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ABSTRACT. Representation theory is developed for the class of Galois algebras introduced
recently by the authors. In particular, categorics of Harish-Chandra modules are stud-
ied for integral Galois algebras which include generalized Weyl algebras, the universal
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cnveloping algebra of gl,, the quantization and Yangians for gl,.
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1. INTRODUCTION

The important tools in the representation theory of algebras are the restriction of repre-
sentations onto subalgebras and the induction from subalgebras. The choice of a subalgebra
Is cssential in order to have an cffective representation theory. Commutative algebra pro-
vides the following classical example. An integral extension A C B of two cominutative
rings induces a surjective map ¢ : Spec B — Spec 4, i.c. the fiber of ¢ is non-empty for
every point of Spec A. For example, this is the case when 4 = B¢ where G is a finite
subgroup of the automorphism group of B. Moreover, if B is finite over A then all fibers
@ (1), I € Spec A are finite. In particular, ¢ induces a surjection from the maximal
spectrum of B to the maximal spectrum of A. Hence every character of A, i.c. a ho-
momorphism into a field, can be extended to a character of any integral extension of A,
and the number of different extensions is finite if B is finite over 4. The Hilbert-Noether
theorem provides an example of such situation with B being the symmetric algebra on a
finite-dimensional vector space V and 4 being the G-invariants of B, where G is a finite
subgroup of GL(V).

The primary goal of this paper is to generalize these results to the ”semi-commutative”
case I' C U where U is an associative non-commutative Galois algebra with respect to an
integral domain I'. The canonical embedding I' C U induces a multi-valued ”function”
fromn the set L Speem U of left maximal ideals of U to SpecmI'. The goal is to find natural
sufficient conditions for the fibers of this map to be non-empty and finite for any point
in Specm I'. Essential techniques in the development of such approach are based on the
theory of categories of Harish-Chandra U-modules with respect to I, developed in [DFO].

Let K its field of fractions, X C L a finite Galois extension, G = G(L/K) the corre-
sponding Galois group, M C Aut L a scparating (cf. Definition 2) submonoid. Assume
that the group G acts on M by conjugation and this action skew commutes with the action
on L. Then G acts on the skew group algebra L * M by isomorphisms. Denote by L + M®
the subalgebra of G-invariants in L M. A finitely generated I-subalgebra U C L+ M€
is called a Galots algebra with respect to I if KU = UK = L « MC [[FO]. Hence, a Galois
algebra U with respect to T is simply a I-order in L » MC. The properties and the struc-
ture theory of Galois algebras have been studied in {FO]. Well known examples of Galois
algebras include generalized Weyl algebras over integral domains with infinite order auto-
morphisms, such as n-th Weyl algebra A,, quantum plane, ¢-deformed Heisenberg algebra,
quantized Weyl algebras, Witten-Woronowicz algebra among the others (Ba], [BavO]; the
universal enveloping algebra U(gl,) with respect to the Gelfand-Tsetlin subalgebra; quan-
tized enveloping algebra U,(gl,) with respect to Gelfand-Tsetlin subalgebra [KS]; restricted
Yangians with respect to Gelfand-Tsetlin subalgebras for gl, [FMO).

Note that the algebra L+ MC has the canonical decomposition into the sum of pairwise
non-isomorphic finite dimensional left, or right K-modules (cf. (2)). For a class of Galois
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algebras the algebra U itsclf decomposes into the sum of pairwise non-isomorphic finitely
generated T-bimodules (Corollary 3.3). After the localization this decomposition coincides
with the decomposition of U[S™!] (or {S~']U). These algebras satisfy some local finiteness
condition and they are defined as follows.

Definition 1. A Galois algebra U with respect to T is called right (respectively left) integral
if for any finite dimensional right (respectively left) K-subspace W C U[S™ (respectively
W c [S7YU), WU is finitely generated right (respectively left) T-module. A Galois
algebra is integral if it is both right and left integral.

T c U c K C L and U is finitely generated over T, then U is clearly Galois algebra
with respect to T. Moreover, U is integral if and only if U is an integral extension of I.
All Galois algebras listed above are also examples of integral Galois algebras with respect
to corresponding subalgebras. If U is a Galois algebra with respect to I, which is free as
a right (left) T-module then U is right (left) integral (cf. Proposition 3.1).

The properties of integral Galois algebras arc studied in Section 3. Their representations
are discussed in Section 6.

Our first main result is the following

Theorem A. Let U be a right integral Galois algebra with respect to an integral domain
I, ¢ : ' = U a canonical embedding and ¢" : LSpeem U — Speem I the induced multi-
valued function. Then the fibers of ¢* are non-cmpty for any point of Specm I

Our second main result gives sufficicnt conditions for the the fibers of ¢* to be finite.
Consider an induced action of M on Specm T and for m € SpecmT' denote by Sta(m) the

stabilizer of m in M.

Theorem B. Let I' be an integral domain which is finitely generated as a k-algebra, U
an integral Galois algebra with respect to I'. If Stye(m) is finite then the fiber (") Hm)

is finite.

These two theorems guarantee that an integral Galois algebra with respect to I' has a
nice theory of Harish-Chandra modules with respeet to I' (cf. Section 6.4 ). Moreover,
integral Galois algebras allow to study effectively the whole category of modules. We are
going to address this question in a subsequent paper.

The following result shows that generic maximal ideals of I’ parametrize simple Harish-

Chandra modules.

Theorem C. Let M be a group, T a noetherian normal k-algebra, U an integral Galois
T-algebra. Then there exists a massive subset W c SpecmT such that for any m € W,
l(¢*)"(m)| = 1 and hence there exists a unique simple U-module Ly whose support
contains m. Moreover, the extension category generated by Ly, contains all indecomposable
modules whose support contains m and is equivalent to the category I'm — mod of modules
over the completion of I' with respect to m.

As an application of a developed theory we obtain the following generalized version of
the Harish-Chandra theorem.
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Theorem D. Let M be a group, I' a noetherian normal k-algebra, U an integral Galois
-algebra. Then for any nonzero u € U there exists a massive set of non-isomorphic simple
Harish-Chandra U-modules on which u acts nontrivially.

2. PRELIMINARIES

All fields in the paper contain the base algebraically closed field k of characteristic 0
All the algebras in the paper are k-algebras. If I is a field then K will denote the algebraic
closure of K.

2.1. Categorical setup. If A is an associative ring then by A — mod we denote the
category of finitely generated left A-modules. Let € be a category, 1, j € Ob €. Sometimes
we will write C(4, j) instead of Home(i, j).

Recall, that a category € is called the category over k, provided that all Home-sets arc
endowed with a structure of a k-vector space and all the compositions are k-bilinear.

The category of C-modules € — Mod is defined as the category of k-linear functors
M : € — k ~ Mod, where k — Mod is the category of k-vector spaces. The category of
finitely generated C-modules we denote by € — mod. If Ob € is finite, then the categorics
€ — Mod and A(€) — Mod are equivalent.

2.2. Integral extensions. Details of the facts listed in this section can be found in [Mat],
[AM].

Let 4 be an integral domain, K its field of fractions and A the integral closure of A in
K. The ring A is called normal if A = A.

Proposition 2.1. Let A be a normal noetherian ring, K C L a finite Galois extension, A
is the integral closure of A in L. Then A is a finite A-module.

Corollary 2.1. o If A is noetherian then A is finite over A. .
o If A is a finitely generated k-algebra then A is finite over A. In particular, A is
finite over A. '

Denote by Specrn A (Spec A) the space of maximal (prime) ideals in A, endowed with
Zarisky topology. Let 2 : A < B be an integral extension. Then it induces a surjective
map Specm B ~» Specm A (Spec B — Spec A). In particular, for any character x : 4 = k&
there exists a character ¥ : B — k such that Xla = x. If, in addition, B is finite over A,
Le. finitely generated as an A-module, then the number of differcnt characters of B which
correspond to the same character of 4, is finite. Hence we have in particular

Corollary 2.2. If A is a finitely generated k-algebra then for any character x : A = k
there exists finitely many characters % : A — k such that Xla=x.

2.3. Skew (semi)group rings. Let R be a ring, M a semigroup and f: M — Aut(R)
a homomorphism. Then M acts naturally on R: 19 = f(g)(r) for g € M, 7 € R.
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The skew semigroup ring, R =M, associated with the left action of M on R, is a [ree lcft
R-module, Iim, with a basis M and with the multiplication defined as follows
3
meM .
(rimy) « (ramy) = (rird)muma),  mi,me € M, r,mp € I

If the action of M is trivial on R then R + M coincides with the sernigroup ring RIM],

Ifz € R+Mand m € M then denote by Z,, the element in 1§ such that r = EmeM Dy

Assune, a finite group & acts by automorphisms on R and by conjugations on M., Then
G acts on 12+ M and R » MC will denote the invariants under this action.

Denote
suppz = {m € M|z, #£ 0}

the support of x. Henee z € R« MC if and only if 7,0 = of form € M,ge G. If
r € I+ MC then suppz is a finite G-invariant subset in M.
For o € Aut R and 0 € R set H, = {h € Gl¢" = ¢} and

(1) lap} = Z a?g? € R+ MEC,
geEG/Hy

Then

R+ MS = @ (R * M)g, where
(2) PEG\M
(R*M)J = {[ny]|a € BRI }.
Clearly,
(3) 7 lagl = [(@y)p]. [av]- v = [(ar7)¢], ¥ € B,

lg] = Y a%p'= 3 pigpTlgTiga) = Y @(a) = [pa”).

9€G/ I, gEG/H, geG/M,
For a,b € R+, ~ € RY denote

(4) lapb] = Y a’pV,

9€G/H,
Ylah] = [(va)gt] = lap(31° )], lably = ((¥7a)et] = [ap(by))-
2.4. Galois algebras. We will assume that T is an integral domain, K is the field of
fractions of I', K C L is a finite Galois extension with the Galois group G, 2: K — Lisa
natural embedding, [ is the integral closure of T in L.
Definition 2. (1} Monoid M C Aut L is called separating {with respect to K) i« for

any my, my € M from
mylk = malx

Jollows my = ma.
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(2) An automorphism ¢« L — L is called separating (with respect to K ) if the monoid
generated by {¢?]g € G} in Aut L is separating.

Note that if M is separating then M NG = {e}. The converse holds if M is a group.

Remark 2.1. The following conditions are equivalent

(1) Monoid M is separating with respect o K.
(2) For anym € M,m # e there exists v € K such that N £y,
(3) If GmiG = GmyG for some my,my € M, then there czists g € G such that
g
mp = ms;.

We will assume that M C Aut L is a separating monoid on which ¢ acts by conjugations.
Let U be a Galois algebra with respect to T
Lemma 2.1. [FO]
Let w € U be nonzero element, T = sSuppu, u = Z[amm]. Then
meT
K(Tul') = (Pul)K = KuK = P V(a,,m).
meT

In particular it shows that for every m ¢ M the algebra U contains the elements
(bim], ..., {bkm] where by, ..., b is a K-basis in I
Let e € M be the unit element, Le ¢ L + M and U.=UnN Le.

Theorem 2.1. [FO] Let U be a Galois subalgebra in L « M. Then
(1) U.C K.

(2) UNK is a mazimal commutative k-subalgebra in U.
(3) The center Z(U) of algebra U equals U N KM,

3. INTEGRAL GALOIS ALGEBRAS

3.1. Characterization of integral Galois algebras. Let M be a right I-submodule in
a Galois algebra U. Set

D, (M) = {u € U] there cxists v € I', v % 0 such that u -+ € M}

This is clearly a right I-module, which we call the module of denominators of M.
If My, M, are I'-submodules in a U, then the notation M, + M, means M; + M, and
A{l n M2 = (.

Lemma 3.1. For right I'-submodules of U holds the following.

)
) If N.C M then D,(N) C D, (M).
) UNOM =0 then D,(N + M) = D,(N) + D, (M).
) D) = UL.
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Frouf. Statements (1) and (3) are obvicus. Statements (2) and (4) follow from the fact
that [J is torsion free over I Theorem 2.1 (1) elabms tha U, ¢ X, implying (5). [

We bave the following characterization of right integral Galois algebras. The case of left
integral algebras is considered analogously.
Lemma 3.2. A Galois nigebra U with respect to o noetherian T is vight integral f and
enly of for every finitely penerated vight T-module M C U, the right U-module B, (M) s
Sinitely genernted,
Progf. Assume I is right integral. Then A X is a finite dimensional right K-vector space,
hence 12, (M) = MK MAL is finitely generated right T-module. Conversely, let W © L M@
be a finite dimensional right I{-vector space. Choose a basic wy,...,w, € W. Then for

P-module A = wiy 4 <o 4 1g79, ] holds MK = W. By conditions D (M) = MK n M
is finitely generated over I, Therefore U is right integral. 0

Corollary 3.1. If U 1s right (left) integral then T C U, is an integral extension. In
perticular U, 15 a normal ring.

Froof. Lemumua 3.1, (5) shows that U; = [ N Le C K s finitely gencrated right (left)
P-module. Moreover, it is fiuitely gencrated as left and righi I-module simultancously.
Cloarly, the statement now follows from Corollary 2.1, [mi

The notion of integrality of I has the follawing imniediate impact on the representation
theory of I,

Lemma 3.3, Let M be o P-module. Then
(1} If N C M is a right D-submodule, D{M) = M and B, (N) = N, then there exisis
a right submodule N' © M, such that M = N + N'. For such sulrnodule holds
D.(N) =N
{2) Let U be a right integral Gualois algebra with respect te T, m € Speem T, Then
Um £ U7, or cquivalently U &y I'/m & 0.

Proof. Choose a tnaximal right T-submodule N C M, such that N AN == 0. It exists by
the Zorn lemma. Then for every nonzeco m € A holds N (N4 mD) # 0, or cquivalently,
for some nonzero € U lolds my € N+ N Henee M C D (V+ N =D, (N)+ D, ({N)
D () = M. It proves (1).

n

To show {2) assume the oppesite. Then 1 € Um, el = Zu;,u;, u € Up; € m.
izl
H3

Consider thie module of dencminators M = IP,(ZuJ‘). Then u; € M foralli=1,....,n

il
and | € Mm. Note that M contains a Pesubmodule U, = Do(0). Applyiug (1), we
obtain that Af ~ U, + N for some right Tesubmodule N ¢ M. Note that T C U, is an
integral extension of finite tank, and hence (7,m # U,. In particuler 1 ¢ U,m. But then
1@ Mm = {/,m 4 Nm, which is a contradiction. O



8 VYACHESLAV FUTORNY AND SERGE OVSIENKO

3.2. Examples of integral Galois algebras.

Example 3.1. Following Section 7.1 in [FO|, commulalive Galois algebras with respect
to I' are just finitely generated over I' subrings in K. Such Galois alyebra is integral only
if the extension © C U is integral. Indeed, assume that U is integral. Let u € U be o
non-integral element. Then T[u] is not a finitely generated T-module. On the other hand,
let
agu™ + a ™ . b an =0,0a0,...,a, € D, g £ 0.

Set M = Tu"'+Tu" 2+, +T. Then D, (M) = T'[u], since ak™"*'uf € M, for allk > n.
Since M is finilely generated we obtain a contradiction with the integrality of U.

Suppose now that the extension T C U is inlegral and T is noetherian then immediately
U is integral over T, since any T-submodule in T is finitely generated.

Next we establish the following convenient sufficient condition of the integrality.

Proposition 3.1. Let U be a Galois algebra with respect to I'. If U is free as a right (left)
F-module and I" is a noetherian algebra then U is right (left) integral.

Proof. Indeed, every finitely generated right Isubmodule M C U belongs to I, where
U=FeolF', FF ac frec right modules and F is of finite rank. Then D, (M) C F.
Moreover, it is finitely generated, since I is noetherian. O

Example 3.2. Recall that U(gl,) is a Galois algebra with respect to its Gelfand-Tsctlin
subalgebra, [FO|, Corollary 7.2. Hence U(gl,) is integral duc to Proposition 3.1 and [Ov].

Example 3.3. If U = Y,(gly) is a restricted Yangian of level p for gl, ([FMO)) then U is
a Galois algebra with respect to the Gelfand-Tsetlin subalgebra T' (cf.[FO], Section 7.58.2).
Moreover, U is free over T by [FMO), Theorem 3.4. Applying Proposition 3.1 we conclude
that U is integral,

Example 3.4. IfU = D(o,a) is a generalized Weyl Algebra ([FO)), then due to Proposition
3.1 U is an integral Galois algebra.

Example 3.5. Let M be a separating subgroup in Aut L, M-T' =T, ¢1,...,¢n € M a set
of generators of M as a semigroup, a,, .. .ya, € T. If T is normal then the subalgebra U
in L+ MC generated by T and [p1], ..., [¢n] is an integral Galois algebra with respect to T
Indeed, since M-T' =T, for any u € U,

u= Z [amm]:
meM

all oy, are in T'. In particular, if u € U, then u = (ace], where a, € K NT. Since T is
normal then a, € T and U, = T'. Applying Theorem 3.2, (2) we obtain the integrality of U.

3.3. Harish-Chandra subalgebras. A I-bimodule V we call quasi-central if for any
v € V, the I-bimodule I'vI is finitely generated both as a left and as a right [-module. In
particular, commutative subalgebra I' ¢ U is called a Harish-Chandra subalgebra in U if
U is a quasi-central T'—bimodule [DFO].

We have the following characterization of Harish-Chandra subalgebras in Galois algebras.
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Proposition 3.2, Assume that T is Jinitely generated as an olgebra over k. Then T ¢
U C LxM is Harish-Chandra if and only ifm - P=T for every m € M.

Proof. Note that I' if finitely pgenerated as [-module. Suppose first'm - I = [ for svery
m € M. Note that m~" T' =T It is enough to prove that Iap]l is quasi-central for any
standard gencrator [ay] of U. Then
(5) Tlag]l = [Tapl] = [[" - ¢(Tay] = [apl - ¢~ (7]
is finitely generated over I from the left, since (I') C T, and it is finitely generated from
the right, since ~1(1") C I,
Conversely, assnme I'fap]l is finitely generated right [-module for any generator [ugp).
By (5) it means that P-~}{(I) is finite over I, i.e. 9~ }([') € T. Analogously, p(YcT. O
The following example shows that the condition M I' C T' does not imply the condition
M. Tch
Example 3.6. Let I' = k[r,3], K = k(z,y), L = k(v, /7). Then T = I'lvz, /).
Consider an element ¢ € Autl such that x = z, y — ), VT /T and 3\% = /Y. We

see that (') C ' but o= '(I') does not belong to ",

Example 3.7. Let g be a simple finite-dimensional Lie algebra, H a Cartan subalgebra of
g, U(g) and U(H) are universal enveloping alyebras of g and H respectively, Then U(H)
is a Harish-Chendra subalgebra in U(g). But U(H) is not mazimal commutative subalgebra
of Ulg). Hence U(g) is not Galois algebro with respect to U(H) by Theorem 2.1, (2).

Proposition 3.3. If U is a right (left) integral Galois algebra with respect to noctherian
I then for any m € M holds m~}(F) ¢ ' (m(T") c T').

Proof. Let U be right integral and [ag] a standard generator of U. It is enough‘ to check
that ¢™)(I') c I". Assume v € T is such that z = ¢~ ’(y) ¢ I. In particular, it implies
that the right T-submedule of U,

M = el = 3 T,
§==0 1=

is not finitely generated. On the other hand, z is an algebraic over . Lot ypz™ + 2™ +
ooy, =0, 3 € T, 1o # 0. Consider the [ollowing finitely generated right I-module

—

H n--1
N =% ~lapll'= Z[(upziI‘].
=0

i=0
Since U is right integral then D (N) = M is finitely generated, which is a contradiction.
Hence o=}(I') € I'. The case of left Galois algebras can be considered similarly. 0

. From Proposition 3.3 and Proposition 3.2 we immediately obtain

Corollary 3.2. Let I' be a noetherian k-algebra without zero divisors and U an integral
Gulois algebra with respect to T. Then T is a Harish-Chandra subalgebra in U,



10 VYACHESLAV FUTORNY AND SERGE OVSIENKOQ

Remark 3.1. Note that the converse statement in Proposition 8.3 is not true in general.
We will show it for right integral Galois algebras. Consider the case when T is inlegrally
closed in K and there is an automorphism ¢ : K — K of infinite order, such that ¢(T) s
a proper subsel in I'. In this case set V = K,. Then I, = K, M = {o"n > 0} and L+ M
is isomorphic to the skew polynomial algebra K{z; ) (IMCR]). Its subalgebro U generated
by I' and z is a Galois algebra. Let U, C U be the -subbimodule of monomials of degree
nz0and Ty, C K, m >0, the subalgebra generated by all o (T), where i = —m,...,0.
Then we have

(6) Up=Tz2"T'=T2" = z"T,, n>0.
Since ¢(T') is a proper subset in T, then for somey € T, g = w~1(v) ¢ T. Hence, for
any n >0, ', contains a non-integral over I' element a® = @™ (7). .
Consider a right T'-module xT" generated by z. Then D,(zT) contains zl'[a], which is not

finitely generated, since the extension T C T'(a] is not integral. Hence D, (2T} is not finitely
generated and thus U is not right integral. On the other hand, clearly, U is left integral.

Example 3.8. As an ezample of the situation in Remark $.1 one can consider T =
k[z1,22), K = k(z1,23), and an automorphism ¢ € AuwtK such that o(xy) = 71 and
(p(.’rz) =I1x3.

3.4. Properties of integral Galois algebras. Let U be a Galois algebra with respect
to I,

Let S € M be a finite G-invariant subset. Denote U(S) = {u € U|suppu C S}
Obviously, it is a I-subbimodule in U and D (U(S)) = Dy(U(S)) = U(S), since the
multiplication on 0 # v € T" does not change the support.

For every f € T consider ff C T @ K (respectively fs ¢ K@y I) as follows

1]
(7 f=llte1-10™) =3 e, (1,=1).
s€S i=0

(respectively f& = [[,cs(f*®1~1& f)).
The following lemma describes the properties of f£.

Lemma 3.4. [FO] Let S C M be a G-invariant subsct and m=*(T) C T for all m € M.
For any subset X C M set fx = %

(1) Letu e U. Thenu € U(S) if and only if fs-u=0 for every f €T.

(2) Letue U and T =suppu\ S. Then fr-ue U(s).

(3) Let S C T be G-invariant subsets in M, fel, frs= Zf,- ®gelrel,ael,
i=1
n
m € M. Then frs-[am] = [(Z figita)m].

=1

n n
@ Iffel, S={e} and s = Zfi ®g el kD, then frns-u= (Z figi)u.
i=1 =1
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(5) Let S be a G-orbit. The [-bimodule homomorphism PE : U(T) — U(S), u v
Frvs - u is either zero or Ker P§ = U(T'\ S) (both cases are possible, ¢f. (1)).
(6) Let S = SiU- - LS, be the decomposition of S in G-orbits and P3 : U(S) — U(S;),

i=1,...,n are defined in (5) nonzero homomorphisms. Then the homomorphism
n
(8) PS: U(S) — PUS), PF=(P§,.... PS,),
i=1

is a monomorphism.

The case of f} is treated analogously, substituting m~Y () ¢ T by m{I') ¢ T in the
conditions of lemma. In particular all statements are valid in the casc when I C U is a
Harish-Chandra subalgebra.

Corollary 3.3. Assume U is a right (respectively left) inlegral Galois algebra with respect
to T, {O;}ien is an ordering of the orbits of M with respect to the G-action. Then there
exists a right (respectively left) T-module decomposition,

[e o]
9 U=@Us
i=0

such that @ U; = U(Ll O;) for anyn = 0.

i=0 i=0
Besides

i=0 i=0

@ UK = @(L * M)g_ (respectively @ KU; = @(L * M)g‘),
=0 i=0
where p; € O, 1 =0,...,7n.

Proof. Following Lemma 3.3, (1) one can choose U; as a a right (respectively left) comple-

n—-1
ment to the submodule U(U 0;) in U(U ©;). The necessary decomposition is obtained
i=0 =0
by induction on n. The second statement follows from (2). 0
Our goal now is to prove the following

Theorem 3.1. Let U be a Galois algebra with respect to o noetherian Harish-Chandra

subalgebra T'. Then the followiny statements are equivalent.

(1) U is right (respectively left) integral. ' .
(2) U(S) is finitely generated right (respectively left) U'-module for any finite G-invariant
ScM.
(3) U(G -m) is finitely generated right (respectively left) T-module for any m € M.
Proof. Assume U is right integral. Consider a G-invariant finite subset S € M. Since the
dimension dimj, U(S)K is finite (cf. [FO)), there exist uy, ..., Wk € U(S), which form a
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basis of U(S)K as a right /{-space. Then

k
D,(Zu,-r) = (Ek:uil")l( NU =U(S)KNU =D,(U(S)) = U(S).

i=1
Therefore, U(S) = Zu "), which proves (2). Obviously, (2) implies (3).

Assume (3} holds. e w111 show that U is right integral. Let M be a finitely generated
right I'-submodnle in U. Then M C U(S) for some finite G-invariant subset $ ¢ M, and
D (M) < D(U(S)). Since D,(U(S)) = U(S), it remains to prove that U(S) is finitely
generated as a right I'-module by Lemma 3.2. Let § = S, -+ 13 S, be the decomposition
of S into G-orbits. Then following Lemma 3.4, (6), we can identify U(S) with its image
under the monomorphism P%. Since U(S;) is a finitely generated right I'-module for every
i=1,...,n, we conclude that U(S) is finitely generated right [-module, which completes
the proof. 0

Theorem 3.2. Assume that U C L x M® is a Galois algebra with respect to a noetherian
T and M is group.
(1) If U, is integral extension of T and m Y ) cT (respectively m(I") C ), then U is
right (respectively left) integral.
(2) If U, is integral extension of U and T is o Harish-Chandra subalgebra in U, then U
is tntegral.

Proof. We will prove (1). Assume that U, is an integral extension of I', m~'(F) ¢ T, but
U is not right integral. Following Theorem 3.1, (3) there exists m € M such that D.(M)
1s not finitely generated, where M = U(G - m). Consider in D, (M) a strictly ascending
chain of right T-modules

(10) [mh] C [ml) C - C D, (M),
where Ir, k > 1 are right I-submodules in L.

Since M is a group, then following Lemma 2.1, there exists [{bm=1] € U. The multipli-
cation by [bm~] is injective on [mL), since ([(bm~'][ma}). = rli%l—’ba Hence, multiplying
(10) by [bm™"] from the left we obtain the strictly ascending chain of right I-modules

(11) [bm~M[mh) C bm~Y{ml) € -+ C [bm ™D, (M) = D, ([bm~)M),

Let S = 0;-10,,. Since m™!(I') C T there exists F' = if,- ®g; € I ® ' (by Lemma
3.4, (3)), which defines a nonzero morphism P : U(S) —I;U ({e}) = U.. Applying P? to
the sequence (11), we obtain an infinite strictly ascending chain of right T-submodules in
o) byl C byl € - C U,
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"
where v = Zfig,-, which is a contradiction. Statcment (2) follows immeaditely from
i=1
Proposition 3.2. . O
Corollary 3.4. Let U C L+ M be a Galois alyebra over noetheriun . Assume that M is
a group and T is a normal k-algebra. Then the following statements are equivalent
(1) U is integral over L.
(2) T is a Harish-Chandra subalgebra and, if for u € U there exists a nonzero y € T
such that yu € T oruy €T, thenu cT.

Proof. Assume (1). Then I' is a Harish-Chandra subalgebra by Corollary 3.2. Suppose
that wy € ' for some w € U and v € I'. Then (2) follows from Corollary 3.1, since
u € D(T) = U, = T. To prove the opposite implication consider u € U,. Since U, C K
(Theorem 2.1, (1)), there exists y € I, such that yu € . Thus, v € I'. Theorem 3.2, (2)
completes the proof. g

The last corollary can be viewed as a non-commutative analogue of the following state-
ment, which is probably well known. For the convenience of the reader we include the

proof.

Proposition 3.4. Let i : A C B be an embedding of integral domains over k, such that A
is non-singular. If the induced morphism of varieties i* : Specm B — Specm A is surjective
then for any b € B such that ab € A, for some nonzero a € A, follows b € A.

Proof. We can assume that ¢ induces an cpimorphism of the Spec B onto Spec A and will
use the following property of non-singular rings: for every m € Specmn A the localization
A, is a unique factorization domain. Assume ab = a € A and fix m € Specm A. Consider
this equality in the ring By. We can assume that @ and o' are coprime in Am. If a is
invertible in A, then b € An. In the opposite case there exists P € Spec A such that
o € P and o' ¢ P, which shows that > does not lift to the point of Spec B. Since b € Am
for every m € Spec A, it implies b € A. O

In particular, Proposition 3.4 holds in the case of an integral extension A C B with

nonsingular A.
4. HAaRrisH-CHANDRA CATEGORIES

by Specm [ the set of maximal ideals of I'. A
(with respect to T'), provided that
), where m*Af(m) = 0

4.1, Harish-Chandra modules. Denote
module M € U — mod is called Harish-Chandra module
M]|r is a direct sum of a finite dimensional I'-modules @ M(m
meSpeemI”

for some k = k(m) > 0.

When for all m € SpecmI* and all z € M
module M is called weight module (with respect to r).

All Harish-Chandra modules form a full abelian subcategory WU, T) in U — mod. A
full subcategory of H(U,T') consisting of weight modules we denote by HW (U, T) . The

(m) holds mz = 0 such Harish-Chandra
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support of a Harish-Chandra module M is a set supp M C Speem I consisting of such m
that M(m) # 0. For D ¢ Specm T denote by H(U, T, D) the full subcategory in H(U,T')
formed by M such that supp M < D. For a given m € Specin " let ym : T — I'/m be a
character of I'. If there exists an irreducible Harish-Chandra module M with M{m) # 0
then we say that x,, extends to M. Since for any character x : I' — k, Kerx € Specmn T,
we will identify the set of all characters of T’ with Specm I'.

Suppose that I is a Harish-Chandra subalgebra in the algebra U. For a € U let

(12) X = {(m,n) € Speem I’ x Speem I}
[/n is asubquotient of I'al'/Tam <= (I'/n)®p el @ (T'/m) # 0}
Denote by A the minimal equivalence on Speem U containing all X,, a € U and by

A(U,T) the set of the A—equivalence classes on Speem . Then for any a € U and m €
Specm I holds

(13) aM(m) ¢ Y M(n), HUT)= & mHw.T,D).
(m,n)€X, DeAa(uT)
In particular if X is a finite-dimensional ['~module then the module U®r X is a Harish-
Chandra module.

4.2. Correspondences associated with a bimodule. The situation described above:
allows the following generalization to the case of prime ideals. Let p € SpecT, S = Sp =
C\p,p€ Autl, T =Ty, = H ©*(85).

9eG/1H,

Assume I' is noetherian. Let M be a finitely generated left (resp. right) module over I
For m € M denote Annp(mn) the idcal of v € T such that ym = 0 (resp. my = 0). By
Ass(M) (= Assp(M) C SpecT’) we denote the set of prime ideals p in I associated with z\{y
Le. there exists ;m € M, such that Annp(rn) = p. In particular any maximal annihilator is
in Speel.

Let T' be a commutative ring, V a quasi-central I'-bimodule. Denote by Xy C Specl’ x
SpecT the associated with V relation

(14) Xy ={(p,a)|p € SpecT', q € Ass(V ®r I'/p)}.
Remark 4.1. Note that Xy can be dually defined as
(15) Xy = {(p,q) {q € SpecT, p € Ass(I'/q @ V)}.

For p € Spec' denote by [ the localization of I' by the multiplicative set S, = I"\ p-
Abusing notation we will denote again by p the corresponding ideal in I',. Denote by Kq
the fraction field T, /p.

Define the category A = A(U,T) as follows

ObA = SpecT; A(p,q) = lim A m(p,q), where
(16) tLm

-/ll,m(pwq) = I.‘q/qm ®l' U ®]' Fp/pl-



GALOIS ALGEBRAS 15

Any clement x € Tq®r U ®r I can be presented in the form 2 = 7 @4 ® 1 and in the
form z = 1@ u2 ® 72, for some 71,72 € T, uy,up € U. We prove the first statement, the
second is analogous. For s;l ®u® sq there exists v’ € U, s € I', such that s,u’ = us. Then
s;lOu® st =571 ®@squ' ® sTlsil =10 ®s7 st

Lemma 4.1. Assume, that if for nonzero u € U holds (p,q) & Xv, where Sel
V=T@ru® [ ~Tul,
then A(p,q) = 0.

Proof. Consider u € U such that its class in Ay (p, ) is nonzero. There is enough to prove,
that if (p,q) ¢ Xy, then W = I'q/q™ ®r u ®r T,/p' = 0. Remark, that Iq/q™ ®x To/ph-
module W allows a filtration, induced by multiplication on the ideal m = a/q" @ Lp/pt +
Tq/a™ i p/p*
Wom-Wom?-WD>o - dW.-m™" ! DW. m™" =0

The factors of this filtration are isomorphic to the factors of the q/q™ @k [p/ph-module
Kq@rV ®r K. Hence it is enough to prove, that Kq®p V ®r K, = 0. Consider any s € q,
then there exist s;T,u; € V, such that su; = us;. Hence in Kq®r V &r K, holds % - sy,
where @ is the class of u. If s, € p, then s, acts bijectively, hence @ = 0. So s € p and

p € Ass(W/qW). O

The composition of morphisms is defined as follows. Let ¢ € A(p,q),b € A(q,r). Choose
for any I,m,n € N their representatives 1® ajm @ s;‘ € Aym(p,q) and 5'@ama®1 €
Amn(a,r). Set (ba)n = lim s @ bnnatm @ s, . We prove that the limit exists, i.e. there

m
exists M = M(a,b,p, q) such that form > M the element 8,7} ® by nG1m @ .9;1 € Aym(p,r)
does not depend on m and on the choice of @y, and bym. This follows from the fact that
there exists M, such that for every m > M holds

1@Uq"U®1lcreU+Up.

We define the functor F : U — mod — A —mod as follows:
F(M)(p) = 1}1_nI‘,,/p" ®r M, M € U —~mod, p € Specl’,
(17) for f € Homy(M, N) F(f) = lim T, ® f : F(M) — F(N).
- ‘

It is easy to check, that F" is a functor.

4.3. Case of the maximal spectrum. Let I be an integral domain and a k-algebra and
U a Galois algebra with respect to I'. We assume that I' is a Harish-Chandra subalgebra

inU.
Define a category A = Ay with objects Ob A = [ and the space of morphisms from m

to n being
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— M n f m
(18) A(m, n) ilg}nU/(n U+ Um™m).
Then we have A = EB Ap, where Ap is the restriction of A on D. Form €
DeA(UL)

Specn T denote by D(m) denote the class of A-equivalence, containing m. The category
A is endowed with the topology of the inverse limit and the category of k-vector spaces
(k - mod) with the discrete topology. Consider the category A — mod, of continuous
functors M : A—k — mod ( discrete modules in [DFO}, 1.5). For any discrete A-—module
N define a Harish-Chandra U~module F(N) = ®mespeemrN(m) and for z € N(m) and

a € U define
ar = Z anT

ncSpeem T

where a, is the image of a in A(m,n). If f : M—N is a morphism in A — mod, then
define F(f) = @mespeemr f(m). Hence we have a functor F : A — mody —s H(U,T).

Theorem 4.1. ([DFO], Theorem 17) The functor F 1s an equivalence.

We will identify a discrete A-module N with the corresponding Harish-Chandra module
F(N). Let 'y, = limI'/m™ be the completion of I' by m € SpecmI". Then the space
—m

A(m, n) has a structure of 'y, — ['p-bimodule

For m € SpeemT denote by h a completion of m. Consider a two-sided ideal I C A
generated by m for all m € Specm T and set A(W) = A/I. Then Proposition 4.1 implies
the following statement.

Corollary 4.1. The categories HW (U, T) and A(W) — mody are cquivalent.

The subalgebra I is called big in m € Specm [ if A(m,m) is finitely generated as
C—module.
The importance of the concept of a big subalgebra is described in the following statement.

Lemma 4.2. (IDFO), Corollary 19) If T is big in m € Speem T then there exists finitely
many non-isomorphic irreducible Harish-Chandra U—modules M such that M(m) # 0.
For any such module M, dim M(m) < oo.

Note that the regular A-module does not belong to the category A — mod,. This leads
to the following generalization of the category H(U,T). A U-module is called topolo-
gized Harish-Chandra module (with respect to ), if M| is a direct sum of I-modules

@ M(m), such that M(m) is a complete separated (i.e. Hausdorft) in m-adic topol-
meSpecm I
ogy. A morphism f : M — N of two such modules is a homomorphism such that
f = Omespecarfm, Where fr @ M(m) - N{m} is continuous in m-adic topology. The
category of such modules TH(U,T) contains H(U,T) as a full subcategory. When neces-
sary we will work within of the category TH(U, ).
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A functor F : A — k — Mod is called topologized if F(m) is complete and separated
in m-adic topology for any m € SpeemT. Let TA — Mod be the category of topologized
functors. Then

TH({U,T) =~ TA - Mod.

We will show next that an integral Galois algebra acts faithfully in the category of

Harish-Chandra modules. First we need the following lemma.

Lemma 4.3. Let I' be noetherian and M a finitely gencrated right I'-module. . Then the set
of m € Speem T such that Torl (M,T/m) = 0 contains an open dense subset in Speem '

Proof. Tet
(19) R ...—ﬁ—ﬁ"z——‘ﬂ—)F”‘—ﬂ%I‘”"—m...
Let (19) be a free resolution of M. It induces the resolution R* ®p I of M @r K. Dcnot_e:
r = dimg Im(d!®1x) = Ker(d°®1x). Denote by D; the matrix of d* and for m € Speem |
by D;(m) the specialization of D; in m, ¢ = 1,2. Then always

rank Dy(m) <7

and the set
V = {m € SpecmT | rank Dy(m) = r}

is open dense. Analogously,
rank Dy(m) <ny— 7

and the set
V' = {m € SpeemI'| rank Di(m) = n1 — T}

is open densc in Specm I'. Hence for any m € VN V' the first cohomology of the compleé

R* ®r I'/m equals 0.
Proposition 4.1. Let U be an integral Galois algebra with respect to a noetherian algebra

[. Then for every u € Uyu # 0 the set Q, of m € Speem T ]_‘or which Tthere exists
n € SpeemT, such that the image of u in A(m, n) is nonzero, contains a Massie subset.

Proof. We prove a stronger statement: there exists a massive Sfit X, C SpecmI guch
that for every m € X, the image @ of v in U/Um is nonzero. Fix m € Specm I' and let
N =yl ~ . Then @ = 0 if and only if

n
u:Zu,-mi, wEeEUmEmM i=1,...,m

i=1

n
Assume this the case. Let S = Usupp u; and M = U(S). Then the cxact sequence of

i1
right T-modules
(20) 00— N-—M-—M/N—0
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becoms non-exact after tensoring with I'/m, i.e. Torl (M/N,T'/m) # 0. But the set
U(u, S) of m € Speem I, such that Tor] (M/N,['/m) = 0 contains an open in SpecmT
subset (Lemma 4.3). Hence for the massive set

Xo= () Ulw,$)
seMm
the element v € U acts non-trivially on U/Um. Now the statement follows from The(‘J:-l
rem 4.1.

5. REPRESENTATIONS OF (FALOIS ALGEBRAS
Let U be a Galois algebra with respect to I' in L M.

5.1. Extension of characters. We would like to know for which m € SpeemT, the
character x = xum extends to an irreducible Harish-Chandra U-module. Denote by Uy
the left module U/(UKerx). We will call U, the universal module, generated by a X-
eigenvector. As we saw above U, € H(U,T") if T is a Harish-Chandra subalgebra. The
problem is that in general we can not guarantee this, Moreover, U, could be zero.

It is more convenient to work with the following extension of L. Denote by L the
subalgebra in L generated by all v™, where m runs M and v runs . If L C T, i.e. every
m € M is integral, then any character on T can be extended to a character on L. In this
case the extension I' € L is analogous to the extension Symizy,...,z,) C kT, .- Jn_]-
Denote by L the integral closure of L in L. Then L is a field of fractions of L. If ' C Luis
an integral extension then I' = L and any character of T' can be extended to a character
on L.

Let L = Specm L. The elements £ of £ will be called tableau. The canonical embedding
T < L induces the projection 7 : £ ~—s SpeemT. The Galois group G acts on L and
the orbits of this action are in the canonical bijection with Speem T, i.e. for m € Speem T
the group G acts transitively on #7!(m) (cf. Proposition 2.1, chapter VII, [La] ). If
m € SpecmI" and |G - m| = |G| then the tableau £ € £, such that 7(€) = m, will be called
regular; otherwise the tableau ¢ is called non-regular. If m € Specmn I then we will denote
by £ an element of L such that 7(¢m) = m. We will say that ¢, lies over m.

Since T is a subalgebra in I, we can for vy € " and £ € £ write v(¢) instead of y(m(£))-
If o € AutL and v € T, then there holds y#(¢) = et o).

We will use the following localizations of L. Let A™ be the set of all a™, where m € M
and [ay] run all standard generators of UU. Denote by A; an algebra generated over L by
AM and let A; be an algebra generated over A, by alla™!, a € AM. Denote £; = Specm A,
% =n(L;), 1 =1,2. Then we have the following standard embeddings:

LycLyckL, Q,CQ CSpeem.

By L, C L denote the set of ¢ = £, such that M acts on ¢ without stabilizer and
M-ENG-£ consists just of £. In other words, for m = 7(¢,,) € Speem T holds S(m,m) = {e}
{see 6.1) Set 2, = =(L,).

The following useful fact is obvious.
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Lemma 5.1. If ¢,,8, € L belong to different orbits of G, then there exists v € T, such
that y(£,) # (), in other words T distinguishes the orbits of G.

_ Let x be a character of IL, and hence of T', m = Ker x. It defincs a representation M, of
L«MC L+M as follows: '
(21) M, = (L M) ® (L/m) ~ @ L/n,

n€0m
where Oy, is the orbit of m in Specm L with respect to the action of M. For any Harish-
Chandra module M generated by a x-cigenvector v € 1, supp M C On. In particular,
ff Uy # 0 then U, is a Harish-Chandra module and supp Uy, C Om. In this case Uy is
isomorphic to M), as L « M-module.

Example 5.1. In the case of Generalized Weyl algebras, L =T, and the the structure of
U-module on M, can be defined for any character x of T, identifying My with the universal
module U, (c¢f. [BBF]).

Consider a skew semigroup algebra A+ M C L * M. Clearly Ay * M contains the Galois
algebra U. If ¥ : A; — k is a character then we can construct the universal Ay * M-module

M()Z) = (A] * M) ®A1 AI/K(‘,‘I'X.
Denote by M(U, %) the restriction of M (%) on U. The properties of U-module M (U, X)
are collected in the following statement. If M = @penM™ is 2 M-graded module then
its support Q = {m € M|M™ # 0} is called oricnted connected if for any ¢, € §2 there
exists u € U such that 0 # uM¥ C MY.

Theorem 5.1. Let ¥ : A; — k be a character, X = Xir-
(1) M(U,x) 1s a Harish-Chandra (with respect to ') U-module.
(2) Uy # 0 and Uy € M(U, X)-
(3) Module Uy has a unique M-graded mazimal submodule and unique graded irreductble

quotient.
(4) The module Uy is graded drreducible if and only if its support suppy Uy as a M-

graded module, is oriented connected.

Proof. The module M(U,%) is a Harish-Chandra module by construction. It has a U-
submodule isomorphic to Uy, which is obviously nonzero. Also, Uy is M-graded module
with 1-dimensional components. Note that this gradation may not coincide with the grada-
tion by M- as a Harish-Chandra module. This happens when some ¢ € M act periodically
on x. As a result the components in M. x-gradation can be more than 1-dimensional. Since
all components in M-gradation are 1-dimensional, Uy, has a nnique M-graded maximal sub-
module which docs not intersect the x-component. The basis elements of U, are labelled
by the elements of M and thus suppy Uy = M. Clearly, Uy is generated by any M-graded
component if and only if its support is oriented connected. 0

Corollary 5.1. A character x : I' = k con be extended to an irreducible Harish-Chandra
module if x = X|r for some character X : A= k.
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Recall, that a non-empty set X ¢ SpeemT is called massive, provided that X is a
complement of countable many subvarietics of X of nonzero codimension. If the field k is
uncountable then a massive sct is dense (in Zariski topology) in SpecmT. We will show
that there exists a massive subset of characters in Specin T’ which can be extended to
Harish-Chandra U/-modules. We will use the following standard fact.

Lemma 5.2. Let 7 : Specm L < Specm T be the canonical projection. If X C Speem L s
a massive subset then m(X) is massive in Specn I,

Proof. Since X is massive in Specm L then X = NiezU;, where U; is open in Specm L for
any i € Z. Moreover, m(U;) contains an open set U! C Specin I' for every 4, and hence

w(X) > Ui,

i€7

ie. m(X) is massive in Speem T u

Corollary 5.2. Suppose that M- T c T

(1) Given x : T — k there ezists finitely many (possible none) % : [[AM] — k such that
X = X|r-

(2) There exists a massive set X C Speem T such that any x € X can be extended to a
character x € Speem I'[AM] such that x = %|r.

Proof. We have that L € ' and L = I'. Hence any character of T' has finitely many
extensions to the characters of T, and for any character of I there either exists a unique
extension to a character of I'[A™] or none. This implics (1). The statement (2) follows
from the fact that L is the field of fractions of T. &

Note, that if M- T C T then any m € M defines an automorphism of L = T ;%nd,
hence induces a continuous automorphism of £. In particular, this holds when T’ is a
Harish-Chandra subalgebra.

Lemma 5.3. Suppose that the field k is uncountable. Then the sets L; C L and 2 C
Speem T, i = 1,2, are massive. Moreover, tf M-I CT then L, and ), are massive.

Proof. Note that A;, A, are countably generated over L. Due to Lemma 5.2 it is enough
to show that the corresponding subsets are massive in Speem L.

The sets L, and L, can be characterized in the following way. Let Z),..., 2y be the
canonical gencrators of U (Z; = [aipi], i = 1,...,N). Let I = (i, ..y i) € {1,..., N},
E>0w=2..2, = Z[z,’lh], z}, € L. If zf, # 0 then it defines a rational function on

R heM
Speem L. Let D(zf) be the domain of regularity of z!, and Oo(I) = NpemD(21). Set

O1(I) = {p € Op(I) |z} (p) # 0 for any h € suppwy },

where supp w; consists of those b € M for which 21 # 0. Note that both Og(I) and Oy(I)
are nonempty open sets in Specm L.
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Denote by J the space of all sequences I = (i, yig)forall k > 0. Then £, = ﬂ()o(])
and L, = ﬂ O,(I). Hence £L; C Specm 1L is massive for ¢ = 1, 2. "
For anylrerz € M,m # e, set
X ={€Ln-LEG-L}

"Then X,, is a proper closed subset in L. It is obviously closed since G is finite. If m € M

and g € G then denote by L(m, g) the set of those ¢ for which m - ¢ = g - €. lence,

X = Ugegl(m, g). Assume that L = X, for some m € M. Since the variety SpeemL is

irreducible, we conclude that L(m,g) = £ for some g € G, and hence m = g. But this is

impossible, since M is separating. Thus U X,, is the complement of Q, in £ and L,
meM,mm#te

is massive. The sets O, i = 1,2, 7, are massive by Lemma 5.2 0

We have the following stronger version of Theorem 5.1.

Theorem 5.2. Suppose that the field k is uncountable.

(1) There ezists a massive subset Xy C SpecmT, such that for every x € Xy, Uy is
nonzero Harish-Chandra module and supp Uy C Om, where X = Xm-

(2) If M is a group, then there exists @ massive set Xo C X1, such that for any x €
X, the module U, is a unique Om-graded irreducible U-module generated by a x-
eigenvector and supp Uy = Om-

(3) If M is a group and M - I c [, then there exists a massive set X, C Xy, such
that for any x € X, the module Uy is irreducible U-module with all 1-dimensional
components. In this case there is a canonical isomorphism of k-vector spaces kKM =

Uy.

Proof. Let X; = €. Then for every X € X1, Uy # 0 by Theorem 5.1. Hence Uy is
a Harish-Chandra module. Morcover, since U, is Speem L-graded, it has an irreducible
quotient with a nonzero x-eigenvector. This implies (1).

Assume now that M is a group and set Xz = §2. Let x € Xy and Z = Z[x;,h] is
heM

a generator of U. By assumption, for every n € M - m holds zp(n) # 0, hence every
component of Uy, x = Xm, generates the whole U,. Therefore, Uy is irreducible as Op-
graded U-module. Moreover, since Uy is the universal module generated by a x-eigenvector,
it is a unique such graded irreducible module, implying statement (2). Note that if M acts
on m with a nontrivial stabilizer then Uy is not irreducible.

Suppose now that M-I C I'. Then @, is massive by Lemma 5.3. Consider a subset X, =
X2NnQ,. Since I' distinguishes the componcents by Lemma 5.1, it implies the irreducibility
of Uy for any x € X,. The basis elements of Uy in this case are labelled by the clements

of kM which completes the proof of (3). O
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6. REPRESENTATIONS OF INTEGRAL (GALOIS ALGEBRAS

6.1. Extension of characters for integral algebras. We are in the position now to
prove Theorem A stated in the Introduction. '

Let U be a right integral Galois algebra with respect to I'. Consider an arbitrary char-
acter ¥ : I' = k and let m = Kery € Speem I’ Then by Lemma 3.3, (2) the module
U/Um is nonzero. Denote by v the image of 1 in U/Um. Then mw = 0 which defincs a
gradation on U/Um by SpecinI". Any non-zero graded simple quotient of U/Um satisfies
the theorem. Therefore, there exists a simple U-module M extending the character x and
proving Theorem A.

The following corollary generalizes Theorem A for SpecT.

Corollary 6.1. If U is right integral then for any p € SpecT there ezists a U-module N,
such that p € Assr(N).

Proof. If N = U@rK, # 0and 1 = 1®1 € N then I'.I >~ T'/p. Note that N =~ (U/Up){S;"].
Hence I =0 in V means that s € Up for some s € S,. Write

n
(22) § = Zuipi: u € U,pi €p.

i=]
Then there exists m € Speem I' such that p;(m) =0, =1,...,n, s(m) # 0. Consider the
character x : I' —» I'/m and a simple U-module M with a nonzero element v such that
mv = 0. Applying the equality (22) to v we obtain a contradiction. )

Of course the property of a Galois algebra to be right integral is not a necessary condition
to guarantee an extension of an arbitrary character of I' to a U-module. On the other hand
we have the following

Lemma 6.1. Let U C L+ M be a Galois algebra with respect to a noetherian T. If cvery
character x : I' — k extends to a representation of U then U, ¢ TN K. If in addition M
is a group and T is o Harish-Chandra subalgebra then U is integral.

Pmof. If x extends to a representation of U, then it extends to a representation of U, C K
in particular. It implies that U, belongs to the integral closure of I' in X. The sccond
statement follows immediately from Theorem 3.2. O

The following corollary gives a module-theoretic characterization of integral Galois al-
gebra.

Corollary 6.2. Let U be a Galois algebra with respect to a noctherian algebra T, M a
group ‘and m Y T) c T for any m € M. Then every character x : T — k lifts to a simple
left (right) U-module if and only if U is right (left) integral.

6.2. Harish-Chandra modules for integral Galois algebras. We assume that ' is

normal and that it is finitely generated as an algebra over k. In particular, T' = T = U,
and ' is finite over [’ by Corollary 2.1.
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Let £, and £, Le some maximal idcals of [, lying over m and n correspondingly. Note
that given m € Speem I’ the number of different £y is finite due to Corollary 2.2. Monoid
M acts on both Specmn I and Speem I'. Denote by S(m, n) the following G-invariant subsct
inM

(23) S(m,n) = {m e M|ty € GmG - ln} ={meM [6,0;! € GmG}.

Note that the set S{m, n) can be empty and it does not depend on the choice of £y and £,.
Really, if €, ¢ lying over m and n correspondingly, then ([Mat], Theorem 9.3, I11)) there
exist ¢, ¢”, such that £, = ¢'€m, £ = ¢"¢,. Hence ¢_(¢,)"" belongs to GmG.

Given m € Speem T denote by Stag(m) the stabilizer of m (as a set) in M.
(m,m) is finite if and only if Sta(m) ds finite.

Lemma 6.2. Let m € Specmn D', The set S
then for any n € Specm T both S{m,n)

Moreover, if M is a group and Sta{m) is finite,
and S(n,m} arc finite.
2.

Proof. Since the Galois group G is finite the proof follows immediately from Corollary 2.
B

For m € Specm I denote by [ the completion of T' by m.

Proposition 6.1. Let U be an integral Galois algebra with respect to T'. Then for any

m,n € Specin I, such that S(m, n) is finite, the I'n — [ -bimodule
(24) A(m,n) = lim U/(@"U +Um™)
«-n,m

is finitely generated.

The proof of the proposition is based on the following lemma.

Lemma 6.3. Let I* be a Harish-Chandra subalgebra in U, m,n € Speem [, § = S(m,n),

m,n > 0. Then
U =U(S)+n"U+Um™

suppu\S. If T = @ then u € U(S). Let T # 2. We

Proof. Fix u € U and denote T =
(S), such that

show by induction in &, that there exists ux € U
k

k N
(25) u € ug+ Zn"'iumi, uy € U(S) (‘hence upq1~uk € an”’um’).

i=0 i=0

Since £, and ¢, belong to different G-orbits if ¢ & 5, then by Lemma 5.1 there cxists

f €T such that f(€,) # f(£,) for every t € T. Without loss of gencrality we can assume
that fp(n,m) = H(f([") — ft“(fm)) = 1, which implies fr € 1+n@ T+ T ®m. Set
up = fr-u. Then'zl; belongs to w-+nul’+ Fum and, hence, u € u; -+ nul’ + T'um. Morcover,
by Lemma 3.4, (2) uy € U(S).
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We prove the induction step k = k + 1. Writing in (25) the expression for « in the right
hand side we ohtain

k k k k+1
uE Uy, + an“‘(uk + an Jum?)m* C uy + Zn}” fupm® + Zn ium?,
i=0 =0 i=0 i=0
that finishes the proof of the induction step, since ug + Zfzun’“‘iukmi c U(S). 0

In the assumptions of Proposition 6.1 we have
A(m,n) = lim U/(n""U + Um™) ~
(26) lim U(S)/(n"U +Um™)NU(S).

—n,m

Since U(S) is a noetherian I'-bimodule by Theorem 3.1, the generators of U(S) as a I'-
bimodule generate any lim U(S)/(n"U+Um™)NU(S) as a [-bimodule, and hence generate

A{m,n) as Iy = F-bimodule. This completes the proof of Proposition 6.1.

Corollary 6.3. Let I’ be a normal finitely generated k-algebra, U integral I'-algebra. If for
somem € D the group Stp(m) is finite then for every M € H(U,T, D) the space M(m)
is finite dimensional. Moreover, if in addition M is a group then for any n € D the space
M (n) is finite dimensional.

Proof. By Lemma 6.2 it is enough to prove that if £ € M(m) and S(m,n) is finite, then
Ap(m,n) - z is finite dimensional. But this follows immediately from Proposition 6.1. O

6.3. Proof of Theorem B. We will show that under some conditions for integral Galois
algebras there exists (up to isomorphism) finitely many simple Harish-Chandra modules
extending a given character of I (hence we will prove Theorem B).

Let U be an integral Galois algebra U with respect to I', m € SpecmI". Assume that
I' is finitely generated over k and Sty¢(m) is finite. Then S(m,m) is finite by Lemma 6.2.
Consider x : ' —» k such that m = Ker x. If I is not normal then [ is a finite [-module
and x admits finitely many extensions to T, by Corollary 2.2. Hence, it is enough to prove
the statement in the casc ' = I'. But then Proposition 6.1 implies that ' is big in m.

By Lemma 4.2 there exists only finitely many non-isomorphic extensions of x to simple
U-modules, which completes the proof of Theorem B.

6.4. Harish-Chandra categories for integral Galois algebras. In this subsection we
study in details the category of Harish-Chandra modules over integral U. We assume that
[ is finitely generated normal k-algebra.

Assume that 2, and €, are as in 5.1.

Theorem 6.1. (1) If m,n € SpecmT and S(m, n) = @, then A(m,n) = 0.
n
(2) Letae U, a= Z[ann,-], m; €M, a; € L* and

i=1

X(a) = {(m;-,0) lfeL,i:l,...,n,geG}.
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Then X, C (7 x m)}(X(a)).

(3) If m € Q,, then A(m,m) is a homomorphic image of I'm. In particular, there
erists « unique up Lo isomorphism irreducible U-module M, extending the character
x:T'—T/m.

(@) Let m € Q,, D = D(m), My = Ap/Apth, where t1 C Ty is the completed ideal.
Then U/Um is canonically isomorphic to F(Mpm).

(5) Let M be a group, m € Q, N Q. Then for everyn € D(m),

A(n,n) ~ In,
and all objects of Ap are isomorphic.

Proof. The statement (1) follows from Lemma 6.3 and (18).

n

To prove (2) note, that the I-bimodule I'al" is a factor of @F[ami]F, so it is enough

I'/m, then (m,m) €

i=1
to prove, that if for m,n € Specm[, T/n is a subfactor of T{am]
ative case are

(7 x 7)(X(a)). Since Ext'-spaces between non-isomorphic simples in commut
zero, we can consider just factors instead of subfactors.
Consider the canonical embedding of I'-subbimodules in [ ¥ M

i: Tam]l = T @ MamT @ ' = [am|I".

Then, since T is a faithfully flat (i.e. T is flat and PerM#£0for

M, [Mat], Theorem 7.2) T-module, every X : [am]l — k lifts to
5 : ' ®p Mlam]I @r I — k.

[am][" as I-bimodule factorizes through ¢. Consider a

any nonzero [-module

Hence, every simple factor of T’

homomorphism of I-bimodules
I ®x " Plam|l <= k.

,where € Land g € G. Tt proves (2).

3 and by (18), A(m, m) is generated

ass of e € U. On other hand, there

. T — A(m, m), i(1) = €, which

Then the composition is just the pair (m - £, £)

To prove the statement (3) we note that, by Lemma 6.
as [m-bimodule by the central element & which is the cl
exists the canonical complete algebra homormorphism ¢
is clearly surjective.

Obviously, Ap—mody is equivalent to the full
m € Specm I consider the functor W U—mo
to

subcategory F(Ap—mody) C U—-mod. For
d — k — Mod, which sends M € U —mod

Wn(M)={meM|m-m= 0}.
r, namely Wy, ~ Homy(U/Um, — ). On the other

This is obviously a representable functo
does not belong to the image of F, holds

hand, for an indecomposable N, which
Homy (F(Mm), N) =0,

and for N = F(N') we have
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Homy: (F(Mn), F(N')) == Homu (M, N') a2 W, (F(N)) = Wa V),

where all isomorphisms are functorial, ie, I/Um = F(Mp), implying {(4).
Let us prove (5). As proved, A(m, m) is a homamorphic image of Uy, Analogously to
{21) consider in F(Ap(m) ~ mody) a U-module:

Myn = (L M) &g (L/m") EB L/n".
n€0m

Any nonzero clement from I'y, acts nontrivially on My, for any n. Thus A{m, m) = T, by
the Krull intersection theorem ({Mat], Thearem 8.10, (1I)). ]
To prove that all objects are isomorphic, it is enough ta show, that for every standard
generator (a4} of U the abjects m and n = #(? « £,,) are isomorphic. Since M is a proup
there exists a generator {6~ of U and we can consider the element & = o™ 1{a+.l,0],
which has the coefficient a_a® ' by e. Then, as in Lemma 3.4, there exisis a fl.lllCtlim
J+ €T, such that £,(£) = 1 and f,(n') = 0 on all other n’ = 7" ln), yEG. S"‘Cf g
and &2 are nonzero in m and n {due to the fact, that m,m ¢ {3;) we conclude, that in A

Q ! ’
exist g :m —»nand f:n —s m, such that fg = 1.. Analogously one constructs f'.g
suck that ¢/ f' = 1. o

Corollary 6.4, Let M be o group, U integral U-alqebra, D = D{m) ¢ Speecm T ¢ A(U,T)-

equivalence class of @ mazimal ideal m € .10 Then the category H(U, T, D) is equivalent
to the category T — mod.

Proof. Since ali the objects in Ap are isomorphic by Theorem 6.1, (5) the C"‘t('gm,ies
Ap - mod and A{m,m) -- mod are equivalent. Note that the functors of restriction

res - HUT, D) — A{m,m) — mad and of induction ind : A{m,m) ~» H(U,T, D} are
quasi-inverse. =

Remark 6.1. Reeall that if m 45 non-singular point of SpeemT, then Uy, is isomorphic to
the algebra of formal power sertes in GKdin T varinbles.

Theorem 5.2, Theorem 6.1 and Corollary 6.4 immediately imply Theorem C.

6.5. Proof of Thearem D. Theorem D stated
Harish-Chandra theorem for Uie universal envelopi
that the subeatcpories in U/ - mod, described in

Suppose that conditions of Theorem D
Proposition 4.1 and set,

in Introduction is an analogue of the
ng algebras ({D}). In particular it shows
Corollary 6.4, contain enough modules,

are satistied. Consider the set ), constructed in

o =0N0nN0,

Then jor any m € Q] the element u acts nontrivially on module U/Um which is simple |

W
Theorem 6.1. Now Proposition 4.1 completes the proof of Theorem D,
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6.6. Tableau modules. Consider an arbitrary generator fmae} of L« MY mae M, ae £,
and an arbitrary tableau {€] € L. Suppose that the rational funclion on L, a4, is defined
on £ forall g € G/H,,. Then the action of [ma] is defined on {¢] by

[ma]- [ = ) «*(Q)¢].
§CG/Hm
One can check that
[m'a’)([mal[e]) = (fm'a|[ma))[€],
if both sides are defined. Hence, we can define a partial action of L + MY on SpeemL in
the spirit of {Ex].

Let U ¢ L %M be a Galois algebra. Consider a massive subset X'(U) C SpeemL
consisting of those £ € Speem L for which a?(¢) is defined for all g € G/H,,, m € M and
[ma] € U. Then U, # 0 for all £ € X(U).

Fix £ € X(U) and consider the orlsit Oy = M« £. Then U acts on Oy and this action
defines a Harish-Chandra U-module M{f] whose support is Oz, Clearly, M[{] is a weight
Harish-Chandra module.

A tableau ¢ € X(U) will be called M- regular if 7(€) # #{€™) for allm € M. H ¢is
M-regular then all weight spaces of M[¢] are 1-dimensional and it has a basis consisting of
tableaux [¢], ¢ € @,.

We will denote by GT(U) a full subeategory in U — mod consisting of modules with a
basis labelled by the subsets of the orbits of M-regular tableau in X (U). The category
GT(U) will be called the Gelfand- Tsetlin category. The action of the generators of the
Galois algebra U on basis elements of any ¥V € GT(U) is analogous to the classical Gelfand-
Tsetlin formulas for finite-dimensional representations of gl,.

Theorem D immediately implies

Corollary 6.5. Let M be a group, 1 a nonzero element of an integral Galots I'-algebra U
with a noetherian normal T'. Jfu € U acts trivially on all tableaur modules then v = 0.
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