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Evaluating YOLO architectures 
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Wildlife roadkill is a recurring, dangerous problem that affects both humans and animals and has 
received increasing attention from environmentalists worldwide. Addressing this problem is difficult 
due to the high investments required in road infrastructure to effectively reduce wildlife vehicle 
collisions. Despite recent applications of machine learning techniques in low-cost and economically 
viable detection systems, e.g., for alerting drivers about the presence of animals and collecting 
statistics on endangered animal species, the success and wide adoption of these systems depend 
heavily on the availability of data for system training. The lack of training data negatively impacts the 
feature extraction of machine learning models, which is crucial for successful animal detection and 
classification. In this paper, we evaluate the performance of several state-of-the-art object detection 
models on limited data for model training. The selected models are based on the YOLO architecture, 
which is well-suited for and commonly used in real-time object detection. These include the YoloV4, 
Scaled-YoloV4, YoloV5, YoloR, YoloX, and YoloV7 models. We focus on Brazilian endangered animal 
species and use the BRA-Dataset for model training. We also assess the effectiveness of data 
augmentation and transfer learning techniques in our evaluation. The models are compared using 
summary metrics such as precision, recall, mAP, and FPS and are qualitatively analyzed considering 
classic computer vision problems. The results show that the architecture with the best results against 
false negatives is Scaled-YoloV4, while the best FPS detection score is the nano version of YoloV5.

Human-wildlife conflicts have a long history, stretching from the dawn of civilization to the present day. In 
recent times, these conflicts have intensified due to a variety of reasons, including climate change, economic 
and urban development1–3. Conflicts on roads worldwide are receiving increasing attention, with numerous 
reports of roadkill incidents involving victims such as deer, foxes, rabbits, blackbirds, hedgehogs and pheasants, 
to name a few4–6. These reports are driving environmental research focused on wildlife roadkill, primarily aimed 
at identifying species on the brink of extinction, but also population trends, species distribution, behaviour and 
spread of diseases7.

In Brazil, roadkill incidents have been recorded in all regions of the country, causing deaths and increasing 
species extinction rates8. According to Centro Brasileiro de Ecologia em Estradas 9, about 475 million animals die 
on brazilian roads each year, including a wide range of species, with small-sized animals accounting for 90% of the 
victims, followed by medium-sized animals (9%) and large-sized animals (1%). In the State of São Paulo alone, 
approximately 3,000 collisions involving animals are recorded each year10. The main species at risk of extinction 
are medium and large mammals, such as the Maned Wolf species11, Giant Anteaters, Tapirs, Jaguarundis and 
Pumas12. Despite this grim scenario, few roads have been redesigned with roadkill mitigation in mind, such as 
through the construction of fauna bridges, tunnels and fences around them13. In addition, existing technological 
solutions for automatic animal detection and classification have not been successfully implemented.

Projects such as RoadLab14 demonstrate the use of citizen science in collecting data on roadkill incidents 
involving wildlife. However, computer vision systems are gaining momentum as a data collection mechanism, 
due to their image classification, feature extraction, object detection and tracking capabilities, among others 
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which involve the use of image processing combined with artificial intelligence. Examples of applications where 
computer vision technology has been heavily employed include autonomous cars15, urban traffic monitoring16, 
car parking management17, plate recognition18,fault recognition in industrial processes19, animal species 
recognition20, and other applications where image-based pattern recognition is necessary.

In particular, computer vision has played a key role in animal classification and detection tasks, aiding in the 
monitoring of endangered species and fauna identification in green spaces21. Additionally, as shown in the work 
by22–25, computer vision has been used in previous efforts to mitigate disruption of natural habitats caused by 
illegal hunting and highway roadkill, as well as animal invasion of urban areas, farms and plantations.

Computer vision systems typically use machine learning, such as extation of Convolutional Neural Networks 
(CNN)26, to perform object detection and classification. This can be done either as a single-stage process using 
single-stage detectors or as a multi-stage one using multi-stage detectors. Single-stage detectors have been shown 
to be the most suitable mechanism for real-time object detection27 due to their low inference times and frames 
per second rates in relation to accuracy28. Among existing single-stage detectors, those with a YOLO-based archi-
tecture (You Only Look Once)29 stand out in performance under benchmarks such as MS COCO (MS COCO is 
a reference database for benchmarks on object detection.). Additionally, their successful application in animal 
detection and classification has gained widespread recognition30,31, resulting in the emergence of numerous vari-
ations of these detectors over the years, making selection of a detector for specific training a complex task. This 
complexity is particularly evident in scenarios where Edge Computing devices are used in object detection and 
where considerations around limitations in processing power and other resources need to be made.

With a multitude of alternatives, successful detector selection can be achieved through performance evalua-
tion of the different architecture and model variants, using training based on target-domain datasets. However, 
availability of consolidated datasets is not guaranteed and the use of small-sized datasets is likely to result in 
unreliable models, prone to overfitting.

This work addresses the challenge of automatically detecting and classifying road-killed animals using com-
puter vision technology, while taking into account limitations in the availability of target-domain training data-
sets as well as difficulties associated with animal detection and classification. The goal is to generate statistics 
about the animal species that are most commonly killed on roads. A comprehensive performance evaluation 
of state-of-the-art YOLO-based detectors is carried out to identify the most suitable detectors for this task. The 
evaluation aims to demonstrate the effectiveness of these detectors in training high-precision and high-recall 
models using small target-domain datasets. To overcome limitations in data availability, transfer learning and 
data augmentation techniques are employed. The evaluated detectors based on YoloV architecture are described 
in the paper, include YoloV4 Darknet, Scaled-YOLOv4, YoloV5, YoloR, YoloX and YoloV7. The BRA-Dataset32, 
which contains five classes of animals commonly killed on brazilian roads, is used to validate the detection 
models. The models are compared using the metrics of mAP@50, precision and recall, as well as their average 
rate of Frames Per Second (FPS) on a set of web-available animal video recordings and a video recorded at the 
Ecological Park of São Carlos in Brazil. Incrementally, the detectors are also evaluated in performance over an 
edge computing device with limited computational resources. The main contributions are summarized as follows:

•	 A detailed account of the evolution of existing detectors considering real-world applications, including animal 
detection.

•	 A comprehensive evaluation of state-of-the-art detectors using several quantitative and qualitative metrics, 
including image quality aspects related to common challenges in animal detection on highways/roads, such 
as animals in occluded or challenging positions (e.g., small animals far away from the camera), presence of 
surrounding vegetation, and low-quality images that can hinder animal detection (e.g., shadowed and not-
fully visible animals). The metrics and qualitative aspects considered in this paper go beyond those typically 
found in other studies involving animal detection/classification.

•	 A quantitative and qualitative analysis of results, providing valuable insights.
•	 An indication of the suitability of different detection models for deployment on edge or mobile devices with 

limited resources, considering their performance properties and complexity.

This paper is organized into six sections. Section “Related works” details the main related works. Section “YOLO 
architectures” provides an overview of the selected YOLO architectures. Section “Methodology” describes the 
methodology chosen for evaluating the models. Section “Results” presents the results obtained and comparisons 
made. Finally, Section “Conclusion” discusses the results and presents conclusions.

Related works
In this section, the main works involving comparative architectures of convolutional neural networks for animal 
detection are presented. Among these, works that deal with more than one model are included. In addition, works 
that use architectures other than YOLO are also considered (Table 1), allowing for a retrospective analysis of the 
evolution of detectors in real-world applications involving human-animal conflict or animal detection challenges.

In the Brazilian Pantanal region, ecology researchers face challenges in identifying and measuring species 
density. These tasks are part of their efforts to combat the degradation of the Pantanal. However, the process they 
employ is generally slow and costly, requiring several days of movement in the forest and the use of camera traps 
to capture images of animals in a given area. In the work by de Arruda et al.26, the use of CNN was proposed to 
automatically detect and identify animal species from the Pantanal, with the segmentation of regions of inter-
est in thermal and RGB images. The CNN with VGGNet architecture and the SLIC algorithm were chosen for 
segmentation, while the classic Fast-RCNN was used for comparison. These networks were tested in a sub-set 
of ImageNet with animals from the Pantanal (Brazilian Tapir, Blue and Yellow Macaw, Puma, Caititu, Capybara 
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and True Parrot, among others). The results demonstrate that the VGGNet method with SLIC surpassed the 
accuracy of the Fast-RCNN architecture.

In the work of Schneider et al.33, deep neural networks were employed for object detection tasks, such as 
identifying, counting, and locating animals in images captured by camera traps. The great challenge is that these 
images can present several variations in the positioning of the animal of interest, such as ambient occlusions, 
irregular lighting, poses at challenging angles, and cuts of the complete location of the animal, which is challeng-
ing for computer vision algorithms. A two-stage model Faster R-CNN is compared with a single-stage model 
YoloV2. These models are compared in terms of speed for real-time detections and accuracy on two trap image 
datasets, The Reconyx Camera Trap (RTC) and Snapshot Serengeti. The results showed that the Faster R-CNN 
model showed better performance in terms of accuracy than the YoloV2 model in both datasets, concluding that 
this technique is very effective for detections in trap camera image processing.

The work of Biswas et al.34 aimed to compare the performance of CNNs in detecting bird species in the city 
of Bangladesh, India. With over 800 species present in the city, manual classification would be impractical. 
However, the application of machine learning models made this task possible. Seven species were chosen for 
training with transfer learning over 2800 images and 700 images for validation and testing on the DenseNet201, 
InceptionResNetV2, MobileNetV2, ResNet50, ResNet152V2, and Xception models. The results of accuracy, preci-
sion, recall and F1-score were evaluated. The study shows that the MobileNetV2 and Xception models obtained 
the highest values of results in all metrics. It is concluded that the MobileNetV2 model is the superior model 
compared to the others, in addition, it can also be concluded that even with a small set, the model obtained high 
results for bird recognition.

In another study, Adami et al.35 compared CNNs to develop a solution that combines edge and cloud comput-
ing with computer vision to safely deter animals such as wild boars and deer from agricultural areas on farms. The 
computer vision system interacts with the edge module through devices specialized in deep learning processing 
(Intel Movidius Neural Compute Stick (NCS) and NVIDIA Jetson Nano) coupled to a Raspberry Pi Model 3 B+. 
The real-time object detectors used are YoloV3 and YoloV3-Tiny (a lighter version of YoloV3). The recall metrics, 
Average Precision (AP), and Mean Average Precision (mAP) of both models are evaluated. The performance in 
frames per second (FPS) of the models implemented with and without special devices for neural networks at the 
edge is also evaluated. According to the experiments, YoloV3 obtained better overall performance with 82.5% 
of mAP, being superior to its the tiny version reached 62.4% mAP. However, in terms of FPS, the Tiny model 
together with the Nvidia Jetson obtained the best result, with 15 FPS achieved, in contrast, the YoloV3 model 
only obtained 4 FPS in its best result (with the Jetson Nano). It is concluded that the type of network influences 
the performance of detections in edge computing, even in soft-real-time tasks.

For the identification and detection of herds of white rhinos, giraffes, wildebeests, and zebras, the work of 
Petso et al.30 used YOLO-based detectors for detection through images captured by drones. The challenge is to 
detect animals with aerial images, as there may be animals camouflaged with the environment. In addition, the 
main objective of the implementation was to create a monitoring mechanism with computer vision to keep rhinos 
safe from the risk of hunting. For this, a dataset with aerial images with images at different altitudes is built, and 
the training, validation, and evaluation of the detection models YoloV3 and YoloV4 are carried out. It is shown 
that YoloV4 achieved 13% more performance in real-time detections. Also, in comparisons of animal detections 
for each altitude, up to 40 meters away from the animals from the ground, both detectors had accuracies greater 
than 97%, however, after 50 meters away up to 130 meters, YoloV4 was able to maintain its accuracies above 
the YoloV3 results, proving to be a more effective and efficient detector for monitoring systems of endangered 
animals in the African savannah.

In this study, we compare variations of YOLO detectors for detecting animals frequently killed on Brazilian 
highways. Models from other single-stage detector architectures are not included. Unlike related work, our goal 
is to test detection models on small datasets for supervised training. We also propose using data augmentation 
on the image set to increase the level of comparison between the models’ behavior in two training scenarios.

Table 1.   Literature comparison of detectors based on convolutional neural networks for animal detection 
tasks. Source Authors.

Work Comparative Dataset

de Arruda et al.26 VGG-Net, Fast-RCNN ImageNet

Schneider et al.33  Faster R-CNN, YoloV2
RTC, Snapshot-

Serengeti

Biswas et al.34

DenseNet201, InceptionResNetV2 Own Dataset

MobileNetV2, ResNet50

ResNet152V2, Xception

Adami et al.35  YoloV3, YoloV3-Tiny
Own Dataset,

Data augmentation

Petso et al.30 YoloV3, YoloV4 Own Dataset

This paper

YoloV4, Scaled-YoloV4 BRA-Dataset

YoloV5,YoloR Data augmentation

YoloX, YoloV7
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YOLO architectures
The YOLO architecture was created in 2015 by Redmon et al.29, to perform detections in real-time, using the input 
image only once in the neural network, overcoming the challenges of two-stage object detectors created previ-
ously. This was possible due to the division of the image into grids of small sizes, which detect possible parts of a 
single object individually and then, with the aid of the non-maximum suppression (NMS) technique, the filter, 
and adjustment of the most representative bounding box on the object of interest in the image.YOLO over time 
has had some tweaks and in the work of Redmon, and Farhadi31 YoloV2 was released with the addition of some 
features that improved the accuracy of the network, such as, for example, Batch Normalization in all convolution 
layers. In addition, the resolution of the input image in the classification and detection layers was also increased, 
alternating the resolutions of the images in different parts of the network, allowing it to support higher resolu-
tions than the images used for training. Anchors were also used in the convolution layers. The anchors provide 
pseudo-detections over a grid, having to only make comparisons at the end of the network with the anchors for 
the final regression of the object’s bounding box, reducing the computational cost of the first version.

In the third version of Yolo (YoloV3) created by Redmon and Farhadi36 some of the new features are the use 
of independent logistic classifiers for the classes using the binary cross-entropy loss as a loss function, removing 
the softmax layers used in previous versions. YoloV3 also added a new internal neural network called Dark-
net-53, with 53 convolution layers with an increased speed due to reduced floating point operations. Another 
notable feature of this version is the prediction of bounding boxes at different scales, predicting three boxes for 
any grid, thus three different outputs of the regression. In 2020, YoloV4 was released37 which has up to 12% 
more performance than YoloV3. Other information brought by the authors of this version is the presentation 
of the anatomy of object detectors in general (Fig. 1), containing three parts: BackBone (convolutional neural 
network for feature extraction), Neck (concatenation of extracted features) and Dense Prediction (Regression 
step for creating bounding boxes).

Following this structure, the fourth version of Yolo presented changes in BackBone and Dense Prediction, 
where in addition to changing to a CSPDarknet53 network, the Bag of Freebies (BoF) was implemented, applying 
data augmentation techniques (mosaic images) and techniques such as smoothing and regularization of clas-
sification outputs (DropBlock regularization and Class label smoothing). The Bag of Specials (BoS) technique 
was also implemented, with the loss function Mish activation, even more, in the Neck layer, the use of SPP-block, 
SAM-block, and PAN path-aggregation block networks for the concatenation of features.

With the coming of YoloV4, it didn’t take long for YoloV538 to be developed. However, YoloV5 does not have 
a scientific article that shows its improvement in performance compared to the previous ones. Furthermore, 
unlike YoloV4, the fifth version was created from the Pytorch framework made in Python and not in C, as in 
the Darknet framework. YoloV5 provided five types of different grid sizes (N, S, M, L, and X), for different 
processing power and accuracy demands and scenarios. Structurally, YoloV5 and YoloV4 are very similar in the 
Backbone, Neck, and Head layers. Therefore, YoloV5 became an alternative to YoloV4, but not a demonstrably 
better version in terms of accuracy.

With the use of PyTorch in YoloV5, there was an improvement in model training time, and this enabled an 
improved implementation of YoloV4, Scaled-YoloV439. One of the main reasons this version is fast is the use of 
convolutional neural networks created following the concepts of Cross-Stage Partial Networks40 as in YoloV4, 
however, the main contribution of this version is the increase in depth and number of stages in the Backbone 
layers and Neck, thus improving performance in detecting large objects in high-resolution images. Another 

Figure 1.   General architecture proposed by Bochkovskiy et al.37, focused on object detectors based on one-
stage and two-stage convolutional neural networks. (Adapted image).
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different feature of YoloV4 is that Scaled-YoloV4 uses less data augmentation on the training dataset. On the 
other hand, in the test set, Test Time Augmentations are made, which apply these data increases between pre-
diction results, thus improving performance. Overall, Scaled-YoloV4 is superior in performance over YoloV4, 
demonstrated over MS COCO.

In the same year that the Scaled-YoloV4 version was released, some new techniques on Yolo were being 
implemented, such as, for example, YoloR41, which brings a supervised approach to learning (implicit learning) 
mixed with explicit learning, which is based on the immediate input given to the network. The idea of this version 
is to allow the machine, with a single entry, to have interpretations that serve several tasks, that is, new learning 
angles and not just using what was previously learned. Fundamentally, there are three parts to the idea (Fig. 2) 
for YoloR to work. First, the process of kernel space alignment, prediction refinement and CNN creation with 
multi-task learning is done. This CNN not only learns how to get the correct output but also returns the other 
possible coherent outputs, which represent the various interpretations of the image.

Another variant is YoloX42 that based on YoloV3, but with some improvements, mainly for training. YoloX 
applies data augmentation techniques such as RandomHorizontalFlip, ColorJitter, Multi-scale, Mosaic, and 
MixUp on the training dataset. Another important and innovative point of this version is the non-use of anchors, 
which despite having been widely used by previous versions for the detection of more objects in the same grid, 
there are some disadvantages, such as, for example, stipulating ideal anchors before training is time-consuming 
with the cluster analysis method. Furthermore, the fact that detecting multiple objects on a grid can directly 
impact performance on certain systems. This change is illustrated in Fig. 3. Among other innovations is the 

Figure 2.   A supervised approach proposed by Wang et al.41 to learning (implicit learning) mixed with explicit 
learning, which is based on the immediate input given to the network. (Adapted image).

Figure 3.   YoloX architecture proposed by Ge et al.42 for decoupling the classification and regression layers in 
the Head layer of the neural network.
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implementation of SimOTA, an optimized version of the OTA (Advanced method for assigning candidate labels 
to objects. For more information, consult the work of Ge et al.43.) using the Sinkhorn-Knopp algorithm.

Finally, the state-of-the-art object detection version was released in the work of Wang et al.44, called YoloV7, 
which sought to further increase the accuracy in predicting bounding boxes. In short, the main contribution of 
this version is the reduction of gradient propagation in the back-propagation, which correlates with the amount 
of memory used to store the network layers. This contribution helps speed up the learning of the network. For 
this, the use of an Extended Efficient Layer Aggregation Network (E-ELAN) was proposed in its architecture. 
Another contribution is that YoloV7 scales its models in depth, width, and resolution while concatenating the 
layer outputs. Re-parameterization is also used in YoloV7, it allows weights to become more robust in identify-
ing the general characteristics of the model to be created. Furthermore, YoloV7 implements Auxiliary Head 
Coarse-to-Fine in the middle band of the network. They are auxiliary Head layers to supervise the course of 
future detections that will be performed in the final layers. They are not as accurate as future object predictions, 
but they do indicate how the model might be behaving during training. This strategy can be seen in Fig. 4.

Overall, YoloV7 has proven its speed and accuracy among all known real-time detectors that perform within 
5 FPS to 160 FPS. In addition to the contributions highlighted above, its accuracy reached a result of 56.8% AP 
on the MS COCO Dataset validation set, becoming a YOLO strategy benchmark, having superior results when 
compared to architectures such as YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, Deformable DETR, 
DINO-5scale-R50 and others in detection speed tests on videos with different scales and resolutions.

Methodology
The methodology used in this work follows 3 fundamental steps for the comparison of detection technologies 
based on YOLO.

Figure 5 presents the steps for carrying out comparisons between the different YOLO models. In Step 1, two 
types of training are configured and carried out. Each model was first trained on 80% of the BRA-Dataset (a 
total of 1458 images without data augmentation) and then trained again on the same set with data augmenta-
tion, resulting in 8407 images after augmentation (Step 1). The augmentation techniques applied to the train-
ing set were: Horizontal Shift, Vertical Shift, Horizontal Flip, Vertical Flip, and Rotation. Table 2 presents the 
application configuration of each technique and its hyperparameters. The choice of parameters was arbitrary 
and experimental.

The chosen data augmentation acts as a form of regularization (a technique to avoid overfitting). With data 
augmentation, the model has access to a greater amount of varied information, which can prevent it from focus-
ing too much on specific features present in a limited set of training images. Furthermore, the application of 
data augmentation aims to mitigate the problem of initial overfitting (Early overfitting is a phenomenon where 
a machine learning model overfits training data early in the training process, before converging on a general, 
valid representation of the problem. This can happen for a number of reasons and can be especially problematic 
in scenarios where the training set size is small or the data characteristics are complex.), which is directly related 
to excessive variance. In which a model is able to quickly and overfit the training data, including the noise in the 

Figure 4.   Auxiliary Head Coarse-to-Fine of architecture in YoloV7 created by Wang et al.44 (Adapted image).

Table 2.   Setup of hyperparameters for each data augmentation applied in the BRA-Dataset. The choice of 
parameters was arbitrary and experimental. In the hyperparameters column, it is shown which transformation 
is performed on the image, according to the arbitrary variables together with the image properties (dimensions 
and pixel scanning axes).

Augmentation technique Hyperparameters

Horizontal shift Shift = 0.7 (ratio multiplier) * width (in pixels)

Vertical shift Shift = 0.6 (ratio multiplier) * height (in pixels)

Horizontal flip Flips all rows and columns horizontally along the y-axis

Vertical flip Flips all rows and columns vertically along the x-axis

Rotation 45° rotation angle
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data. This means that at the beginning of training, the model may perform excellently on the training data, but 
perform poorly on new data (test or validation set), indicating a lack of generalization.

Both pieces of training have as input images 416x416 dimensions and 100 epochs per model. The training 
was based on the use of transfer learning, with pre-trained models provided by the authors of each architecture, 
which vary between pre-trained models in the MS COCO dataset. Moreover, for all models, except for the YoloV4 
and YoloR model, in addition to the conventional version of the architecture, its versions with smaller networks 
and versions with large and complex networks are trained (e.g, YoloV5-N, YoloV5-S, YoloV5-M, YoloX-M, 
YoloV5-L, YoloX-L, Scaled-YoloV4-P5, YoloV5-X, YoloX-X, Scaled-YoloV4-P6 and YoloV7-X). The models 
with nomenclature containing “N”, “S”, “M”, “L” and “X”, refer to the depth and complexity of the network, such 
as “Nano”, “Small”, “Medium”, “Large” and “eXtreme”, respectively. For Scaled-YoloV4, the “p5, p6” at the end 
of the model name, indicates the number of image scaling layers. But, for YoloR, the default version contains 
“‘p6” in the nomenclature, but does not refer to the depth. All training was performed using dedicated Nvidia 
RTX 3060 GPU, with 12GB of exclusive memory and assistance from the CUDA module. For the light versions 
used, the training time was 2 h with the database without augmentation, for the database with augmentation, 
the training time was 4 h.

Step 2 consists of carrying out the tests with the trained models. First, tests are performed on the BRA-Dataset 
validation set, which contains 363 images, with 403 labels. It is proposed to test the inference speed of the models 
using GPU and edge device on videos of animals (To access the videos, contact the authors.), recorded in the 
ecological park of São Carlos, Brazil and free videos on the internet (for classes that were not included in the 
ecological park). The BRA-Dataset and videos were chosen as the validation set because they contain instances 
of animals in occluded environments, such as vegetation and cages, and in poses that do not favor detection. 
Additionally, some animals are not fully visible in the images.

In Step 3, the results of the proposed tests are compared by summarizing the precision, recall, and mAP 
metrics in BRA-Dataset achieved by the models. Additionally, a qualitative analysis is conducted on the mod-
els’ performance on selected videos in terms of detecting animals in situations of occlusion, small and distant 
objects, and in videos with poor image quality. This allows for insights beyond the quantitative metrics typically 
analyzed in the literature.

BRA‑dataset
The Brazilian Road’s Animals Dataset (BRA-Dataset)32) is an open and free dataset exclusively featuring animal 
species from the Brazilian fauna that are commonly hit on highways. The dataset contains 1823 images in all and 
about five classes of medium/large animals. The tapir, the Jaguarundi, the Maned Wolf, the Puma and the Giant 
Anteater, the species can be seen in Fig. 6.

Figure 5.   Proposed method for evaluating target object detector architectures. The method consists of carrying 
out training, testing, and comparison using performance metrics.

Figure 6.   All classes BRA-Dataset32 supports. The classes are medium and large animals with a high risk of 
extinction in the Brazilian fauna.
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The species in the BRA-Dataset are found in biomes such as the Brazilian Cerrado, the Pantanal, and the 
Atlantic Forest. In short, these animals often appear on the sides of roads to cross and are run over due to several 
factors. One of the crucial factors for accidents with animals to occur is that vehicles have headlights that can 
distort the animal’s vision and reflection, another factor is the sound noise generated by different vehicles in two 
directions, which confuses the animal during the crossing. The BRA-Dataset has images in JPG formats and is 
labeled in YOLO Darknet and Pascal VOC formats, widely used in labeling computer vision datasets.

The BRA-Dataset was built by applying a methodology that allows the construction of datasets quickly and 
cheaply since it uses the Google Images search engine to filter images from free internet sources for its design. 
Although the method of its construction proposed a data cleaning step, there was no removal of images of real 
animals that could possibly negatively affect the training of detection models, such as animals in unfavorable 
poses (animals in back view, top view, or zoomed) and images with low quality, because the BRA-Dataset cleaning 
criterion consisted of removing images of non-real animals and images with noise. In addition, the dataset does 
not have images of animals in scenarios of complete or partial occlusion, nor in unfavorable weather conditions, 
due to BRA-Dataset using images that must contain the animal clearly. Therefore, due to the methodology pro-
posed for its construction, the variety of quality, dimension of the images and poses, and zoom of the animals 
are high, but in general, for most images of all classes, the animals are presented in the side view, and the other 
images, have zoom applied to the face and trunk.

Results
This section presents the results of the animal detector tests in the proposed scenarios, i.e., evaluation on the 
validation dataset and on video recordings. First, we present the results of the models using the same test metrics 
for their respective training. The results for the BRA-Dataset validation set are then presented. In all the result 
tables, some entries are marked with an asterisk (*), indicating a potential overfitting. This risk can occur when 
training supervised models with limited data due to a lack of variation in characteristics. This issue was identified 
by observing exceptional and unexpected results, such as metrics reaching values close to 100% or precision and 
recall values that are vastly different (this can be better observed in the class results table, Table 4).

Evaluation on the validation dataset
For the evaluation, models are run with a confidence threshold and an IoU threshold of 50%. Table 3 presents the 
results of the models without and with data augmentation on the validation set. When considering the models 
without data augmentation, in the vast majority, the models were negatively affected by the little data provided 
for training. For overfitting validation, the criterion used to determine whether models without data augmenta-
tion were potential models with overfitting refers to the comparison of their results with the results achieved 
after data augmentation in the BRA-Dataset. It was used as a criterion if the models presented all three observed 
metrics with values above the baseline achieved after data augmentation in the same model, defining that there 
was overfitting. If at least one of the metrics has a result equal to or less than that achieved after data augmenta-
tion is applied, the model in question would not be categorized as potentially overfitting. It was expected that 
the application of data augmentation would not allow a reduction in performance in the metrics, if this occurs, it 
would be in scenarios in which the model trained without augmentation was experiencing early overfitting. As an 
exception, the tested weights of the YoloV7 architecture did not follow this rule, due to its sensitive characteristic 
to the increase of simple data, which is not similar to other architectures. Therefore, the conventional YoloV7 

Table 3.   Overall Precision, Recall, and mAP@50 results for the detection models trained without and with 
data augmentation. Models with an asterisk mark (*) indicate a potential overfitting. The highest values 
without data augmentation are not highlighted in bold, as they could mistakenly lead the reader to believe 
these results are positive or desirable. Therefore, not highlighting them can help avoid this problem. The result 
of models with data augmentation, in bold, the best results for each metric observed.

Model

Without data augmentation With data augmentation

Precision Recall mAP@50 Precision Recall mAP@50

YoloV4* 0.96 0.96 97.4 0.89 0.75 89.4

Scaled-YoloV4-p5* 0.98 0.96 95.9  0.94 0.83 81.4

Scaled-YoloV4-p6* 0.97 0.96 96.2 0.91 0.84 82.5

YoloV5-N* 0.97 0.93 96.9 0.88 0.71 80.9

YoloV5-S* 0.98 0.93 96.9 0.89 0.72 82.4

YoloV5-M* 0.97 0.93 96.7 0.88 0.74 83.4

YoloV5-L 0.94 0.91 83.5 0.91 0.75 84.8

YoloV5-X 0.95 0.90 84.3 0.91 0.80 87.0

YoloR-p6* 0.93 0.96 98 0.90 0.83 88.8

YoloX-M 0.65 0.72 65.8 0.65 0.71 65.3

YoloX-L 0.66 0.73 66.8 0.66 0.73 66.5

YoloX-X 0.67 0.72 67.0 0.67 0.72 67.7

YoloV7* 0.72 0.58 65.8 0.83 0.60 56.7

YoloV7-X 0.79 0.70 77.4 0.80 0.65 61.8
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model was categorized as potentially overfitting, given its low generalization to videos without any challenge 
(explained in more detail in the Evaluation on videos subsession).

Theremore, the Table 4 shows the specific results for the five classes of the BRA-Dataset in the trained models 
without data augmentation. The results support the categorization of overfitting in the models (this condition 
was also confirmed by analyzing the models’ loss curves). Some models achieved 100% precision or recall, 
confirming our expectations.

Table 5 shows the class-specific results obtained from the detection models trained with augmented data on 
the validation set. The results are more consistent with the reality of machine learning models and do not reach 
exorbitant values. For the Tapir class, some models achieved 100% precision. To verify that there was no overfit-
ting during training, the loss curves of the YoloV4-Scaled-p5, YoloV5-L and YoloR-p6 models were analyzed 
and no overfitting was observed. When the BRA-Dataset validation is observed in more detail, it is possible to 
observe that for the Tapir class, there are approximately ±40% of the images with the animal on its side, which 
resemble the training images, causing high precision. On the other hand, the Puma class generally had the low-
est results in both tests with the validation set. Upon closer examination of the Puma class training set, it was 
observed that there is an abundance of images with sitting or lying animals or images showing only the animal’s 
face. This directly impacts the collection of class characteristics and impairs classification.

Table 4.   Class-specific results of Precision, Recall and mAP@50 respectively for detection models trained 
without data augmentation. Models with an asterisk mark (*) indicate a potential overfitting. High values were 
not highlighted in bold, as they could lead the reader to mistakenly believe that these results are positive or 
desirable, therefore, we believe that not highlighting them can help avoid this problem.

Model Giant-anteater Jagua rundi Maned-wolf Puma Tapir

YoloV4* 0.97 | 0.94 | 96.8 0.93 | 0.97 | 96.8 0.96 | 0.91 | 95.8 0.98 | 0.96 | 98.8 0.97 | 0.99 | 98.8

Scaled-YoloV4-p5* 1.00 | 0.92 | 92.2 0.97 | 0.98 | 98.4 0.97 | 0.93 | 93.4 1.00 | 0.95 | 95.5 0.98 | 1.00 | 99.5

Scaled-YoloV4-p6* 1.00 | 0.94 | 94.5 0.97 | 0.97 | 97.5 0.96 | 0.96 | 96.2 0.97 | 0.94 | 94.5 0.97 | 0.98 | 98.5

YoloV5-N* 0.99 | 0.91 | 95.6 0.95 | 0.94 | 96.2 0.97 | 0.93 | 96.1 0.97 | 0.90 | 97.1 0.96 | 0.98 | 99.4

YoloV5-S* 0.98 | 0.91 | 94.7 0.97 | 0.94 | 97.4 0.97 | 0.93 | 96.0 0.98 | 0.91 | 96.8 0.98 | 0.97 | 99.4

YoloV5-M* 0.99 | 0.92 | 95.9 0.97 | 0.92 | 97.0 0.97 | 0.92 | 95.7 0.95 | 0.92 | 95.7 0.98 | 0.97 | 99.4

YoloV5-L 0.90 | 0.82 | 85.8 0.87 | 0.82 | 88.5 0.81 | 0.78 | 82.0 0.72 | 0.73 | 78.7 0.86 | 0.70 | 82.6

YoloV5-X 0.94 | 0.79 | 89.2 0.87 | 0.86 | 91.0 0.88 | 0.75 | 83.3 0.76 | 0.74 | 77.2 0.86 | 0.76 | 80.9

YoloR-p6* 0.95 | 0.94 | 97.4 0.93 | 0.97 | 98.4 0.94 | 0.95 | 96.3 0.89 | 0.96 | 98.3 0.96 | 1.00 | 99.5

YoloX-M 0.69 | 0.74 | 69.6 0.69 | 0.76 | 69.7 0.64 | 0.70 | 64.0 0.61 | 0.71 | 61.6 0.64 | 0.70 | 64.0

YoloX-L 0.72 | 0.77 | 72.4 0.69 | 0.77 | 69.9 0.66 | 0.72 | 66.4 0.59 | 0.69 | 59.7 0.65 | 0.69 | 65.2

YoloX-X 0.71 | 0.76 | 71.5 0.69 | 0.73 | 69.8 0.66 | 0.71 | 66.2 0.64 | 0.71 | 64.1 0.66 | 0.70 | 66.7

YoloV7* 0.75 | 0.58 | 68.7 0.78 | 0.72 | 78.0 0.79 | 0.65 | 70.1 0.59 | 0.47 | 51.3 0.70 | 0.50 | 60.9

YoloV7-X 0.81 | 0.70 | 80.9 0.85 | 0.77 | 82.7 0.79 | 0.76 | 78.7 0.59 | 0.66 | 66.5 0.93 | 0.59 | 78.1

Table 5.   Specific results by class of Precision, Recall and mAP@50 respectively for detection models trained 
with data augmentation. The results of highest recall per class evaluated are highlighted in bold, indicating 
which model performed best in reducing false negatives per class.

Model Giant-anteater Jagua rundi Maned-wolf Puma Tapir

YoloV4 0.93 | 0.76 | 90.8 0.93 | 0.76 | 92.7 0.94 | 0.77 | 88.6 0.82 | 0.70 | 84.5 0.88 | 0.77 | 90.6

Scaled-YoloV4-p5 0.92 | 0.85 | 81.9 0.92 | 0.89 | 88.9 0.97 | 0.81 | 80.5 0.89 | 0.79 | 76.3 1.00 | 0.79 | 79.5

Scaled-YoloV4-p6 0.91 | 0.83 | 80.0 0.96 | 0.88 | 87.6 0.87 | 0.81 | 79.4 0.84 | 0.84 | 82.2 0.97 | 0.83 | 83.4

YoloV5-N 0.87 | 0.70 | 80.0 0.88 | 0.80 | 86.5 0.93 | 0.68 | 81.4 0.77 | 0.62 | 71.3 0.87 | 0.70 | 80.0

YoloV5-S 0.92 | 0.69 | 80.3 0.87 | 0.83 | 87.6 0.85 | 0.72 | 82.3 0.84 | 0.70 | 78.1 0.95 | 0.69 | 83.4

YoloV5-M 0.91 | 0.76 | 84.6 0.86 | 0.77 | 85.5 0.90 | 0.76 | 85.5 0.77 | 0.71 | 76.7 0.95 | 0.71 | 84.7

YoloV5-L 0.93 | 0.77 | 85.5 0.92 | 0.89 | 93.4 0.85 | 0.72 | 82.2 0.87 | 0.69 | 79.5 1.00 | 0.66 | 83.3

YoloV5-X 0.86 | 0.77 | 83.7 0.95 | 0.92 | 95.3 0.91 | 0.79 | 86.4 0.89 | 0.83 | 86.0 0.95 | 0.69 | 83.5

YoloR-p6 0.88 | 0.86 | 89.2 0.89 | 0.88 | 92.4 0.92 | 0.78 | 87.4 0.84 | 0.80 | 83.8 1.00 | 0.82 | 91.1

YoloX-M 0.66 | 0.73 | 66.7 0.67 | 0.72 | 67.0 0.64 | 0.69 | 64.5 0.60 | 0.68 | 60.2 0.67 | 0.72 | 67.8

YoloX-L 0.69 | 0.78 | 69.8 0.67 | 0.73 | 67.6 0.66 | 0.72 | 66.6 0.63 | 0.71 | 63.4 0.64 | 0.70 | 64.7

YoloX-X 0.70 | 0.76 | 70.5 0.70 | 0.74 | 70.8 0.68 | 0.73 | 68.6 0.63 | 0.71 | 63.3 0.65 | 0.68 | 65.0

YoloV7 0.95 | 0.63 | 61.9 0.88 | 0.70 | 67.5 0.82 | 0.57 | 56.1 0.78 | 0.56 | 47.7 0.72 | 0.56 | 50.1

YoloV7-X 0.78 | 0.66 | 62.8 0.85 | 0.77 | 74.8 0.89 | 0.62 | 61.4 0.74 | 0.59 | 54.0 0.76 | 0.60 | 55.8
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In general, in animal detection systems on highways, it is important to know the recall level of the models. 
This metric emphasizes the problem of having many false negatives, meaning animals that are present on the 
highway but not detected or classified by the model. Low recall may result from few detections in positive situ-
ations and can directly impact, for example, animal counting and population estimation for a specific road or 
region. It can also result in a lack of alertness for an animal on a certain stretch of road, leading to a failure to 
register the presence of the animal and potentially hindering rescue efforts.

Considering only the results after applying data augmentation, and exclusively observing the recall metric, 
the model that obtained the best overall performance against false negatives is Scaled-YoloV4-p5 and Scaled-
YoloV4-p6 and the worst is the recent YoloV7. The fact that Scaled-YoloV4 obtained the best results in general 
can be attributed to the ability to manipulate different scales of the same image, allowing to obtain better charac-
teristics, however, this ability reflects the low execution speed compared to the other versions. As for YoloV7, it is 
observed that due to its ability to apply native data augmentation using combination and aggregation techniques, 
it provides, in scenarios with other more basic techniques, a representation of characteristics of superimposed 
objects, that is, the architecture is sensitive to the use of data augmentations that are not part of the BoF.

For the Giant-Anteater class, the highest recall was achieved by the YoloR architecture. The fact that YoloR 
obtained better performance for the Giant Anteater class reflects the use of knowledge unification layers, where 
there may be animals of the same class with different characteristics (black and brown Giant Anteater, young 
and adult Maned-Wolf, Jaguarundi with three color variations). The single representation strategy is a good 
alternative in these cases. For the Jaguarundi class, the holder of the highest recall was obtained at YoloV5-X 
weight. In the case of the Jaguarundi class, the heaviest version of YoloV5 (“x”) provided a result slightly above 
the Scaled-YoloV4 and YoloR architectures, which had already presented good median results for other classes. 
This is due to the characteristic of YoloV5 dealing well with large objects, since looking at the BRA-Dataset as 
a whole, many images of this class present the animal in most of the image. In the Maned-Wolf, Puma, and 
Tapir classes, the YoloV4-Scaled versions achieved the highest recall performances. In terms of accuracy, the 
best overall performance was obtained by the YoloV4-Scaled-p5 model. For the mAP metric, the classic YoloV4 
model took first place, followed by the YoloR model. Below in Figs. 7, 8, 9, 10 and 11 show the performance bar 
graphs of each architecture for each class.

Analyzing the classes, the architecture with the lowest performance was YoloV7, reaching a value of 0.56 
for recall in the Puma class. Otherwise, the best recall was obtained for the Jaguarundi class with the YoloV5-X 
model. In all classes, the lowest precisions were obtained by the YoloX architecture, unlike the scaled architectures 
of YoloV4 and YoloR, which obtained high values.

Evaluation on videos
Tests with videos on the 12GB Nvidia RTX 3060 GPU were evaluated on the average FPS for each of the models. 
In addition, models on the Rasberry Pi 4 edge computing device with 1GB of RAM are also tested. Figures 12 
and 13 shows the performance of the models on inference tests. In general, models with simpler and shallower 
networks are faster than those with more complex and deeper networks.

In contrast, accuracy is higher in complex models. For Raspberry, the models without results demonstrate 
that it was not possible to load the respective weights, where it can be seen that the models that exceeded 700mb 
of consumption (red bars) did not allow to be executed, Figure 14 displays the memory consumption for each 
model. This problem occurred due to processes related to the operating system and internal processes of the 

Figure 7.   Precision, Recall and mAP@50 for the Giant Anteater class from tests with models trained with data 
augmentation.
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mini-computer, which consumed approximately 30% of memory space. The input videos were resized from full 
hd to dimensions of 360 × 680 so that there was less memory usage, however most models were not loaded, 
requiring memorys with more space. The models that allowed the execution (YoloV4, YoloV5-n, YoloV5-s, 
YoloV5-m and YoloX-m) were not achieved satisfactory results, where the best FPS result was for YoloV5-n, with 
2.5 FPS, with little fluidity. The CPU consumption of the models can be seen in Fig. 15. Despite the Raspberry’s 
high CPU usage during execution, it was not enough to read frames quickly, due to the low clock rate and few 
cores in its hardware composition.

For the results on GPU, the fastest model is the nano version of YoloV5, this version is the lightest and is a 
great alternative for mobile devices and limited edge computing. The YoloV5-N and YoloV5-S models were the 
only smaller models trained in order to present the difference between medium and wide models, being used as 
a performance ceiling. Heavier models, on the other hand, required more processing and did not achieve great 
performances, but they are possible to be used, the YoloV7 and YoloV7X models stand out, which, despite being 
complex, reached higher FPS than the other medium and wide networks. The YoloV4 architecture achieved 

Figure 8.   Precision, Recall, and mAP@50 for Jaguarundi class from tests with models trained with data 
augmentation.

Figure 9.   Precision, Recall, and mAP@50 for Maned-Wolf class from tests with models trained with data 
augmentation.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1353  | https://doi.org/10.1038/s41598-024-52054-y

www.nature.com/scientificreports/

reasonable performance even compared to later released architectures. In general, even with the lowest perform-
ing YOLO (YoloX-X), it was still possible to obtain an acceptable execution speed for inference.

For general qualitative analysis, the videos present classic computer vision challenges, such as animal occlu-
sion (as seen in a video with the Tapir class, Fig. 17), animals far from the capture camera, and animals that 
camouflage themselves in their environment during video recording (as seen in a video with the Giant Anteater 
class, Fig. 18). None of the models trained in this study performed well on these challenges. Additionally, it was 
also observed that the animal’s pose also influenced detection during occlusion. The models performed well 
when the animal was on its side during occlusion, but struggled when the animal was on its back and occluded, 
resulting in increased classification errors for the class. An important observation is that in videos with animals 
without any obvious challenge, the detectors were able to detect and classify each class. However, the conven-
tional YoloV7 weight (trained without data augmentation) was not successful even on these clean videos, so it 
was categorized as overfitting problem (Table 3).

In this work two different types of videos were used, the first set of videos consists of videos related to the 
computer vision challenges described, each video lasts from 30 to 45 s and there was only the possibility of obtain-
ing the challenges with two classes (Fig. 17 Tapir class and Fig. 18 Giant Anteater class), due to the complexity 

Figure 10.   Precision, Recall, and mAP@50 for Puma class from tests with models trained with data 
augmentation.

Figure 11.   Precision, Recall, and mAP@50 for Tapir class from tests with models trained with data 
augmentation.
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of its enclosures being open and enabling the creation of situations of occlusion, small objects, and camouflage. 
The second set of videos was played for each class, which does not have the challenges, in which each video is 
20–30 s and contained a single animal, in addition, the recording camera angle was 45°, an example of a clean 
video can be seen in Fig. 16.

Among the models, the more complex ones were almost able to handle the problem of occlusion. However, 
none of the models were able to detect small animals, likely due to a lack of examples in the dataset. In terms of 
camouflage, none of the models were successful. The ability of an animal to camouflage itself or its involuntary 
camouflage due to a similar coloration to its surroundings can result in many false positives, detecting animals 
that are not present.

Figure 12.   Average FPS of models trained with data augmentation run via dedicated GPU.

Figure 13.   Average FPS of data augmentation-trained models run via Raspberry Pi 4 edge computing device 
with 1GB of RAM.
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Conclusion
This article aimed to compare various YOLO architectures to identify those that can be used to build animal 
detection systems on highways. Models were trained with and without data augmentation to determine which 
models struggled with the small domain dataset even after augmentation.

In tests on the validation set, the Scaled-YoloV4 model achieved the best results in mitigating false negatives 
(better recall), showing greater efficiency for detecting endangered Brazilian animals with the lowest percent-
age of false negatives. The Scaled-YoloV4 model also had the highest accuracy, while the YoloV4 model had the 

Figure 14.   RAM usage of models on Raspberry Pi 4. Values in color red mean that the model exceeded 700Mb 
of RAM consumption and consequently it was not possible to execute on the device.

Figure 15.   CPU usage while running the models.
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highest mAP@50. In terms of average FPS on video inference, the YoloV5-N model was the most performant. 
It can be concluded that the YoloV4, Scaled-YoloV4, YoloV5, and YoloR architectures provide relevant perfor-
mances for creating real-time animal detection systems and that data augmentation techniques are effective 
and efficient for training these architectures even with a limited domain dataset. In total, we concluded that the 
application of data augmentation techniques was effective, with all models having at least one metric improved 
after application (exception to YoloV7). In comparison, the YoloV7 and YoloX detectors had lower-than-expected 
results on the validation set, due to their specialized convolution filters for higher image resolutions being less 
efficient on inputs smaller than HD. In terms of FPS, the decoupled architecture of the YoloX models drastically 
reduced performance, while the YoloV7 model maintained high speed even with large and complex versions. It 
is also possible to conclude that the use of architectures on edge devices with low RAM space is still a challenge 

Figure 16.   Example of a non-challenging video for the Maned Wolf class, in which the animal is visible and in a 
favorable position for capturing characteristics.

Figure 17.   An example of a situation with an occlusion challenge on an animal from the Tapir class. The tree 
prevents the complete capture of the animal in the image. Furthermore, the animal has a similar color to the 
tree, making it even more difficult for models to interpret.

Figure 18.   An example of the camouflage and small object challenge in the Giant Anteater class, in which the 
animal is in the same color range as the vegetation and at a distance away from the data input, making detection 
difficult.
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for large and complex networks, even in recent YOLO versions. Unlike the performance of the models on the 
GPU, the inference execution speed of the models is still very low.

However, scenarios with classic computer vision problems still represent challenges that must be considered 
for animal detection. It can be inferred that all architectures may face difficulties with small datasets that have 
limited variation in animal poses, few distant (small) animals, or non-standard image dimensions, as is the case 
with the BRA-Dataset. These challenges may also apply to other animal detection scenarios around the world.

For future work, we plan to reassess the BRA-Dataset and consider possible additions and improvements. 
We will also explore new emerging data augmentation techniques for future comparisons, like techniques to 
simulate unfavorable scenarios for detection in order to provide a larger sample of images for training. Further 
contributions include implementing other single-stage detection architectures for comparison with those based 
on YOLO, which could expand our understanding of the challenges of animal detection. Testing YOLO archi-
tectures on specialized artificial intelligence devices for edge computing (e.g Nvidia Jetson Family, FPGA devices 
and others) could provide valuable insights into the practical application of remote real-time detection and help 
evaluate memory and processing consumption. Additionally, evaluating the models in other occlusion scenarios 
could help address animal detection challenges in different environments around the world and provide other 
researchers with a better understanding of the technologies available in their local environment.

Data availability
The publication titled “Brazilian Road’s Animals (BRA): An Image Dataset of Most Commonly Run Over Ani-
mals” can be accessed with the https://​doi.​org/​10.​1109/​SIBGR​API55​357.​2022.​99917​74. The associated research 
data can be found at the website address https://​github.​com/​Gabri​elFer​rante/​BRA-​Datas​et. This repository con-
tains the dataset utilized in the publication, specifically curated for the purpose of studying commonly run over 
animals on Brazilian roads, along with the provided links to access the corresponding images. In addition, the 
repository for the experiments can be accessed via the following link: https://​github.​com/​Gabri​elFer​rante/​Detec​
tAnim​alsIn​Roads.
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