof of Proposition G. l. 
Corollary 6.3 . Let r be a normal finitely generated 'oc.-algebra, U integral I'-algebra. If for 
some m E D the group StM(m) is finite then for every A! E IHI(U, r, D) the space M(m) 
is .finite dimensional. Moreover, if in addition M is a group then for any n E D the space 
M(n) is finit e dimensional. 

Proof. By Lemma 6.2 it is enough to prove that if x E M(m) and S(m , n) is finite, then 
Av(m, n) · x is fin ite dimensional. But this follows in11ncdiatcly from Proposition G. l. D 
6.3. Proof of Theorem B. We will show that undn some conditions for integral Galois 
algebras there exists (up to isomorphism) finitely many simple Barish-Chandra modules 
extending a given character of r (hence we will prove Theorem B). 

Let V be an integral Galois algebra U with respect to I', m E Specm r . Assume that r is fini tely generated over k and StM(m) is finite. Then S(m, m) is finite by Lemma 6.2. 
Consider X : r --+ k such that m = Ker X· If r is not normal then I' is a finite l'-module 
and x admits finitely many extensions to r, by Corollary 2.2. Hence, it is enough to prove 
the statement in the case I' = r. But then Proposition G.l implies that r is big in m. 
By Lemma 4.2 there exists only finitely many non-isomorphic extensions of x to simple 
U-modules, which completes the proof of Theorem B. 

6.4. Harish-Chandra categories for integral Galois algebras. In this subsection we 
study in details the category of Harish-Chandra modules over integral U. We assume that. r is finitely generated normal k-algebra. 

Assume that 1h and nr are as in 5.1. 

Theorem 6.1. (1) If m, n E Specm r and S(m, n) = 0, then A(m , n) = 0. 
n 

(2) Let a E U, a = :Z::[a;m;], m; E M, a; E L' and 

X(a) = { (m; · £9 , €) if E £., i = 1, .. . , n, g E G}. 
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Then Xa C (rr x rr)(X(a)). 

(3) If m E Dr, then A(m, m) is a homomorphic imaqe of l'm• In particular, there 

exists a unique up to i.1·orrwrpll'i8rn irreducible U-module Al, extending the character 

x:I'-+I'/m. 

(4) Let m E Dr, D = D(m), Mm = Av/Avm, where m c f m is tlw completed ideal. 

Then U/Um is canonically isomorphic to IF'(Mm), 

(5) Let M be a group, m E Dr n D2 • Then for every n E D(m), 

A(n, n)::: r'n, 
and all objects of An are isomorphic. 

Proof. The statement (1) follows from Lemma 6.3 and (18). 
n 

To prove (2) note, that the I'-bimodulc rar is a factor of EB r[ami]r, so it is enough 

i=l 

to prove, that if for m, n E Specm r, r /n is a subfactor of r[am]I'/m, then (m, m) E 

(7r x rr)(X(a)). Since Ext.1-spaces between non-isomorphic simples in commutative case are 

zero, we can consider just factors instead of subfactors. 

Consider the canonical embedding of r-subbimodulcs in L * M 

i : r[am]r Y f 0r r[am]r 0r f ::: t [am]f'. 

Then, since f is a faithfully flat (i.e. f is flat and f' 0r M -/= O for any nonzero r-module 

JI.I, [Mat], Theorem 7.2) r-module, every x: r[am]I'-+ 1k lifts to 

x: f 0r r[am)r 0r f---+ lk. 

Bence, every simple factor of r[am]r as f-bimodulc factorizes through i. Consider a 

homomorphism of f-bimodulcs 

f ©k f ~ f [am) t ~ 1k. 

Then the composition is just the pair (m • £9, £),where£ E £., and g E G. It proves (2). 

'~'o prove the statement (3) we note that, by Lemma 6.3 and by (18), A(m, m) is generated 

as r m-bimodule by the central element e, which is the class of e E U. On other hand, there 

exists the canonical complete algebra homomorphism i: f' m -t A(m, m), i(l) = e, which 

is clearly surjectivc. 

Obviously, Av-modd is equivalent to the full subcategory IF'(Av-modd) C U-rnod. For 

m E Specm r consider the functor Wm : U - mod ---+ 1k - Mod, which sends M E U - mod 

to 
Wm(M) == {m E M / m · m = O}. 

This is obviously a representable functor, namely Wm::: IIomu(U/Um, - ). On the other 

hand, for an indecomposable N, which does not belong to the image of lF, holds 

l!ornu(IF'(Mm), N) = 0, 

and for N = ll<'(N') we have 
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Homu(lF(Afm),lF(N')) c::: HornA(Mm,N'):::: Wm(F(N')) = Wm(N), 

when, all isomorphisms are fuuctorial, i.e, U/Um c::: lF(,Vfm), implying, (11). 
Let us prove (5). As provc!d, A(m, m) is a homomorphic image of rm• Analogously to 

(21) consider in lF(Av(m) - modd) a U-module: 

i'vix,n = (JL * M) ®:L (L/m") :::: El) JL/n". 
nEOrn 

Any nonzero element from rm acts nontrivially on ]\((," for any n. Thus A(m, m) :::: rm by 

the Krull intersection theorem ([Mat], Theorem 8.10, (II)). d 
To prove that all objects are isomorphic, it is enough to show, that for every_ standar 

generator [a+rpJ of Uthe objects m and n = 1r(rp9 • Rm) are i8omorphic. Since M JS a group 
there exists a generator [a_ip-1] of U and we can consider the clement x [a,_;p-

1
]1a+<PJ, 

which has the coefficient a_af' by e. Then, as in Lemma 3.4, there exists a function 
J + E f:

1

such that f +(Rt)= land f+(n') = O on all other n' = -;r(rp9 • frn), 9 E G. Since a_ 

and a: arc nonzero in m and n (due to the fact, that m, m E 0 2 ) we conclu<le, that 11
; ~ 

exist g : m -t n and f : n -t m, such that f g = lm. Analogously one constrncts f, g 

such that g' J' = ln. D 

Corollary 6.4, Let M be a group, U integral f-algcbra, D = lJ(m) c Spccm r a tl(U, fl· 
equivalence class of a maximal ideal m E n,n!12 . Then the category IHI(U, r, D) is equivalent 

to the category f' rn - mod. 

Proof. Since all the objects in Ao am isomorphic by Theorem 6.1, (5) the catcgo~ics 
Ao mod and A(m, m) -- mod are equivalent. Note that the functors of rcstrictrnn 
res : H(U, r, D) ➔ A(m, m) - mod and of induction ind : A(m, m) -+ H(U, r, D) are 
quasi-inverse. D 

Remark 6.1. Recall that if m is non-singular paint of Specm r, then I'm is isomorphic to 
the algelm. off ormal power series in GK dim r variables. 

Theorem 5.2, Theorem 6.1 and Corollary 6.4 immediately imply Theorem C. 

6.5. Proof of Theorem D. Theorem D stated in Introduction is rm analogue of the 
Barish-Chandra theorem for the universal enveloping algebras ([DJ). In particular it shows 
that the subcategories in U mod, described in Corollary 6.4, contain enough modules. 

Suppose that conditions of Theorem D are satisfied. Consider the set Du constructed in 
Proposition 4.1 and set 

n~ =nun n2 n nr. 
Then for any m En~. the dement u acts nontrivially on modul<) U/Um which is simple by 
Theorem 6.1. Now Proposition 4.1 completes the proof of Theorem D. 
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G.G. Tableau modules. Consider an arbitrary generator [mrt] of L * M0 , rn E Jv[, a E £, 
and an arbitrary tableau [r] E £.,. Suppose that the ratioual function on JL, a9 , is defined 
on£ for all g E G/Hm, Then the action of [nw] is defined on [eJ by 

[ma]. [f] = I: n9(£){£9]. 
gCG/llm 

One can check that 

if both sides are defined. 
the spirit of [Ex]. 

[m'a']([ma)[e]) == ([m'a'l[ma])[€], 
Hence, we can define a partial action of L * MG on Specm lL in 

Let U C L * M be a Galois algebra. Consider a massive subset X (U) C Spccm IL 
consisting of those e E Specm JL for which aY(£) is defined for all g E G / Hm, m E M and 
[ma] EU. Then U1 #, 0 for all£ E X(U). 

Fix e E X (U) and consider the orbit ('.le = Jvf · f.. Then U acts on Oe and this action 
defines a Barish-Chandra U-module M[e] whose support is ('.le, Clearly, 1\.f[f] is a weight 
Harish-Chandra module. 

A tableau f. E X(U) will be called M- regular if 7r(f.) #, r.(fm) for all m E M. If£ is 
M-rcgular then all weight spaces of ,W[£] are I-dimensional and it has a basis consisting of 
tableaux [£'], e' E t.Je, 

We will denote by GT(U) a full subcategory in U - mod consisting of modules with a 
basis labelled by the subsets of the orbits of M-regular tableau in X(U). The category 
GT(U) will be called the Gelfand-Tsetlin category. The action of the generators of the 
Galois algebra U on basis elements of any V E GT(U) is analogous to the classical Gelfand­
Tsctlin formulas for finite-dimensional representations of gin. 

Theorem D immediately implies 

Corollary 6.5. Let M be a group, n a nonzero element of an integral Cairns f-al,qebm U 
with a noetherian normal r. If u E U acts trivially on all tableaux modules then u = 0. 
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