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GEOMETRIAS

A. CONDE

Estas notas apresentam geometrias planas e usam para tal, o plano identificado com
o corpo dos complexos C. Tomamos a extencao do plano C juntando o ponto no infinito
e valorizamos as transformagoes de Moebius. A abordagem adotada nao é axiomética
como a de Euclides e sim a de Felix Klein segundo a do programa de Erlangen.

1. NOMEROS COMPLEXOS

1.1. Leénmbrenios as propriedadeés que caracterizam o corpo dos niwdieros reais
R. (A) Adicao:

Al. Associativa: 2+ (y+2)=(z+y)+=2

A2. Elemento Neutro0: z+0=0+z =2

A3. Comutativa: z+y=y+z

A4. Elemento Oposto : z+ (—z) = (—z)+z =0
(M) Multiplicaco:

M1. Associativa : z(yz) = (zy)z

M2. Elemento Neutro 1: l.za=z.1==z

M3. Comutativa : zy = yz

M4. Elemento inverso 271 : .z~
(D) Distributiva: z(y + 2) = zy + z2

Um conjunto com duas operagoes + e . que satisfazem as propriedades acima recebe
o nome de corpo. Os nimeros reais formam entdo um corpo R. Estes tem entretanto
propriedades extras envolvendo a nocao de ordem.
(O) Ordem: R tem uma relacgo de ordem total que verifica

Ol.z<yex' gy =z+z'<y+vy

02.z<yel<z=>z2<y2

l—g1lz=1,pra :rvyé 0

(C) Completitude

C. Todo subconjunto de R nio vazio e limitado superiormente admite supremo.

O corpo ordenado dos reais R é caracterizado pelas propriedades acima, isto €, qual-
quer corpo ordenado completo é ordenadamente isomorfo a R.

Exercicio: Prove que o corpo ordenado dos reais admite um tnico automorfismo
que é portanto a identidade.

1.2. A equacio z2+1 = 0 nao tem solucio real, assim eomo outras equacdes do
segundo grau. A tentativa de se ampliar o corpo dos reais a um sistema ”"numérico” onde
tais equagdes tenham solugdes, levou & criacdo dos nimeros complexos. Cardano,
no século XVI, ja havia notado esta possibilidade, introduzindo o ”ndmero ima-
gindrio”/—1 que se costuma denotar por: i. O nome dado a tal nimero mostra a
estranheza com que tal descoberta foi sentida. O desenvolvimento dos mimeros com-
plexos teve um impulso no século XVIII com os trabalhos de Euler, mas s6 no séc
1



2 A. CONDE

XIX se atingiu a conceituacao adequada atravéz de Gauss, Hamilton e outros. Dai
entao ficou claro que os mimeros complexos sdo tao concretos quanto quaisquer outros;
tratando-se apenas de uma questdo de interpretagdo no ”corpo da matemética”. Os
nomes de imagindrios ou complexos sdo mantidos por uma razao histérica, mas sao
impréprios.

1.3. Os Complexos C. O conjunto dos nimeros complexos que denotamos por C,
deve contituir um corpo que contém os reais R, permitir que a equagdo z2 +1 = 0
tenha solugao em C e que seja 0 minimo necessério para tal.

1.4. M(2). Denotamos por M(2) o conjunto das matrizes reais 2 x 2, onde temos as
operagoes de adi¢do e multiplicagao de matrizes (; ;)

Sabemos que M(2), com tais operagoes, tem propriedades semelhantes as dos mimeros
reais. No caso da adi¢éo (A) tem as mesmas. Para a multiplicacdo falham a comutativa
M3. e a existéncia de inverso M4.. Vale também a distributiva (D).

A correspondéncia h que leva o nimero real z na matriz diagonal, como abaixo:

z 0
h.x—>(0 a,‘)

preserva as operagoes de adigdo e multiplicagao

h(z +y) = h(z) + h(y)
h(zy) = h(z)h(y)
e é biunfvoca. Isto nos permite identificar o nimero real  com a matriz A(z) e temos
entdo: R C M(2).

Como observamos, M(2) nao satisfaz todas as propriedades de corpo (A), (M) e (D)
como queriamos; porém contem os reais e tem solucdo para a equagdo z2 + 1 = 0, isto
é, interpretando tal equagdo em M(2), 1 é a matriz identidade, O é a matriz nula e
podemos tomar para a solugao a matriz:

=1 7)

-1 0
2 _

=(0 5)
e portanto 2 +1=0.

Temos parte do que queriamos pois M(2) no é corpo. Podemos ver entretanto o
que ocorTe se nos restringirmos ao minimo necessirio, isto é, podemos considerar um
subconjunto de M(2) que comtenha R, a solugdo acima da equagdo 2+ 1 = 0 e onde
possamos operar com a adi¢do e multiplicagdo. Tomemos entdo todas as combinagGes

lineares reais dos elementos
10 e 0 -1
01 1 0

G 99E -6 € D6 )

que satisfaz a equacao, pois

ou seja
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Designemos tal conjunto por
r -y
= T
c={(2 Y)myen
Observemos que C contem os reais que sao representados pelas matrizes com y = 0
e contem a matriz solucdo da equagio 22 + 1 = 0.
Exercicio: Verifique que C, com tais operagdes é um corpo, isto é, a soma e o

produto de dois elementos de C estdo em C, e valem as propriedades (A), (M) e (D)
anteriores, sendo que

00 10
=0 o)1= (0 )
1.5,

Definicao 1. O conjunto apresentado acima C € o corpo dos nimeros complezos.

Uma matriz (Z ;y) de C fica determinada pelos ntimeros reais = ¢ y. Podemos

entao estabelecer a correspondéncia:
c:C—R?

(7 V) =@
onde o R? é o conjunto dos pares ordenados de ntimeros reais, com a soma vetorial
conhecida:
("L‘a y) + (IL", :‘/) = ('T + -'L",y + yl)
A correspondéncia ¢ é evidentemente biunivoca, sobre e preserva a adigdo. Como
existe uma multiplicagdo em C, podemos transporti-la a R? via ¢. Vejamos como fica

(2 V) =@
(v Y=
v

_ [z’ —yy —xzy —ya

r —y\ (7

y = ) y ) (yw’+my’ —yy’+m’)
/ 7

C(@ my) (; Zy)) = (22’ —yy/,yz’ + 2v/)

Portanto a operagdo de multiplicagio tranportada para R? fica assim:

(), y) = (@2’ —yy', ¥’z + =)

Com as operagoes de adicdo e multiplicacdo acima em R?, a correspondéncia c passa a
ser um isomorfismo de C com R? e consequentemente, todas as propriedades verificadas
em C relativas & adicio e multiplicagdo valem também em R2. Em outras palavras,
temos R? como uma outra representacao dos niimeros complexos. O zero é representado
pela origem (0,0), a unidade multiplicativa é representada por (1,0) e a solugdo que
esolhemos para a equagio z2 4+ 1 = 0 é dada por (0,1). Usaremos para esta notagao:
(0,1) =1.

O ntimero real = passa a corresponder a (z, 0)
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(zy) =z +iy
i=(0,1) @

1=(1,0) z

Podemos escrever um ponto genérico (z,y) assim:
(z,y) = z(1,0) + »(0,1), com (1,0) =1 e (0,1) = i. Temos
(z,y) = z + yi e com a multiplicacdo introduzida temos

i?=~le
(z +yi)(a + 1) = (22’ —yy) + (2 + 2'y)i
Como (—i)? = i2 = —1 temos que as duas solugdes de 2 + 1 = 0 sdo exatamente i e

—i.
Vamos fixar para o corpo dos nimeros complexos esta tltima representagao, ou seja
temos outra defini¢ao para o corpo dos niimeros complexos, isomorfo ao anterior.

1.6.

Definicao 2. O corpo dos niimeros complezos C tem para conjunto o plano real R2 = C
e para operacées, a soma vetorial e a multiplicacdo dada por

(z +yi)(z +¢/1) = (z2' —yy/) + (' +2'y)i
onde i = (0,1) e 1 =(1,0) € a unidade multiplicativa.

1.7.

Observacao 1. Embora trabalhemos com esta definigao preferencialmetne, sempre que
itil usaremos o modelo matricial. Portanto o leitor deve se familiarizar com ambos.

1.8. Vamos dar uma interpretacdo geométrica 3s operactes de C = R?.
A soma é feita pela regra do paralelogramo e corresponde as translacdes:
t,(v)=v+u

¢é a translagdo de C em C pelo vetor «
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u—+v

A

Vamos olhar a multiplicagdo da mesma forma, isto é, fixemos um ndmero complexo:
u = a + bi e examinaremos a transformagao

L,:C—C
Ly(v) =uw
v=z+Yyi

L,, é linear sobre os reais, pois preserva a soma e permite por escalares em evidéncia,
ou seja:

L,(v+ V) =u(v+v') = uwv 4+ uwv’ = L, (v) + L, (V')

L,(0v) = u(Av) = AMuwv) = ALy (v)

Portanto L,, é representada por uma matriz em relagdo & base canonica de C = R?
que é

1=(1,0)ei=(0,1)

Dai temos

L()=ul=u=a+bi

Ly(i) =ui=(a+bi)i =—b-+ai
e sua matriz é entao

a —
b a
Observe que a matriz da multiplicacdo por u, L, é exatamente a matriz que repre-

senta « = a 4 bi quando interpretamos C C M(2) (1.5)
Portanto multiplicar v = x + yi por u = a + bi é o mesmo que
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(6 2)G)=(erer)

Como de fato ocorre na forma:
(a+bi)(z + yi) = (ax — by) + (bz + ay)i

1.9. A transformagdo de C dada pela multiplicagio por u, L,,, se decompde no produto
de uma rotagao por uma homotetia. De fato, seja a matriz de L,

a —b
G %)
se a = b = 0 entao a rotagao pode ser qualquer e a homotetia nula;
se a ou b ndo se anula entao a® + b? # 0 e podemos escrever

a —by _, a/x —b/A

b a) T\b/X a/X
com A = /a2 + b2. Como (a/))? + (b/A)? = (a? +-b?)/(A)? = 1, temos que existe € R
tal que cos@ = a/\ e sin@ = b/ e ai temos a decomposigdo desejada

a —-b\ _ ,5—5(cosf —sinf
()= (@ )

sinf cos@

dada pela rotacao de angulo 6 e a homotetia de razao va? + b2
Da maneira como foi definido, o # que ai est4 pode ser tomado como o 4ngulo que o
vetor (a,b) faz com (1,0)
Da. igualdade acima tiramos que
a+bi = va? + b%(cos 6 + isin )
1.10. O segundo membro é chamado de representacdo polar do nimero a + b
1.11.

Definicao 3. O argumento do nimero complezo z = a+bi # 0 € o dngulo @que permite
a representacdo polar acima.
0 = arg(z)

Observe que se € é argumento, entdao 2km + @ também é para k € Z e portanto a
igualdade arg(z) = arg(w)é sempre mod(27)

1.12.
Definicao 4. O conjugado de um nimero complezo z =1+ yi € 2 =1z — yi

1.13. A conjugacdo como uma aplicagdo
—:C->C
Z— Z

é um automorfismo de corpo, isto é:

ztw=z4+w
1

Ela é a sua prérpria inversa, pois Z = z, vale ainda que 2Z > 0 e que 2z é real se e 56
sez=2z2.
Exercicio: Verifique as propriedades acima.
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1.14.

Definicao 5. O valor absoluto do nimero complezo z é : |z| = +/22
Exercicio: Verifique as seguintes propriedades para o valor absoluto:
1) |zw| = |2|jw]

2) |z +w| < 2| + |w]
3) |2 — ]| < |z — w|
4) Se z = X(cos8 + isinf) com A real ndo negativo, entdo A = |z|

1.15.

Proposicao 1. Dado z € C e n natural positivo, eriste a raiz n-ésima de z, que
denotamos por 3z

Dem: Tomamos z na forma polar z = |z|(cos@® + isind). Por exercicios ante-
riores temos que a = 3}/|z|(cos@/n + isinf/n) é uma raiz n-ésima de z pois a” =

(%/]2])*(cos nb/n + isinné/n) = |z|(cos 6 + isin ) = z. (C.Q.D)

1.16. Existem n raizes n-ésimas de um nimero complexo z # 0 e estas formam os
n-vértices de um poligono regular de n-lados. Tais vértices estdo sobre o circulo de
centro zero e raio {/|z]. De fato, temos zg = A(cos§/n +isind/n) com A = /]z] uma
raiz n-ésima de z, onde 8 é um dos argumentos de z, digamos 0 < § < 27. Acontece
que para qualquer k inteiro, § + 2kn também é argumento de z e dai o conjunto das
raizes n-ésimas de z depende de k e tem a forma polar:

2p = /\(cos(9+r2Lk1r) + isin( 9+12Lk7r ))
Para k = 0 temos a raiz de argumento #/n tomada inicialmente. Basta examinarmos
0 gue se passa com o arg(zx)

arg(z) = & + ki
Estes argumentos sdo de ndmeros distintos para k = 0,1,2,...,n—1, parak =n
temos arg(z,) = —g- + 2 = arg(z)e dai por diante havers repeticdo por exemplo,
arg(zn41) = arg(z1). Para k < 0 ocorre o mesmo pois: —kZZ + (n + k)2E = 2r
O angulo entre zx € 2x41 é 27/n e |z| = Adai 29, 21, .. -, 2,1 formarem os vértices
de um poligono regular de n lados sobre o circulo de raio A = {/l_z_]

1.17. O circulo unitério S! é fechado pela multiplicagio complexa, pois |zw| = |z||w| =
1, contem a unidade 1 e os inversos, pois |z7!| = |z2[~! = 1. Portanto S é um grupo.
As raizes n-ésimas da unidade 1 estdio em S!, ( dentre elas estd a propria unidade)
formam um conjunto fechado pela multiplicacio pois (z;2;)" = zzp =11 =1e
contém os inversos, (z;1)" = (22)~! = 1. Assim sendo elas formam um grupo finito
com n elementos, digamos I,: I, C S'.

Seja w = cos2n/n + isin27x/n. Entdo w é um gerador do grupo I, isto é, todo
elemento de I, é uma poténcia de w. Em outras palavras as raizes n-ésimas da unidade
sdo:
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A

1=uf =w" ww?, ... w1
9 ? 9 b

Exercicios:

1) Determine todos os geradores do grupo das raizes n-ésimas da unidade I,,. O que
acontece se n é primo?

2) Para w o gerador acima, mostre que: 1+ w + w? 4 --- + w™ 1 = 0, e generalize
para 1+ w* + w?* + - - - + w® V¥ = 0 onde n nao divide k.

1.18. Temos dado atengido a aspectos algébricos dos niimeros complexos com alguma,
interpretacdo geométrica até agora. A definicdo de valor absoluto ou norma de um
nimero complexo z: |z| = v/z.Z é o elemento de ligagdo dos nimeros complexos, ou
seu lado algebrico, com a topologia do plano de R? = C. Observemos que a métrica
euclideana de R2, ou seja, a distincia usnal entre dois pontos z = 4+ iy e 2/ = 2’ +iy/
é exatamente, |z — 2’| = ((x — 2')? + (y — v')?)/2.

Uma vez que temos as operagoes + e . em C que definem C e temos a topologia
de R? = C usual, devemos olhar para a compatibilidade das operacdes de adicio,
multiplicag@o e inversao, isto é, as fungbes

a:CxC—-C

(z,2) = 2+ 2

p:CxC—-C
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(2,7) — 22
j:C—{0}x —=C
2271

sao continuas. C x C é considerado com a topologia produto. Tal continuidade decorre
respectivamente das seguintes desigualdades:

(@)|z+ 2" — 20 — 2| < |z — 20| +|2' — 2]

(27 — z079] < |20]]2" — 29| + |zl — 20| + |2 — 20l|2" — 20l

@7 = 7' < |27z ~ zoll20| !

1.19. Decorre dai que toda funcao obtida efetuando-se suscessivas operagoes de adigao,
multiplicagio e inversdo sdo continuas e, seu dominio de validade. Como por exemplo
as polinomiais:
p:C—-C
p(z) =31 paizt,a; €C
ou as racionais:

f:vcC—-C

1) =53

onde p e q sdo polinémios, g # 0 e U é o complementar dos zeros de q.
Nas construgdo dos complexos, pedimos que existisse solucéo para a equagao 2+1 =
0. Na realidade obtivemos muito mais.

1.20. O teorema fundamental da algebra. Todo polinémio de grau positivo com
coeficientes em C tem uma raiz em C.

Dem: Seja p(z) = ) i, a;2* polinémio de grau n > 1, donde a, # 0. Queremos
29 € C tal que p(z9) = 0. Vamos conseguir um tal zp examinando o minimo para
|p(2)]. Vamos mostrar que |p(z)| tem que assumir minimo em C e depois provar que
tal minimo tem de ser 0.

p(2)] = el + S8+ + 2 4 a

Dado ¢ > 0 existe r > 0 tal que || > 7 nos dé cada || < ¢/n. Portanto

|2+ By 4+ 22 tay| 2 an| —€

Dai vem que para |z| =2r > r

Ip(2)] > (2r)"(laa] - €)

Consequentemente, dado k > 0 qualquer, podemos escolher um £ > 0 tdo pequeno
e um r tao grande que teremos |p(z)] > k para fora de um certo disco. como os discos
sao fechados e limitados, isto é, compactos, concluimos que |p(z)|deve assumir minimo
num ponto zg € C.

Ip(z0)] < |p(z)| para qualquer z € C. Basta concluirmos agora que |p(zg)] = 0.
Vamos concluir por absurdo.

Suponhamos que |p(z)| = ¢ > 0.

Vamos mostrar que, neste caso, existe z; € C com |p(z1)| < |p(20)|; dai o absurdo.
Tomemos uma situagio mais especifica e sem perda de generalidade normalizemos o
polinémio p(z) para g(z) = ¢ 1p(z + 2).

Assim 2p é minimo com |p{(zp)| = c se e somente se, |g(z)| assume minimo em 0 com
|9(0)] = 1. Entéo g é da forma:
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g(2) =14+ b2 +--- + b, 2" tal que b # 0, b, #0.
Queremos agora em 21 € C tal que [g(z1)] < 1. Temos que
lg(2)] < |1+ bp2*| + |bpga 2Pt + - - + br2”

Como existe raiz k-ésima de qualquer complexo, temos solugdo u para byz* = — b
e claro que |u| = 1. Para r > 0 temos entdo que by(ru)* = —|by|r*.
Para o segundo termo vale: p-B

B2 b dy] < TR by o baz®| < (b | -+ [Ba])
para |z| =7 < 1

Tomando agora r < [bg| ™ temos r|bg|¥ < 1 e se r < |bg|(|bgr1]+- - + |bn]) ™! temos
[br 125+t + -+ buap| < byl

Dai concluimos que
lgru)| < 1~ [Befr® + 7| = 1

Portanto com r como acima e u temos z; = ru satisfazendo |g(z1)| < 1 (C.Q.D)

1.21.

Teorema 1. Seja p(z) polinémio com coeficientes em C de graun > 1. Entdo existem
21,292,...,2n em C tai que

p(z) = an(z — 21)(z — z2) ... (2 — 2p)

Dem: Seja p(z) =Y - yaizt,an #0,n > 1
pelo teorema fundamental da 4lgebra, existe uma raiz 2z; para p(z), isto é , p(z;) = 0.
Consideremos a divisdo de p(z) por (2 — z1)

p(z) = (z — 21)p1(z) + 71(2)
com grau de r1(2z) menor que grau de (z — 2;) que é 1. Logo 71(z) é constante. Mas
substituindo z por 2; acima temos 0 = r;(2;) donde r;(2) é a constante nula.

Conseguimos assim fatorar p em p(z) = (z — z1)p1(2), temos que graude p; =n —1.
O mesmo raciocinio se aplica a p; e chegamos assim a um 2 tal que p(2) = (z—21)(z —
22)p2(2). Repetindo o processo chegamos a

P(z) = (2 — 2)(z — 22) .- (2 — 20)pn(2)

Como grau de p é n temos p,(2) constante e pela multiplicagdo indicada é o coeficiente
de 2™, isto é, a,. (C.Q.D)

Observacao 2. E claro que estas n raizes de p ndo precisam ser distintas duas o duas.
O niimero de fatores em que uma mesma raiz aparece é chamado de multiplicidade da
raiz. Assim podemos escrever

P(2) = an(z — 20)™ (2 — )™ .. (2 — 7)™
com z; # z; e m; a multiplicidade de z;.

1.22. Compactificacao de C. A introdugéo do ponto oo (infinito) torna o espago mais
apropriado ao estudo das fun¢bes complexas. Como veremos adiamnte, por exemplo,
fungoes do tipo p/q quociente de dois polindmios, que em C tem problema com os
zeros de ¢, estarao definidas no espago todo. Por outro lado, o nosso espago tem uma
interpretacao geométrica simples, sera a esfera de dimensao dois S2.

O espago métrico C = R? nio é compacto mas todo ponto tem uma vizinhanga
compacta, por exemplo, um disco, isto é, ele é localmente compacto. Neste caso existe
um processo para se ”compactificar”o espago introduzindo-se um novo ponto, co que
se costuma chamar de infinito.
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1.23.

Definicao 6. Seja oo um elemento nao pertencente a C e 7 a topologia de C
€ =CU{x}
e uma topologia T em C

A€7 & AeT on A° (complementar de A em C) estd em C e é compacto ai.

(@, T) é o compactificado de C

Exercicios: _

1) Verifique que de fato, 7 é uma topologia em C e que induz 7 em C.

2) Se D, é o disco de centro 0 e raio n > 0 inteiro, de C; mostre que a familia
(D¢ )nen de subconjuntos de C ¢ um sistema fundamental de vizinhangas do infinito
00.
O espaco C foi uma ampliacdo de C onde levamos em conta apenas a estrutura
topologica. Queremos agora considerar a estrutura algébrica de C e ver como a mesma
poderia ser ampliada a C mantendo-se sua compatibilidade com a topologia, isto ¢, de
modo as nossas operagoes permanecerem continuas segundo a topologia de C.

1.24. Definicoes:
Adigdo: a €C, at+oo=0co+a=00
Multiplicagso: a € C, a#0, aco=o00a=o00, oo=1
Divisdo: a€C afoo=0 e a#0 af0=00
E de facil verifica¢ao, usando sequencias e a topologia dada a C que :
A adigdo assim extendida é continua
+:CxC—{(o0,00)} = C
A multiplicagdo também _
.: Cx C—{(0,00),(c0,0)} - C
Assim como a divisao

:: C x € — {(00, ), (0,0)} — C

Observagao 3. Ndo € possivel se extender continuamente a adi¢do a 0o+ oo pois dado
a € C gqualquer, existemn sequencias (zp,) e (2],) convergindo para co cuja soma converge
para a. Basta tomar z, =n e 2}, =a —n temos que z, + 2, =n+a—n=a.
Portanto ndo podemos especificar a de modo a preservar a continuidade.
Verifique que o mesmo ocorve para os demais casos omitidos

0c0=? oofc0=? 0/0=7

Observe ainda que:

oo ndo tem oposto pois 0o + a = 0o no entanto eriste —oco = (—1)oo = co

00 ndo tem inverso pois 0oa = oo no entanto eziste co”l =1/0c0 =0

Assim sendo, com excessdo dos quatro casos oo+ 00, 000, co/oo e 0/0 as operagdes
estido bem definidas e sdo continuas.

Do ponto de vista algébrico a nova situagao ficou um pouco estranha, isto é, demanda
um certo cuidado, mas do ponto vista topolégico ficou étima, como veremos a seguir.
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(z,y) =z +1y

1.25. Um homeomorfismo de C com a esfera S2, a projecao estereogrifica.
Seja §2 = {(£,71,¢)inR3/£2 + 92 4+ (% = 1} a esfera unitsria do R3
Vamos identificar o plano complexo C = R?com o plano dos eixos de £,7. Portanto
1=(1,0)=(1,0,0) ei = (0,1) = (0,1,0). O circulo unitério S! C C passa entdo a ser
o equador de 52
Sejamn N = (0,0,1) o ”polo norte”e S = (0,0, —1) o ”"polo sul”.
Definamos agora a proje¢ao estereografica:
7:82—-{N}—>C
w(§,m,¢) = (z,y)
onde (z,y) e (¢,1,() estdo alinhados com o polo norte N, como na figura acima.
Calculemos uma expressao analitica para .
Queremos determinar A tal que
A((¢,m,¢) — (0,0,1)) +(0,0,1) = (z,y,0) ou
(’\§7A77v A(C - 1) + 1) - (1‘ Y, ) donde
z=X,y=M, M({ —1)+1=0donde

— 1 __¢ —
A-—Q‘,I—l_c,y——lj_?.
Portanto

w(&n,) = (£ )
Como tiramos o polo norte, { < 1 e temos acima uma funcdo continua.
Vemos pela geometria que 7 tem inversa. Calculemos entdo g mesma.
Temosque:z:zl—f—C , yzl—’_z? eZ+n*+¢%2=1.
Seja (z, y) =z +iy. Temos que
-~ 2 4 o2 1—
2Z = 12 + y % 3 (——%g_ e 1 z

Donde 14 2z = = fﬁ;z
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Substituindo temos £ = 13_’;2 en= l—fr% ouf = lzfzé, n= %2

A inversa de 7 tem entao a expressao

(o) = (55 TR 52)

que ¢ também continua, 7 é portanto um homeomorfismo de S - {N}emC

Temos C C C = CU {oo}. 77! se estende continuamente a C pondo 7~1(c0) = N e
portanto o mesmo ocorre com 7 , w(N) = oo.

E f4cil perceber a continuidade geometricamente pois (2,) — o0 se e somente se,
(m7Y(2)) — N. Podemos ve-las também das expressoes analiticas.

Assim sendo temos a extensao

r:82C
como um homeomorfismo. Topologicamente, C nada mais é do que a esfera S2 onde C
corresponde o complementar de {N}.

Assim sendo, ao trabalharmos com € podemos pensar no plano R? assim como em
S? (N } e ao considerarmos o ponto co podemos pensar em S2. (O espago natural
para desenvolvermos a. teoria das fungdes complexas é de fato S?)

Podemos transportar a estrutura algébrica de ¢ para S? pela projecdo estereografica
assim:

7:82-C
pr7(p) =2
p+q=7"Y(m(p) +7(q))
p.g =" (n(p).7(q))
p/a=n"n(p)/n(q))

Observe que o ponto infinito, que na esfera é o polo norte N, ndo se distingui dos
demais pontos de S2, do ponto de vista topologico. A diferenga ocorre apenas no
aspecto algebrico e neste sentido o zero e a unidade também sao especiais.

Como 7 é um homeomorfismo, a estrutura topolégica (os abertos) do plano C = R?
corresponde, por T 3 estrutura topologica (os abertos) da esfera S2. O mesmo nio
ocorre com as métricas usuais de C e 2.

Vamos identificar S? = C. Assim a métrica usual de $2 como subespaco de R3 tem
a seguinte expressao para z ¢ z' ”finitos”.

—g___l=#l____
d(z,7') = 2[(1+zz)(1+z'?)]1/2

Dividindo ambos os termos da fragao por |2'| e agora tomando 2z’ = co temos
d(z,00) = W
1.26.

Definigao 7. Chamamos de esfera de Riemann a esfera S? com a estrutura compleza
proveniente da identificacdo de S? com C

A projegio estereogrifica,
7:8%2 - C,
além de preservar as topologias, preserva circulos e dngulos, como veremos a seguir.

Vamos expressar a equacao de um circulo com varidvel complexa.
O circulo de centro a e raio r > 0 é o conjunto
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S (a)={z€C/|z—a] =7} c C=R?
A equagao entao de um circulo no plano C
|z—a| =7 ou
|z —a|? =712 ou
(z—a)z—a)= 72

1.27. 2Z — @z — aZ+ ad — r° = 0. Um circulo S na esfera §2 est4 também num plano
P do R3
C=8nP
Portanto a equagio de um circulo S na esfera S? pode sr escrita como a equacgao de
um plano em R? com as varidveis restritas aos pontos da esfera, isto é
52:£2+772+C2:1
P:A(+Bn+C{+D=20
com A, B, C e D reais.

Observe que para que exista o circulo é preciso que a distancia da origem do R® ao
plano P seja no maximo igual a 1. Nesta situagao limite o circulo se reduz a um ponto,
o de tangencia de P com S2

Vamos expressar &,7, ¢ em funcdo de z € C via projecao estereografica. Vimos entao
que

é— _ 24z _ igi—z! C _
 142Z  142Z -
Pondo na equagio de P temos:
AfZ+ B2 +CEL+D =0
donde
A(z+2Z)+iB(z—2)+C(zZ— 1)+ D(1+22) =0
donde

(A-iB)z+(A+iB)Z+(C+ D)z2Zz+ D—-C=0o0u
(C+D)2z+ (A+iB)z+(A+iB)z+ D—-C=0
Esta equagéo em z e Z é semelhante 3 equagao do circulo no plano C em (1.27).
Examinaremos inicialmente o caso em que o coeficiente de 2Z é nulo, isto é,
C+D=0
Ficamos com
(A-Bi)z+(A+Bi)z+D-C=0
Para z = z 4 iy temos
(A-Bi)(z+iy) +(A+Bi)(z—iy)+ D-C =0
2Ax+2By+D-C=0
Esta é a equagao de uma reta r no plano C, se A ou B nao nulo.
Chegamos a esta equacéo com condi¢do de C' 4+ D = 0 e portanto o plano
P:A{+Bn+C({+D=0
passa pelo polo norte N = (0,0, 1), como se nota também facilmente geometricamente
pois a projecdo m leva o circulo S de S? numa reta de C = R2 e portanto o plano do
circulo deve conter N.
S6 os circulos de S? por N é que vao em retas de C com w(N) =
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N

[

Suponhamos agora C + D # 0. Estamos assim com uma equagao do tipo

1.28. azzZ+ B2+ Pz+~v=0. a=C+D pB=A+Bi ~y=D-C
com « e -y reais, a # 0 que podemos supor a > 0
Na equagao de (1.27) temos um fator 7% que determina o raio do circulo. Vamos
introduzi-lo na equacéo acima, assim
Z+Ez48z4+21412=120n
azzZ+Pz+pPz+v+arl=ar? a>0
Para chegarmos na equagdo do circulo devemos ter entao
ay— 08 =_—a2r2 isto é,
_ay—pBB < 0 pois N
=224 4874 B8 — (24 Byz+£)
e a equagao em (1.28) é de um circulo se e s6 se
ay—-pBB<0
pois assim tomamos 2 = gﬁgﬁ ¢ temos o raio do circulo como sendo r e o centro —g
Se associarmos a equagdo (1.28) a matriz (g f) a condicdo para que represente
um circulo é det(M) < 0. Acabamos de verificar o seguinte
1.29.

Proposicao 2. A projecéo estereogrifica 7 : S* — @ leva circulo em circulo. Aqueles
que passam por N=(0,0,1) sio levados em retas de C. (uma reta de C é uma reta de
C unido com {oo}).

Chamaremos também as retas de C de circulos infinitos, ou pelo infinito co.
Queremos verificar agora que a projegio estereografica preserva angulos entre circulos.

1.30. Na figura acima, a reta ry tangencia 7r_1('r) em N e portanto tangencia S2 em
N. O mesmo vale para a reta 7. O circulo 771(r) e r estéo no mesmo plano e portanto
TN também, j4 que tangencia 7~ 1(r). Como r e rysio ainda paralelas ao plano RZ = C
sdo entao paralelas entre si.

rn//r

O mesmo vale para 7/ e 7y
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™/ /7
Assim sendo, os dngulos determinados por (r,7’) e (rn,7)y) € que se correspondem,
sao iguais
Seja {z} = rNr' e p = 771(2). Queremos analisar o angulo formado por 7~ 1(r)
e 7 }(r') em p e as retas tomadas ry e rfy se cortam em N. Ocorre porem que hé
uma simetria na configuracio 7 1(r) U 7 ~1(r') em relagdo a um plano perpendicular
do segmento que une N a p, passando pelo ponto médio.

Esta simetria diz que os dngulos indicados na figura acima entre ry e )y e rp € r;,
sdo iguais. Ao girarmos r para r’ no sentido anti-horario o mesmo ocorre de ry pra )y
(observando-se de fora de S?) e o oposto ocorre com o giro de Tp para r;,. Portanto se
quisermos que 7! (e portanto 7) preserve, além dos angulos o seus sentidos também

devemos tomar a orientacio de S? com a normal para dentro, ou seja, o sentido positivo
de giro é o de entrada do ”saca rolhas”.

Provamos acima entdo a seguinte proposi¢ao:
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1.31.

Proposicao 3. Orientando-se os dngulos do plano C no sentido anti-hordrio e os de
S? no sentido hordrio (visto de fora), a projecio estereogrdfica m preserva dngulos entre
circulos inclusive a orientagéo.

2. As TRANSFORMAGOES DE MOEBIUS

2.1.
Definicao 8. Uma transformacdo de Moebius é uma fungdo do tipo
c:C—C
az+b

o(e) = cz+d

onde a, b, ¢, d sdo elementos de C e ad — bc # 0.
Observacao 4. a. Tomemos z # 0 e dividamos ambos os termos da fragdo
_a+b/z
olz) = c+d/z
Para z = 0o as operagdes fazem sentido e temos
o(o0) =afc
b. A solugdo cz+d =0; z = —d/c nos dd o ponto que vai para o 0o pois
—ad —ad+bc bc—ad
o(=d)c) = a/c+b: ad+bc _ ad _

0 Oc 0
jd quebc —ad #0
¢. No caso (2) acima aparece jd uma boa razdo para se pedir na defini¢do, que ad —
bc # 0, mas a razdo é mais forte ainda. Esta condi¢do nos garante que a transformagdo
o seja inversivel.

o(z) = w= az+b
=w= cz+d

w(cz+d)=—dw+b
z(ew—a)=—dw+b
Para tirar o valor de z precisamos de cw —a # 0, ou seja, w # a/c mas para z finito
w = a/c ndo ocorre pois deveriamos ter

nos dd, para cz+d #0

az+b
cz+d
acz + ad = acz + be
ad = bc
ad—bc=0

afc=

contra a hipdtese.
Logo pare cw — a # 0 para z finito e podemos escrever
—d b
0'—1('!!.7) =z = _w-’-._
cw—a
e temos a inversa de o, com da — bec # 0.

As transformagao de Moebius s@o portanto homeomorfismos de Cem C
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2.2.

Proposicao 4. O conjunto de todoas as transformagoes de Moebius M, com a operagdo
de composi¢do formam wm grupo.

Dem: A identidade i : C — C tal que i(z) = z ¢ evidentemente de Moebius. J&
vimos que todo o € M tem inversa 0! € M. Falta apenas verificar que para o e o’ em
M a composta oco~! € ML

az+b az+b
@)= =2
tal que ad —bc # 0 e d'd — b #0.
af:‘,ljj_g +b  (ad +b)z + (ab + bd')
St 1 d (de+dd)z + (Ve+dd)
Tem o formato certo, devemos verificar a condicao:
(aa’ + b)YV c+ dd') + (e + bd')(a'c+d) #0
Mas desenvolvendo chegamos a:
(ad — be)(a'd — b ) £ 0
Portanto a composta é de Moebius € M é um grupo. (C.Q.D).

oo’ =o(d’) =

2.3.

Observagao 5. (a) Se associarmos a matriz compleza 2 x 2: (ccz g) a transformagdo

de Moebius o(2) = 22, a condi¢do ad — bc # 0 é exatamente o det (Z Z) #0.

(b) Olhando a expresséo composta oo’ acima vemos que a matriz que dd oo’ é ez-

/ '} 7
atamente o produto das matrizes: a by fa bl, = a’a +be' abf + bd,
c d)\cd d de+cdd Ve+dd

(c) O conjunto das matrizes complezas 2 X 2 com determinante ndao nulo, GL(2,C)
forma um grupo com a operagdo de multiplicagdo. O que vimos acima diz que a corre-
spondéncia

h:GL(2,C) » M
a b az+b
w(2 e =25

é um homomorfismo de grupo.E claro que € sobre. Ela néo € entretanto biunivoca pots

w((2 ) =r6( (3 9 k20

Por exemplo, as matrizes que vdo na identidade sdo exatamente as diagonais

(G 2)s eso
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2.4. Observemos que uma transformagdo de Moebius genérica
az+b
o(z) = _—cz-_:d’ ad—bc#0

pode ser obtida pela composigao das seguintes:

(a) translagdo: 7(z) =z2+e€

(b) multiplicagdo: u(z) = fz

(c) inversao: i(z) = %

De fato:
se ¢ = 0 temos o(z) = Sz + g que vem da composigdo z +— Sz Fz + %.
para ¢ # 0 pomos o(z) = 57 + s e calculamos r e s obtendo r = Doad o g =2 A

RN o 3 1 T i d
compos1§aoeentaozr—>czr—>cz+dr-—>cz+d|—>cz+de—>cz+d+s

Representando a composicdo na forma matricial, isto é, considerando-se as matrizes

como em (2.3), temos:
fe BN 1 B\ /2 0
d d) = d)(d e
(0 1) (0 1) (O 1)

(a)-6N6EDC)6 16 )

Facamos agora uma andlise geométrica dos trés tipos de transformagtes que geram
os demais

2.5. A translagio o(2) = z+b. Em C

Se b=0 temos identidade. Se b # 0 este determina um feixe de retas paralelas ( com
0 0o em comum) e a tranlagdo move os pontos ao longo destas retas, isto é, o feixe fica
invariante pela translagdo e a(o0) = 0.

Em §2

A projecdo estereogrifica relaciona aquele feixe de retas paralelas (pelo infinito)
com um feixe de circulos tangentes entre si no ponto N = oo. Portanto a translacio
interpretada em S2 deixa tal feixe de circulos invariantes e desloca os pontos ao longo
dos mesmos. O ponto N fica fixo pela tranlagao.

2.6. A multiplicacio o(z) =az. Em C e com a real

Neste caso, o feixe de retas pela origem é que fica invariante. Trata-se aqui de uma
homotetia se a > 0 ou o negativo de uma, tal se a < 0. Temos dois pontos fixos ¢(0) =0
e 0(00) = 00 e estes s30 os Unicos se a # 1.

Para a nao real e |a] =1 temos

o feixe de circulos cocentricos, com centro na origem deixado invariante por o, pois
esta é exatamente a rotagio de ngulo @ = arg(a). o tem dois pontos fixos 0(0) =0 e
o{o0) = oo.

No caso em que a nio é real e |a] 5% 1, o ndo deixa nenhum feixe de circulos ou retas
invariantes. ¢ continua deixando 0 e oo fixos. H4 um feixe de curvas entretanto que
sa0 invariantes. S0 as espirais:

z= e“’(cos(m'ia-rz + k) + isin(m%‘-[:r + k)
com k constante real (para cada espiral} e 2 o parametro real da mesma. Verifique que
az esti na espiral.
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z+b

os pontos se movem ao longo destas espirais deslocando-se do dngulo 8 = arg(a),
0 < 0 < 2m. A figura acima representa o caso |a] > 1.

Vejamos agora como fica a representagio geometrica da multiplicagio em $2.

o(2) =az, areal

o(z) =az, la]=1 e andoreal
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)

o(z)=az, anaoreale

. Em C:

N |

2.7. A invers3do o(z2) =



a conjugada de o
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Temos os pontos fixos o(1) =1, o(—1) = —1 e 6(0) = o0, o(c0) = 0.
Uma transformagao de C, relacionada com esta e que admite uma andlise simples e

o

—

0 :
led

(=

| =ey,

observe que Z nao é de Moebius.

se z € C z # 0 temos

se |z| =1 temos 2Z = 1, donde
_ 1
o(z) = == z

e portanto 7 é identidade quando restrita ao circulo unitério S*.
7(0) =00 e
G(00) =0
arga(z) = —arg(z) = arg(z)

e portanto z e 7(z) estdo na mesma semi-reta e
z
T = -] = 1
[Tl = |2

Entdo a transformacgio @ em C é a inversdo segundo o circulo unitério

Sabemos da geometria elementar que a inversao no plano leva retas em circulos pela

origem e vice-versa, que preserva angulos e inverte orientagio.
Como a conjugacao em C leva circulos em circulos e retas em retas, preserva dngulos

e inverte a orientacao concluimos que:

oc:C—-C
1
Z -
z
que é a composi¢cdo de & com a conjugacao, leva circulos em circulos, retas (que sio
circulos infinitos) em circulos pela origem, preserva angulos e orientagao.
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Duas retas tem o oo em comum. Escolhidas as orientagées para as mesmas, definimos
o dngulo no co como o angulo num ponto finito com orientagdo oposta. Observe que
assim, o preserva angulo e orientagdo mesmo no oo

Na figura acima representamos . Observe que o dngulo em z que corresponde ao
angulo em 0 é o mesmo inclusive em orientacdo. Quando compomos com a conjugacao
para obter ¢ este se inverte. Assim, com a definicdo que demos para o angulo no oo
seu valor e orientagdo sdo preservados.

Analisemos a inversio agora na esfera S%2. Nesta ela tem uma descrigio bastante
simples pois é a rotagao de dngulo 7 que deixa 1 e -1 fixos.

De fato o(1) =1, o(—1) = —1, (0) = 00, o(c0) = 0 e 0(2) = Z, se |z| = 1 e portanto
ndo pode ser a reflexdo em relacdo ao plano equatorial. Para concluir, basta verificar

que o{z) = — preserva a distancia na esfera.
z
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2|z — 2] 11 .
1 = _ —d(= =
=2 = Armarrye - Aoz (verifiaue)

2.8. As transformagdes de Moebius preservam circulos, dngulos e orientagdo. Esta
conclusdo vem do fato de translagoes, multiplicagdes e inversao terem tais propriedades
e geram por composicao aquelas.

A inversao o(2) = % sendo uma rotacao na esfera, deixa invariante o feixe de circulos
?paralelos”com centro em 1 (ou -1). Este feixe interpretado no plano, é o feixe com
centro no eixo real e ortogonal ao circulo S

ﬁ

O eixo de (0,1) pertence ao feixe € é o circulo pelo co.

2.9. Os exemplos que temos analisado tem um ou dois pontos fixos; a nao ser que seja
a identidade, com todos fixos. Tal fato é geral:
az+b

cz+d=znosda

o(z) =

az + b= z(cz + d) donde
cz?+(d—a)z—b=0
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que é uma equagao do segundo grau em z se ¢ 7# 0. Portanto teremos uma solugéo se
(d — a)? + 4bc = 0 e duas caso contrario. Se ¢ = 0 temos: (d—a)z—b=0,se d—a # 0
temos uma,solugéozg:d—f;, c=0ed=0nosdédb=0e

o(z) =z
¢é a identidade. Entao se o tiver trés pontos fixos é a identidade.

2.10.

Proposigao 5. Dados z1, 22, z3 distintos em C e wy, wo, ws distintos em C , existe uma
dnica transformagdo de Moebius o tal que:

(T(Zl) = w1
o(2) = we
o(z3) = w3

-DPem:- Vejamos inicialmente a unicidade. Sejam o e 7 de Moebius com
0(2;) = 7(z) parai=1,2,3.
Entdo ¢ o 771(%) = 2 como o o 77! é de Moebius e tem trés pontos fixos, temos
o7 ! =[. Portanto
=T

Para construir ¢ vamos supor inicialmente que z; # oopara z = 1,2,3. e w; = 1,
we =0 e wg = oco.

Dai podemos escrever diretamente

ol2) = =38/ 55%

1 = 00 pomos o(2) = =22

23 = 00 pomos o(z) = Z=2

73 = 00 pomos o(z) = =2

Podemos agora produzir o caso geral a partir destes. Dados 21, 22, 23 € wy, wy, w3
7(z1) = 0 =n(w)
7(22) = 1 = n(wy)
7(23) = 0 = n(ws)
Entdo 0 = 57! o 7 é a solugdo. (C.Q.D)
2.11. Dizemos que duas transformagées de Moebius o e 7 sdo equivalentes quando
existe uma transformagao de Moebius 7 tal que
og=nr!
Neste sentido podemos enunciar

2.12.

Proposicao 6. Toda transformagdo de Moebius o é equivalente a uma translagdo T ou
a uma multiplicacdo p.

T(2)=24+b p(2)=az
o #+ I verifica o primeiro caso se e s6 se o tem um dnico ponto fixro. Portanto o segundo
se verifica em caso contrdrio.

Dem: Suponhamos ¢ com um vnico ponto fixo z
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o(z0) = 2
Consideremos 7(z) = ;-_1%, portanto 7(zg) = cc. Daf temos que non~!(00) = oo e este
é o tinico ponto fixo de non~! pois
o (z1) = 21 = o(n™(21)) = 7' (=1)
e 17 1(z1) é ponto fixo de g, logo n'(21) = 29 € 21 = n(20) = 0.
Se £ = non™! tem apenas o 0o fixo entdo £ é uma translacio pois se
az+b

{(Z) - cz+d

temos que £(00) = £ = 00, donde ¢ = 0. A equagdo de determinagdo dos pontos fixos é

cz2+(d—a)z—b=0

donde(d—a)z——szez:d—f’_aez:oosepa:caa:deaexpresséodegﬁca
b
€z) =2+

Suponhamos agora ¢ com dois pontos fixos 0(2p) = 29 # 21 = 0(21).

Consideremos n(z) = z — zn, 7(z) = 0 e n(z1) = oo.
— <]
Seja & = non™!, entdo £(0o0) = ooe £(0) = 0.
az+b
§(z) - cz+d

§(oo)=%:oonosdéc=0

£(0) = g =0 nos da b = 0, donde

¢=2z

(C.Q.D)

Observacgao 6. { = non~! é chamado também de conjugada de o por . Passar
de o para & € uma espécie de mudar de referencial ou observar de modo diferente o
?mesmo”fendmeno topoldgico. £ e o tem as mesmas propriedades geométricas. Sabe-
mos que as transformagdes de Moebius preservam circulos, dngulos e orientagdo. Se
o deize um circulo C invariante entdo £ deiza invariante o circulo n{(C). Assim feizes
invariantes por o vdo em feizes invariantes por &.

2.13. Dados dois circulos C; e C2, em C o conjunto dos circulos S ortogonais a ambos
C; e Cy é chamado de um feixe de circulos. Se C; e C; tem um sé ponto em comumm,
entdo o feixe de circulos que C; e C2 determinam é chamado de feixe parabdlico. Se
C1 e Cy tem dois pontos em comum entao o feixe é hiperbédlico. Se C; e C2 nao tem
ponto em comum o feixe que eles determinam é chamado elitico.
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Exemplos em C
Parabdlicas

Hiperbdélicas

Eliticas

Se F(C1,C2) é o feixe determinado pelos circulos C; e C2 de C observe que se S; e
S sdo circulos de F(C1,C2) entdo C; e Ca estdo no feixe determinado por Sy e Sz, ou
seja, os feixes F(Cy,Cs2) e F(S1,52) sdo mutuamente ortogonais. Para ver isso basta
levarmos, por uma transformagio de Moebius, os exemplos da esquerda acima nos da
direita, pois fica 6bvia a ortogonalidade dos feixes F(Ci,C2) e F(S1,S2).

Caso parabdlico:

Se C1 NCy = {2} o feixe F(C;,Cz) é formado por circulos que se tangenciam em
{20}. Tomemos o de Moebius com
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a(z) = 0o
Assim, o feixe F(C;1,C3) vai no feixe F(o(Cy),0(C2)). Mas 0(Cw), o{Cc) sao retas
paralelas e portanto o feixe correspondente é o de retas paralelas, todas ortogonais a
0(Coo) € 0(Cc). Consequentemente o feixe que contem 0(Coo) € 0(Cc) também é de retas
paralelas e temos a ortogonalidade mutua, o memso entao valendo para suas imagens
inversas por ¢

o0 o(C )
¢ oC,)
Cy

o(C.)

Cs
o(C)

Caso hiperbélico
C1NCy = {29, 2 }. Neste caso tomamos o de Moebius com

o(z) =0eo(z1) =0
e aplicando o mesmo argumento acima.

C

Co
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Caso elitico

Dados Cx e Cc que ndo tem ponto em comum, tomamos dois circulos S; e So
ortogonais a ambos C, € C¢ € estes tem dois pontos em comum zg e z;. Dai procedemos
como no caso hiperbélico. Obtemos a mesma configuragao.

Se F é um feixe de circulos, denotamos por F1 o feixe perpendicular a F. Entdo
temos

F parabdlico & FL parabélico
F hiperbélico < F* elitico

Chamamos também F1 de dual ou conjugado de F.

Temos entao uma geometria que envolve pontos, circulos, idngulos e orientagao. O
conjunto das transformagces de Moebius M é um grupo de transformagtes que preser-
vam tais elementos. Portanto raciocinarmos numa configuragao é equivalente a fazer-
mos 0 mesmo colm sua imagem por qualquer transformagéo de Moebius. Se estamos
trabalthando em C, procuramos sempre envolver o zero ou o infinito para termos retas,
feixe de circulos cocentricos, etc. Quando usamos a esfera de Riemann jd nao faz muita
diferenca.

As transformacgoes de Moebius ndo preservam em geral a distancia euclideana de
C. Mais precisamente as dnicas que preservam sao as rotagées, translagoes e suas
composigoes.

2.14. Observe que a inversao segundo um circulo C em C ou a reflexdo segundo uma
reta R (que chamaremos também de inversio) pode ser dada em termos de circulos e
ortogonalidade.
Exercicio:
1) Prove que se o é transformagao de Moebius e (z, 2) sao inversos segundo C entio
(0(2),0(2")) sdo inversos segundo o (C).
2) Usando o exercicio (1) e a nogdo de equivalénica (2.11), mostre que a composigio
de duas inversées segundo circulos Cy e C; de C é uma transformacao de Moebius.
3) Seja X C C. Verifique que o conjunto das transformacoes de Moebius o deixam
X invariantes, isto é, 0(X) = X formam um subgrupo de M.
4)Se X C C é um cfrculo ou uma reta ele divide € em duas regides A e B. Verifique
para ¢ em M com o(X) =X
i)sezg € Ae o(z) € Aentao g(4)C A
il) se 290 € A e 0(2) € B entao 0(A) C B e 0(B) C A (Dé um exemplo
deste caso)
5) Mostre que se 0 é uma transformagao (homeomorfismo) de C que preserva circulos,
angulos e orientagao entao ela é de Moebius.

2.15.

Definicao 9. Se uma transformagdo de Moebius deiza um feize parabdlico ou hiperbdlico
ou elitico invariante (cada circulo) ela recebe respectivamente o nome do feire de
circulos conjugado. Caso ela ndo deize nenhum feize invariante é chamada Loz-
odréomica.

6) Verifique que uma transformacao de Moebius:
parabdlica é equivalente a uma translacio;
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hiperbdlica é equivalente a uma homotetia;

elitica é equivalente a uma rotagao.

7) Escreva uma homotetia de razéo A como composicio de duas inversées em circulos
C] e Cz de C

8) Se o é parabdlica, hiperbdlica ou elitica toda equivalente a ela o serd respectiva-
mente. ~

9) Se o deixa um circulo de C invariante ¢ ndo é loxodrémica.

Na esfera, os feixes de circulos acima descritos correspondem aos das figuras abaixo,
com as mesmas defini¢des, pois a projecao estereografica preserva circulos e angulos.

Parabdlico e seu conjugado, também parabdlico, por um ponto genérico da esfera.

Elitico e seu conjugado, hiperbdlico por dois pontos genéricos da. esfera.

2.16. Existem alguns subgrupos do grupo das transformacoes de Moebius que quere-
mos destacar:

1) O semiplano de Poincaré.
Seja P o semiplano superior de C
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P={zeC / Im(z)>0 ou z=o0}
Seja Mp C M o subgrupo das transformagoes de Moebius que deixa P invariante
ceMpsoeM e oP)=P

Vamos descreve-las por suas expressoes analiticas

az+b
—; ad—-bc#0
cz+d
Como o(P) = P e o tem inversa entdo o leva os reais nos reais incluindo co, assim
como sua inversa.

A

Sejam 0(21) = 1, 0(22) = 0 e 6(23) = co. Entéo 21, 22, 23 so reais ( ou 0o). Como os
pontos e respectivas imagens determinam ¢ podemos esrcevé-la com coeficientes reais.

az+b
-c—z—_‘_—d, ad—bc;é()

o(z) =

o(z) =

a,b,c e d reais.
Para saber se o preserva o semiplano superior basta examinar ¢ num ponto de P,
digamos i.( 2.14 exercicio 4)
. ai+b
o(i) = ci+d
e devemos pedir I'mo(i) > 0. Vejamos
ai+b (ai+b)(d—ci) bd+ac+ (ad—bec)i
ci+d  E+d2 2+ d?
Portanto a condi¢do Imo(i) > 0 é equivalente a ad — be > 0.
P juntamente com o grupo de transformagées Mp é chamado de semiplano de
Poincaré.

2) O disco unitirio _
Sejam D o disco unitirio de C e Mp o subgrupo das transformagaes de Moebius que
deixam D invariante.
ceMp&oeMeoD)=D
Como ¢ tem inversa temos que o circulo unitario é também invariante

a(8ty= 81
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Vamos determinar as transformacées de Mp usando o conhecimento que temos das
transformagdes de semiplano de Poincaré. Para isto tomamos uma £ € M tal que

§D)=P
por exemplo, podemos tomar & assim

£(1) =1

£(—1)=0

&(i) = oo donde

§(z) = £5/55 ou

¢ = ;:21

Como ¢ preserva circulos temos que S* vai em R U {oo}. Para saber se o disco D vai
um P basta ver onde vai o zero.

 &0).=i€eP o
Observe agora que 0 € Mp se e somente se £ 10¢ € Mp. Calculemos tomando as
matrizes que representam estas transformacoes
az+b
cz+d
onde a, b, ¢ e d sao reais quaisquer que satisfazem ad — be > 0. Entao temos apenas

a b a b
(c d)comdet(c d)—ad—bc>0

£(z) = ;1-_21 com matriz (:

Uma transformagao genérica de Mp é entdo do tipo

¢at

portanto tem para matriz de coeficientes

171 —i\fa b\ (1 i\ _1f(a+d)+(b—c)i (b+c)+(a—d)i
2\—i 1 c dj\i 1) 2\(b+c)—(a—d)i (a+d)—(b—c)i
Como a, b, ¢, d sao reais quaisquer, apenas com ad — bc > 0, os nimeros complexos

que aparecem na primeira linha sdo quaisquer. A divisdo por 2 é irrelevante e temos
que a matriz de uma transformacao genérica de Mp é do tipo

7 ?)

Como esta tem o mesmo determinante que o de ¢ a transformagao de Mp é do tipo
ez ~
T(2) = = +{come€—ff>0
fz+eE
Dai temos e # 0 e podemos expressd-la de outra maneira.
g2tE_e zty

%z—l—l € éz+l

o(z) =

i

1

T(2) =

€ . . ; . ~
Como - tem norma 1 este é do tipo €. Finalmete podemos escrever entao
€

_ e 2—h
T(z) =e —hz+1
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Portanto, 7 € Mp é uma composi¢cdo de uma transformagao do tipo
z—h
—hz+1
com uma rotagdo de angulo 4. Como a rotacgio estd em Mp temos T também em Mp.
Observe que h = ‘g, logo |[h|<1equeT(h)=0e T(-l’;) =ocequehe % sdo inversos

um do outro segundo o circulo S

EL T

Vejamos que os pontos fixos de 7 também séo inversos um do outro segundo S!, se
nio estdo em S, isto é, 7(z) = 29 € 2% # 1.
De fato, seja

—1 1
] Z—O_l = —

_ (m+5)_1 — 7
bzZg+a
Se zy estd em S! entdio zp = 51—6 e pode haver um outro ponto fixo z em S indepen-
dente.

Exercicios:
a) Seja o0 € M hiperbdlica. Mostre que seus pontos fixos séo inversos um do outro

segundo algum circulo invariante por o.
b) Se um ponto fixo 2g € D de o € Mip, é interior a D, entdo o é hiperbdlica e existe

T € Mp tal que To7! é uma rotagso.

c) Se o € Mp tem um tnico ponto fixo 2, este estd em S*, o é parabdlico e portanto
equivalente a uma translacio.

d) Se 0 € Mp tem dois pontos fixos z e z; com zg em S? entdo z; deve estar também
em S, o é elitica e portanto equivalente a uma homotetia.
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3. ROTAGOES DA ESFERA

As rotacdes da esfera S2? correspondem em C, via projecio estereografica, a trans-
formgoes de Moebius particulares.

Pelo exercicio (5) de (2.14) e pelo fato da projecdo estereogréfica preservar circulos,
angulos e orientagao temos que as rotagoes da esfera produzem em C transformacgoes
de Moebius. Vamos determinar suas expressoes analiticas.

Uma rotagado ¢ tem dois pontos fixos na esfera p e —p, se 7 € projecao estereografica
e m(p) = 2 entdo 7(—p) = —& (Verifique).

Seja T(z) = £2%, isto é, T(20) =0 e T(—%) = 00.

O feixe hiperbdlico de circulos determinado pelos pontos z e —% é levado por 7 no
feixe de circulos centrado na origem. Portanto a transformacao

ol =p

¢ de Moebius, tem 0 e oo fixos e deixa invariante o feixe de circulos de centro zero,
sendo entdao uma rotacao

p(z) = uz
com |u| =1
o=1lpr
Para obtermos uma matriz para ¢ basta multiplicarmos entao
(=16 NG ™)
-z 1/\0 1J\zm 1
_ [ ut=nzm —uz+tz)_
—uzg+79 wuzpzo+1
_ (u 0) (1 + 207 —-zg_-i——ﬁzo)
0 1/ \—uz+Z5 wzezp+1
Temos entao uma matriz do tipo
GG
0 /\b @

isto €,

a € b quaisquer.
Podemos expressa-la de forma mais simples assim,

Sea=0
cr(z):u-_b—zé ou
o(z)=v-; vj=1
Sea+#0
a(z)zug €+% ou
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z—
o(z) =v———"7> T 1 ;s vl =1

Como a identidade é deste tipo (c—O, V—1) e a composicao de duas rotagoes é ums
rotagio temos que a composi¢ao de duas dos tipos acima é do mesmo tipo. Temos
entao um subgrupo Mgz de M, que corresponde ao grupo das rotagdes de S2. Observe

que I usada acima é também rotagao. As do tipo

7(2) = az+ 1
correspondem a rotagoes de S2 cujo eixo de rotagao passa pelo equador, isto é, seus
pontos fixos estdo em SI.

4. ROTACOES E TRANSLAGOES EM D

J4 vimos que uma transformagio o de M que deixa D = {z € C tal que |z| < 1}
invariante é da forma:

o(z) = ‘;:[{’ com |a| > |b] 1)
Operando com a expressao sem alterar o podemos chegar a:
o(2) = § 55 @
onde z; = —2 e 0(z1) = 0 com |z1| < 1. Como 2 tem norma 1 temos que ¢ = e,

donde

o(z) = ew—_—‘;—:}r—l

Se pg é a rotagdo de centro zero e dngulo § de D e
ha(2) = 555
temos ¢ decomposta em:
oc=pgohy
Observe que h;, é uma transformagdo hiperbélica de D com dois pontos fixos.
Se z; = re*? entao os pontos fixos sdo & = € e & = —e™

ho(2) = =25

hoy(21) =0  h;(0)=—2 3)
hy(c)=d hy(d) =



GEOMETRIAS 37

Vamos analisar algumas consequencias da decomposi¢do dada em (2), isto é

o=pgohy

i) o fixa o centro de D) se e 86 se o é uma rotagdo euclideana. Se o fixa zy # 0 temos
que o é conjugada (pon~!) a uma rotagao euclideana p,. Como p, roda um diametro de
D de um angulo «, o "roda” um ortocirculo por zp de um angulo o também. Chamamos
o de rotacdo de D.

ii) Suponhamos zg € z; pontos distintos de . Entéo h fixa 21 e zgseesose h é a
funcdo identidade (isto decorre de (i)), logo duas transformacdes de D sao iguais se e
so se coincidem em dois pontos distintos ai.

iil) Seja entdo o = pg o h, como em (2). Se p, é a rotagao euclideana com centro 0
e éngulo 1820 temos 0 = pg 0 pr © pr © hzy = P(gyxy © (om0 hz,) (4).

A transformagéo ¢’ = p, o h,, é dada por

o'(2) = P52 (5)

e mais 0/(0) = 2 e 0/(23) = 0. Como ¢’ tem um ponto fixo em D da forma Az
(0 < XA < 1) segue que o é uma rotagao em D em torno do seu ponto fixo e de dngulo
razo (por (ii)). Concluindo:

Cada transformacao de M que deixa D invariante é produto de duas rotagdes em
D uma sempre euclidiana. Ainda o é também produto de uma ”translagdo”em D por
uma rotacio euclideana em D.

Exercicios

1) Considere o = pg o h,, como em (2). E possivel a decomposigio o = p¢ o h,, com
z9 # z17 Justifique a resposta. Ainda, responda e justifique a mesma questao quando
o é a composta de duas rotagdes.

2) Considere G = {h,, : 21 € D}, h; como em (3). G é um grupo para a composicio
de transformacGes? Justifique a resposta.

3) Seja 21 € D, z; # 0. Considere I = {tz; : t € [0,1]}. Seja S um circulo cujo
didmetro seja I. Construa um ortocirculo 7' em D que seja ortogonal a S e também a
seu didmetro I. Conclua que T'N I é o ponto fixo de pr o h,,.

4.1. Métricas em D. Afim de entendermos melhor as transformagoes de M que deixam
I invariante vamos procurar propriedades de pares de pontos de ID que néo se alteram
quando transformados por tais fungdes de [I. Na verdade estamos interessados em
metrizar I} de sorte que suas transformagdes de Moebius sejam isometrias. Vamos
entdo imitar um procedimento euclideano para esse fim.

Consideramos no plano euclideano uma, lista de quatro pontos, Py, P2, Pz, Py

P
Py 3

Py
P

Uma condigao necesséria e suficiente para que exista uma isomeria euclideana levando
{Py, P,} sobre { P, P;} é que as translagoes P, — P, e P; — P; tenham o mesmo médulo.
Na nossa situagao vale o seguinte:
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Lema 1. Seja 21, 22,w;,we uma lista de elementos de . Ezxiste entdéo uma trans-
formagdo o de D com o(2;) = w; (i =1,2) se e so se o0s nimeros hyy(21) € hy,(wy)
tem o mesmo mddulo.

Dem.: Admitimos o em I tal que o(z;) = w;. A transformagao h = h,, oo oh}} é
de D, fixa zero e h{h,,(21)) = hy,(wy). Por (i), h é uma rotagao euclideana e com isto
hzy(21)] = [Py (wr)]  (6)

Suponhamos que valha (6). Logo existe § € S! tal que €®h,,(21) = hy,(w1). E

imediato entdo que 6 = h;; o pgo hy, leva z; em w;, (i=1,2). n

Em vista desse resultado definamos para os pares de pontos de D

Dy(z1,22) = |hop(1)] = 12525 (7)

ll—Ezzll

Vale entao:
Proposicao 7. Dy € uma métrica em D.

Dem.: E claro que Dy(21, 2z2) = Dy(22,21) € este niimero ndo é negativo, é zero se e
86 se 21 = 29. Resta estabelecer que se 21, 22, 23 s30 pontos de D entao Dg(21,22) +
Dy(z2,23) > Dp(21,23). Pelo lema anterior ndo hd perda de generalidade supormos
z1 = > 0,23 = 0 e 23 = 2. Temos entdo que mostrar que Dy(z,0) + Do(0,2) >
DO(x, Z), ou Seja‘7 T+ lz| b |1z__:z| .

E suficiente para isto provar que

%Zﬁf_;;%paraO<z<le0<|z[<l (8)
Temos

z4lz] \2 _ 1H2zjz| 422 |22 —14a? |22 —x?]|2? 1—x2)(1—]z)?
(1+:z:lzf) - 14 2zz[1=22]2 , —2 1- ﬁTLéTEDJTu (9)
(g2 =1-00E) (o)
Subtraindo (10) de (9) temos
(1—22)(1 - 22) (e — =) = (1 —2®)(1 — | (2L > 0 (11)
|

Coroldrio 1. A igualdade (11) é satisfeita se e sé se R(z) = —|z|, isto é, se e sd se
2,0, 2 sdo colineares. Mas isto equivale a dizer que 2y, 29, z3 estio nesta ordem em um
ortocirculo de D.

A proposiggo a seguir engloba o lema (1) e a proposiggo (7) no contexto do semiplano
H = {z € C: Im(z) > 0} e pode ser facilmente provada.

Proposi¢ao 8. Seja z1, 22, w1, ws uma lista de elementos de H. Frxiste entdo uma
transformagdo o desse espago tal que o(2;) = w; (i=1,2) se e s se |J(hy,(21))| =

| (B, (w1))]-
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2—Zo
0

Aqui, h,, é definida por hy,(2) = 20 = Zo + iyo € H. Mais, Dj(z1,22) =
|J(hz,(z1))| é métrica em H.

Pela boa definicdo de D}, através de um célculo direto, obtemos

Proposicao 9. A transformagéo J : H — D satisfaz para z1,2z2 em H
Do(J(21), J(22)) = Dyl21, 22)

Estas tiltimas proposigdes podem ser entendidas da seguinte forma: Do(Dy) ¢ fungao
distincia entre os pontos de ID(H). As transformagoes de D(H) sao Dy(Dy)-isometrias.
Por fim, J é uma isometria entre H e D.

Vamos retificar as métricas Dy e Dy pois sdo limitadas e ainda, ndo satisfazem a
propriedade de aditividade nos segmentos de ortocirculos, ou seja, z2 é do segmento
[21, 23] se e s6 se D(z1, 29) + D(2z2, 23) = D(21, 23).

A métrica que procuramos ¢é da forma D = foDg onde f : [0,1] — R* é estritamente
crescente e ilimitada. Escolhendo g = tanh™! (inversa da tangente hiperbélica) ou uma
sua miiltipla cg (¢ > 0) resolvemos a questdo. Tomaremos f = 2tanh~!. Formalmente
temos

Proposicao 10. Eriste uma métrica D em D tal que

(i) D= foDy

(it) D(z1,22) + D22, 23) = D(21,23) se e sd se z3 € |z1, 23] e [21,23] € segmento de
um ortocirculo de D.
Dem.: Sejam 2; e z; pontos distintos de ID. Estes determinam &; e &2 (em S*) que sdo
os extremos do ortocirculo de D determinado por 2; € z3. Podemos supor que a ordem
no arco é a de &; para &; e a disposicao da quadra é £22221€1. Seja o uma transformagio
de D tal que (é2) = —1,0(22) = 0,0(21) = x > 0 e g(£1) = 1. Definimos entdo

D(z1,29) = 2tanh~(z) = ln”"‘,z = Dy(21, 22)

Por construgdo D = fo Dy onde f = 2tanh™. Ainda D(z1,23) = D(z3,21) e este
ndimero nao negativo € zero se e sé se z; = 29. Vamos entdo estabelecer (ii).

Suponhamos um terceiro ponto z3 e seja 2 = 0(z3). Temos D(2y, z2) + D(23,23) =
D(z,0)+D(0, z) = 2(tanh~{(z)+tanh™1(|z|)) = 2tanh~ 1$—+'z— =a  (12) e também

1+z|z|
D(z,2) =2tanh ' |E££|=b  (13).
Como tanh™! é estritamente crescente, a > b se e s6 se %%L > 1 zzl O corolério
da proposi¢do (1) garante que esta dltima relagio é correta e mais, vale a ignaldade se
e 86 se 29 € |21, 23] € [z1, 23] estd contido em um ortocirculo de . ]

Podemos transportar a métrica D para H definindo ai

D'(z1,22) = D(J(21), J (22))
Desta maneira J é isometria relativamente as métricas retificadas. Reforcamos mais
uma vez que as transformacdes de ID(H) continuam isometrias relativamente as métricas
novas. Nao esquecamos que essas isometrias preservam angulos orientados.
Uma isometria de D(H) que reverte a orientacao dos angulos é a inversao por um
ortocirculo.

Proposicao 11. Seja L um ortocirculo de D e oy, a inversdo por ele definida. Entio
oy, € uma isometria de D que reverte a orientagdo de angulos ai.
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Dem.: Podemos supor, sem perda de generalidade, que o, € a inversao pelo didmetro
real de . Assim op(z) = Z. E a restrigdo de uma reflexao euclideana ao disco D. Por
isso reverte a orientagdo dos angulos. Por fim, D(o1(21),01(22)) = 2tanh™! =55 =
D(z, 23) e entdo o, é isometria de D. [ |

Uma inversdo por L é também chamada de reflexao por L ou simplesmente reflexao
deD ( L C D).

Exercicios

1) Defina reflexdo por um ortocirculo de H.

2) Demonstre as proposicdes 2) e 3)

3) Dy nao é aditiva em um didmetro de D. Mostre esse fato.

4) Considere zp em um ortocirculo C. Mostre que a equacéo D(zg,2) =y > 0 tem
exatamente duas solugdes em C' para cada y.

4.2. Caracterizacao das isometrias de ID(H). Como uma reflexdo nao é uma trans-
formacao de Moebius mas é também uma isometria a questdo natural a saber é se
existem outras isometrias que nao sao fungdes de Moebius. A resposta é a seguinte:

Proposicao 12. Seja o uma isometria de D. Entdo ou o € de Moebius ou existe uma
reflexdo oy, tal que o o o, seja de Moebius.

Dem.: Seja ¢ uma isometria e admitamos que ¢ tenha dois pontos fixos distintos.
Apoiados na aditividade de I em ortocirculos concluimos que o fixa aquele C deter-
minado pelos dois pontos. Se ¢ = o¢ temos o 0 ¢ = id e entdo é de Moebius. Se
o # oc¢ existe Py fora de C tal que o(Py) # oc(Ps)(*). Seja C o ortocirculo por Py
que € ortogonal a C.

Como o preserva C1 e D( Py, Qo) = D{(0(P,),0(Qo)) segue o(FPy) = P, pelo exercicio
(4) da seccao anterior. Assim, o fixa CL.

Seja entdo P tal que esteja fora de C U C*. P é dos ortacirculos ortogonais a C e
C’ por P. Como o(P) é dos mesmos, segue o(P) = P e af 0 = id.

Admitames agora que o tem apenas um ponto fixo F. Para P # F consideremos a
rotacdo de D em torno de F' que traz o(P) de volta a P. Segue disto que p o o tem
dois pontos fixos distintos. Af entdo pelo caso anterior 0 = p~! (é de Moebius) ou
oL o0 = p'—l.

Finalmente se o' nao tiver pontos fixos em D seja o/ = 0 oh; ! onde e = 6~1(0). Com
isto 0 é ponto fixo de ¢’. Se o’ tiver dois pontos fixos concluimos ou o = h, ou existe
L tal que 01, 00 = h,. Se ¢’ tiver apenas um ponto fixo neste caso usamos o mesmo
racioncinio do caso anterior para concluir nossa tese. |

Corolario 2. Seje 0 uma isometria em D. Se o preserve dngulos orientados entdo o
€ de Moebius. Caso contrdrio, reverte-os e existe L tal que o o o € de Moebius.

Corolario 3. Duas isometrias de ID sdo iguais se e sd se coincidem em trés pontos que
ndo sdo de um mesmo ortocirculo. Se ambas preservam (revertem) o orientagdo entdo
s@o iguais se e $6 se coincidem em dois pontos distintos.
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Dem.: Suponhamos o e ¢’ isometrias que revertem a orientagao (dos dngulos orienta-
dos) e coincidem em dois pontos distintos. Logo 0,00 e o, 00’ coincidem nos mesmos
pontos se L for o ortocirculo determinados pelos tais. Disto o 00 = o 00’ em D
pois sao de Moebius. Assim ¢ = ¢’. As demais teses sdo consequéncias imediatas da
proposicao 12 e corolério 2. |

Destacaremos a seguir a familia dos ortocirculos de D através da seguinte

Proposicao 13. Se o é uma transformagdo de Moebius de D entdo o € produto (com-
posi¢do) de duas reflexdes por ortocirculos ai. Sendo, supondo o isometria de D, ou é
uma reflexdo ou € produto de trés, ainda por ortocirculos de D.

Dem.: Seja 0 = pgg o h, onde a = 0~1(0). Seja L(E) o ortocirculo ortogonal ao
didmetro de D, que contem a, pelo ponto médio m(0) do segmento [0, a} ([—a, a]). Seja
L' = pg(E). Temos entdo h, = 0g 0 01, € pag = oy o o pelo corolério 2.

E

Assim 0 = g oogoog oo = o oor. Para finalizar, se o nao for reflexdo e nao
for de Moebius o o oy é de Moebius e a tese segue, para M ortocirculo de b |

Vamos conluir esta sec¢ao fazendo uma animagdo das transformagoes de Moebius
sugerida pela proposicdo anterior. Especificamente vamos considerar o subgrupo das
rotaces euclideanas de D, S = {p; : t € R}, e uma translagéo h,, de D, fixada (a > 0).
Consideremos as transformacgoes

oy =pgohg =0p, 00L

Eqg E,
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Exercicios

1) Sejam Py e P; pontos de D e S = {P € D : D(F, P) = D(P,,P)}. Entao S é
um ortocirculo de D. Determine condigées sobre o par {P;, P;} para que S seja um
didmetro de D.

2) Seja o uma isometria cujo conjunto de pontos fixos é exatamente um ortocirculo.
Entéo o é uma reflexao através desse arco.

3) Exiba uma isometria que é produto de trés reflexées e ndo é uma reflexao.

4) Faga uma animacao de transformagées de Moebius em H a partir de uma familia
de translagées ( oy = pg o hy)

4.3. Geometria Hiperbdlica. O "programa de Erlanger”proposto por Felix Klein
(1872) para o estudo de geometria era o seguinte:

Seja G um grupo de transformagoes de uma espago Y ( G é um subgrupo do grupo
das bijecdes de Y com a operagéo de composigdo destas aplicagdes). Consideremos X
subconjunto de Y tal que para qualquer h € G temos h(X) = X e ainda dados z; € 22
em X existe sempre h em G com h(z;) = x2.

Os elementos de X sao chamados de pontos e os de G de transformagdes de pontos
ou movimentos em X. Se uma figura F’ de X (F’ é apenas um subconjunto de X) é
imagem de outra F' através de um movimento em X elas sdo ditas G-congruentes.

Figuras especiais sdo (como no caso de geometria euclideana plana) pontos, retas,
segmentos de retas, circulos, conicas e poligonos. Relagoes habituais entre essas figuras
séo incidéncia (entre ponto e reta ou circulo), paralelismo e perpendicularismo (entre
retas), distancia entre pontos, comprimento de curvas e areas de poligonos. A G-
geometria de X é entdo o estudo de propriedades (de figuras) que sdo invariantes
pelas transformactes de G. Isto é dito de forma um pouco vaga como "o estudo dos
invariantes da agdo de G sobre X”. Vejamos entdo a nogao de agao de G em X.

Definicao 10. A acdo de um grupo G de transformacédes de X, sobre X, € a dindmica
provocada em X pelos movimentos de seus pontos. Mais formalmente a a¢do de G
sobre X € a fungdo a: G x X — X tal que a(h,z) = h(z)

No nosso caso, pelo que foi visto nas secgbes anteriores, tanto faz estudarmos a agao
de M(ID) = grupo das transformagoes de Moebius de I sobre D, como estudar M(H)
= grupo das transformacées de Moebius de H agindo sobre H pois estes sdo isomorfos
via conjugacao por uma isometria de H sobre ID. Mesma consideragao pode ser feita a
respeito das agdes dos grupos de isometrias sobre I e H.

Para o que segue seja M(X) o grupo das transformagoes de Moebius de X bem como
Iso(X) aquele das isometrias de X. (X € {D,H}).

Definicao 11. Um movimento em X € qualquer elemento de Iso(X). Ele é dito prdprio
se for de M(X)

Definicgo 12. Um subgrupo S de Iso(X) € dito a 1-pardmetro (real) se for imagem
homomorfa do grupo (R,+)

A notacao usual é S = {Ah* : t € R} ou simplesmente S = {h*}. Ainda conven-
cionamos gque h! = h é denominado de gerador de {ht} = §.

Definicao 13. O S-ciclo por z em X ou o h-ciclo por z, onde h € gerador de S, ¢
{r¥(z) : t € R}
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Vamos exibir subgrupos (a um pardmetro) de M(X) para cada tipo de transformagao
de X. Como imagem homomorfa de um subgrupo a um parametro ¢ ainda um tal,
vamos nos restringir as transformacoes sob formas normais:

h(z) =142 hi(z) =t+=z
Mz)=pz  h(z)=p'2  (p>0) *)
h(z) = €% .z ht(2) = e*0 2 (8 €R)

Definicao 14. Um h-ciclo é um hiperciclo se h for hiperbélica, um horociclo se h for
parabdlica e ciclo elitico se h for elitica. Em todos esses casos h # idx

Definicao 15. X é denominado de plano hiperbdlico. Cada elemento x de X € de-
nominado ponto desse plano .

Definicao 16. Uma reta hiperbolica de X € um hiperciclo que é um ortocirculo.
Definicao 17. Uma curva equidistante em X € um hiperciclo que nédo € ortocirculo.
Definicao 18. Um circulo hiperbdlico é qualquer ciclo elitico de X.

Algumas consequéncias das defini¢bes sdo as seguintes:

R)) Se h for hiperbélico entéo um tnico hiperciclo de h é uma reta hiperbélica. E
a reta L invariante de h. Os demais hiperciclos sdo curvas equidistantes de L em X.
Isto pode ser visto tomando-se h sob forma normal em H.

Ft( A)
A t(B)

U {oo}

Vt € R D'(A, B) = D'(ht(A), hY(B))

R3) Um circulo hiperbélico é qualquer circulo (euclideano) contido em X. Isto é
justificado pelo exercicio 3 pag 49.

R3) Dados ;1 e 22 pontos de X existe sempre um movimento (préprio) levando um
no outro. Porém um par de pontos € imagem de outro par se e sé se a distancia dos
primeiros é igual a dos Gltimos. Dessa forma Dx € {D, D'} gera um invariante para que
dois pares de pontes sejam congruentes. Tal invariante é o ntimero real ” distancia entre
os elementos de cada par . E pois um invariante da agio de M(X). Logo também
o é da acgdo de Iso(X) porque M(X) estd contido em Iso(X). Os invariantes para
ternos, quadras e n-uplas de pontos em geral sdo dados em fungdo destes mais alguma
condicio.

E invariantes para retas hiperbélicas? Comecemos com:

Definicao 19. Duas retas hiperbélicas L e M de X sdo paralelas se os extremos de seus
arcos determinam ezatamente trés pontos no bordo de X. (0D = S e 6H = RU {co}).
Séo ultra paralelas em X se ndo tém ponto em comum e os extremos de seus arcos
determinam quatro pontos no bordo desse espago.
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Fica evidente que as duas nogoes de paralelismo sao relagoes simétricas porém nao
sdo transitivas. Este é um trago marcante que diferencia a geometria hiperbdlica da
geometria euclideana. Mais:

R4) Dados um ponto 2y de X e uma reta hiperbdlica L ai, com 2zp néo pertencente
L, existem infinitas retas hiperbdlicas M, M C X, por zp tal que L e M sao ultra-
paralelas. Ainda, existe um par Ly e Ly de retas hiperbélicas de X cada uma contendo
zg e tal que Ly e M e Ly e M s3o paralelas.

Vamos introduzir um invariante para pares de retas hiperbélicas ultra-paralelas.
Antes

Definicao 20. As retas hiperbdlicas L e M sdo perpendiculares (entre si) se cortam-se
em dngulo reto pelo ponto comum zy. Dizemos também gque uma é perpendicular a
outra por zg.

R;5) Sejam R e S ultra-paralelas em X. Entao existe uma reta hiperbélica T' de X
tal que T é perpendicular a cada uma delas. Ademais, T é tnica. Para justificar o
resultado, podemos supor que R emana de co. Sendo, usamos um rotacao de angulo
reto pelo ponto médio do arco que a define.

A
R
a.
T
C

b

[®] a
0 o m >

O ponto b em S é definido pela inversao de O segundo o circulo S. Desta maneira T
é a reta hiperbolica por a e b.

Observemos que na construgio de T fica claro que I¥(a,b) é o minimo do conjunto
{D/(z1,22) : z1 € Sez, € R} tendo-se em conta que C é uma curva equidistante de R.
Por isso definimos D'(R,S) = D'(a,b) e este niimero é entdo o invariante de um par de
ultraparalelas. Vale entao:

Rg) Um movimento transforma um par de ultra paralelas em outro se e sé se os
invariantes sdo iguais.

Isto é claro pois se D'(a,b) = D'(c, d) existe o (em M(X)) tal que o{a) =ceo(b) =d
e assim o(T') = T onde T e T” sdo as retas hiperbélicas perpendiculares a cada par.
Logo um par é transformado no outro.

E oportuno aqui observar que se colocarmos orienta¢io nos pares os invariantes sao
somente de Iso(X). Especificamente, suponhamos cada par igualmente orientado. Vale
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entdo Rg para Iso(X), mas o exemplo abaixo mostra que a igualdade dos invariantes
somente é insuficiente para M(X).

Exemplo: Sejam RS ultraparalelas igualmente orientadas e R'S’ = RS ignalmente
orientadas mas de forma reversa a original. Uma reflexdo pela perpendicular comum
valida Rg mas nao existe elemento de M(X) que transforme um par orientado em outro.

No caso de retas hiperbdlicas concorrentes o invariante de M(X) é o 4ngulo orientado.
No caso de I'so(X) é a medida do dngulo (sem orientagdo) que € o invariante.

Continuemos explorando resultados envolvendo a métrica de X. Vamos falar de
comprimento de curvas de X.

Sejam zg e wy pontos de X e C uma curva de X que os liga , isto é: existe fungao
continua ¢ : [0,1] — X com £[0,1] = C,£(0) = 2z e £€(1) = wy. Uma particdo 0 =
o<t < - <tp=1,n>1, de|[0,1], determina uma lista de pontos & = &(tp) =
20,81 = &(t1),.-.,&n = &(tn) = wo que podem ser ligados por segmentos de retas
hiperbélicas, [£;_1,&;], gerando entdo um poligonal 7 inscrita em C. Definamos I(7) =
2iv1 Dx(&i-1,4)-

Se acrescentarmos um novo ponto na parti¢do anterior obtemos dai uma poligonal
7’ que, pela desigualdade triangular de Dy, satisfaz {(n’) > I(w). Definimos entéo:

Defini¢ao 21. I(C) = sup{l(x) : ® € poligonal inscrita em C}

R7) Sejam z; e 29 pontos de X e C uma curva de X que os liga. Entdo I(C) >
l([Zl, z2]) = DX(zly 22).

De fato, [21, 22] € uma poligonal que liga 21 a 23 e assim I(C) > I([21, 22]) = Dx (21, 22)
pela aditividade de Dx em segmentos hiperbélicos.

Seja. C uma curva continua qualquer de X.

Definig¢ao 22. I(C) = sup{l(Cp) : Cp € continua, Cy C C e liga dois pontos de C}.
Defini¢ao 23. I[(C) é denominado o comprimento de C em X.

R7) e Rg) nos dizem que a curva [21, z2] é a de menor comprimento em X ligando z;
a z9.

Rg) Os horociclos e os hiperciclos tem comprimento infinito.

Vamos especializar a férmula para comprimento de curva dada na definicdo anterior.
Para isto vamos assumir que C, C C D, seja retificidvel. Assim, se (t;) é uma particao
de [0, 1] seja (&;) a lista de pontos em C onde & = £(¢;), 0 <i < n, £ :[0,1] — C. Temos
entao:

D(&i-1,&4) = 2tgh™ ' Do(&i—1, &)

Pelo teorema do Valor Médio

D(&i-1,&) = 2/1 —v2Do(&-1,&) 0 < v; < Do(&i-1,&)

n n

IOEDY ﬁDo(&—h&) =3 1—2"—D0(§i—1, &)

02
1 1 n
onde vy, é ajustado em fungao dos £;’s e C. Por fim o processo limite usual nos d4

R
10) . e
- [T=xp
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Definicao 24. Para cada 2 em D dl = T_—%;F|dz| € denomindado o elemento de
arco em (D,D). Ainda, o elemento de drea af é dI* =

Vdr2+dy? , z=z+1iy)

Definicao 25. A drea de uma regido em D €

[ Jiw=res

a—_l‘i—lzvdmdy, (ld=| =

se a integral existir.

Exercicios:

{1) Usando d¢, é(z) = :::1 (& = J1), verifique que o elemento de arco em (H, D')
no ponto w é }JJ% Por conseguinte o elemento de 4rea é ——%3- (w = 2/+iy/).

Im(w
(2) Uma circunferéncia de raio r em (D, D) tem comprimento 1(gual a 2mwsenhr.
(3) Seja R um disco (circular) de raio r (segundo D) em D e R’ o disco congruente
a R com centro em O e com raio euclideano pg. Entéo a drea de R em (D, D)
é 47rsenh2§.
(4) Usando isometrias de H mostre que um tridngulo A de angulos a,3 e v é
transformado em um outro A’ como na figura abaixo.

cos(m — @) 0 cos(B + 6)

Conclua que a drea de A é igual & diferenca das dreas das faixas, com lados
paralelos em comum, subentendidas pelos lados AB e BC
(5) Mostre que a area da faixa de lados paralelos e arco AB é

cos(+4-8) o0 cos(B+8) B+6 _
e P R
z=cos(n—c) LJy=v1—z y? z=cos(m—a) V1 — x2 o sen(t)

(6) Combinamos (4) e (5) e obtemos que a dreade A é 7 —(a+ 8 +6)
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