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GEOMETRIAS

A. CONDE

Estas notas apresentam geometrias planas e usam para tal, o plano identiíicado com
o corpo dos complexos (C. Tomamos a extenção do plano (C juntando o ponto no infinito
e valorizamos as transformações de Moebius. A abordagem adotada não é axiomática
como a de Euclides e sim a de Felix Klein segundo a do programa de Erlangen.

1. NÚMEROS COMPLEXOS

1.1. Lembremos as propriedades que caracterizam o Corpo dos números reais
IR. (A) Adição:
A1. Associativa : x + (g + z) = ($ + 3,1) + z
A2. Elemento Neutro O : x+0=0+m=x
A3. Comutativa : x+y= y+x
A4. Elemento Oposto : m + (—9:) = (—z) + :1: = 0

(M) Multiplicação:
Ml. Associativa : x(yz) = (xy)z
M2. Elemento Neutro 1 : l.:z = a:.l : ac

M3. Comutativa : xy = ya:
M4. Elemento inverso :::“1 ' 1

. x.:F : mªrkl: = 1, pra :B 74 0
(D) Distributiva: x(y + 2) = mg + mz
Um conjunto com duas operações + e . que satisfazem as propriedades acima recebe

o nome de corpo. Os números reais formam então um corpo R. Estes tem entretanto
propriedades extras envolvendo a noção de ordem.
(0) Ordem: R tem uma relação de ordem total que verifica
01. m5y6$'<#=x+x'5y+y'
02. mgye0<z=>zzrz5yz

(C) Completitude
C. Todo subconjunto de R não vazio e limitado superiormente admite supremo.
O corpo ordenado dos reais IR é caracterizado pelas propriedades acima, isto é, qual—

quer corpo ordenado completo é ordenadamente isomorfo a R.
Exercicio: Prove que o corpo ordenado dos reais admite um único automorlismo

que é portanto a identidade.

1.2. A equação z2+1 : O não tem solução real, assim como outras equações do
segundo grau. A tentativa de se ampliar o corpo dos reais a um sistema ”numérico” onde
tais equações tenham soluções, levou a criação dos números complexos. Cardano,
no século XVI, já havia notado esta possibilidade, introduzindo o ”número imar
ginárioª'Jl—l que se costuma denotar por: z'. O nome dado a tal número mostra a
estranheza com que tal descoberta foi sentida. O desenvolvimento dos números com-
plexos teve um impulso no século XVIII com os trabalhos de Euler, mas só no séc
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2 A. CONDE

XIX se atingiu a conceituação adequada atravéz de Gauss, Hamilton e outros. Daí
então Hcou claro que os números complexos são tão concretos quanto quaisquer outros;
tratando—se apenas de uma questão de interpretação no ”corpo da matemática”. Os
nomes de imaginários ou complexos são mantidos por uma razão histórica, mas são
impróprios.

1.3. Os Complexos (C. O conjunto dos números complexos que denotamos por (C,

deve contituir um corpo que contém os reais IR., permitir que a equação mº + 1 = O

tenha solução em C e que seja o mínimo necessário para tal.

1.4. M(2). Denotamos por MQ) o conjunto das matrizes reais 2 x 2, onde temos as

operações de adição e multiplicação de matrizes % É)
Sabemos que M(2), com tais operações, tem propriedades semelhantes as dos números

reais. No caso da adição (A) tem as mesmas. Para a multiplicação falham a comutativa
M3. e a existência de inverso M4.. Vale também a distributiva (D).

A correspondência li que leva o número real a: na matriz diagonal, como abaixo:

x 0h.x—>(0 $)

preserva as operações de adição e multiplicação
h(w + y) = h(x) + M.?!)

Mªry) = h(r)h(y)
e é biunívoca. Isto nos permite identificar o número real a: com a matriz h,(z) e temos
então: R C M(2).

Como observamos, M(2) não satisfaz todas as propriedades de corpo (A), (M) e (D)
como queríamos; porém contem os reais e tem solução para a equação mº + 1 = 0, isto
é, interpretando tal equação em M(2), 1 é a matriz identidade, 0 é a matriz nula e
podemos tomar para a solução a matriz:

(? “J)

—1 02_ªº -(o 4)
eportanto m2+1 =O.

Temos parte do que queríamos pois M(2) não é corpo. Podemos ver entretanto o
que ocorre se nos restringirmos ao mínimo necessário, isto é, podemos considerar um
subconjunto de M(2) que comtenha R, a solução acima da equação arº + 1 = 0 e onde
possamos operar com a adição e multiplicação. Tomemos então todas as combinações
lineares reais dos elementos

1 O
e

O —1

O 1 1 0

me) meM arca sº)=<; aº)

que satisfaz a equação, pois

ou seja
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Designemos tal conjunto por
ª? -—y= a:c (, ,)/ ,yem

Observemos que C contem os reais que são representados pelas matrizes com y = 0
e contem a matriz solução da equação mº + 1 = 0.

Exercício: Verifique que C, com tais operações e' um corpo, isto é, a soma e o
produto de dois elementos de C estão em C, e valem as propriedades (A), (M) e (D)
anteriores, sendo que

0 0 10º=(0 Oel—(0 1)

1.5.

Definição 1. O conjunto apresentado acima C é o como dos números complexos.

Uma matriz (; _zy) de C fica determinada pelos números reais a: e y. Podemos

então estabelecer a correspondência:
c : C —+ R2

e (; ,?) = (x,y)

onde o R2 é o conjunto dos pares ordenados de números reais, com a soma vetorial
conhecida:

(“T, 1!) + (º:/all,) : ("T + $lºg + yl)
A correspondência c é evidentemente biunívoca, sobre e preserva a adição. Como

existe uma multiplicação em C, podemos transporta—la a R2 via c. Vejamos como fica

4; ;º)W)
,,jº; ªªªW [_ ,(31% ;: ) = (331% zm)

«:((;j j,”) (; ”j) = (mmm/www,)
Portanto a operação de multiplicação tranportada para R2 Eca assim:
(ªº, y)(w' , y' ) = (H' — 'W', 3/1 + wy')
Com as operações de adição e multiplicação acima em R2, & correspondência c passa a

ser um isomoríismo de C com R2 e consequentemente, todas as propriedades verificadas
em C relativas à adição e multiplicação valem também em R2. Em outras palavras,
temos R2 como uma outra representação dos números complexos. 0 zero é representado
pela origem (0,0), a unidade multiplicativa é representada por (1,0) e a solução que
esolhemos para a equação 352 + 1 = 0 é dada por (0, 1). Usaremos para esta notação:
(O, 1) = i.

O número real a: passa a corresponder a (a:, O)
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Podemos escrever um ponto genérico (93, y) assim:
(x,y) =a:(1,0)+y(0,1), com (1,0) =1 e (0,1) =z'. Temos
(a:, y)—— 11: + yi e com a multiplicação introduzida temos
iº : -—1 e
(ª? + yi)(z' + 1/2”)—“ (M' — W) + (ªr?/' + fmz”

Como (— i—)2— iº—— —1 temos que as duas soluções de mº + l—— 0 são exatamente i e
—z'.

Vamos fixar para o corpo dos números complexos esta última representação, ou seja
temos outra definição para o corpo dos números complexos, isomorfo ao anterior.
1.6.

Definição 2. 0 como dos números complexos (C tem para conjunto o plano real R2 = C
e para operações, a soma. vetorial e a multiplicação dada por

(m + yi)(m' + 3/1”) = (N' — yy') + (ry' + x'y)'i
onde 2" = (O, 1) e 1 = (1, 0) e' a unidade multiplicativa.
1.7.

Observação 1. Embora trabalhemos com esta definição preferencialmetne, sempre que
útil usaremos o modelo matricial. Portanto o leitor deve se familiarizar com ambos.
1.8. Vamos dar uma interpretação geométrica às operações de (C = R2.

A soma é feita pela regra do paralelogramo e corresponde as translações:
tu (v) = 1; + u

é a translação de C em (C pelo vetor u
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u+v

A

Vamos olhar a multiplicação da mesma forma, isto é, fixemos um número complexo:
u : a + bi e examinaremos a transformação

Lu : C —> C
Lu('v) = um
v=m+m

L,, é linear sobre os reais, pois preserva a soma e permite por escalares em evidência,
ou seja:

Lu('v + o') = u('v + 'a') = uv + uu' : Lu('u) + Lu(v')
Lu()m) = a(àv) : à(u'u) = ALu('u)
Portanto Lu é representada por uma matriz em relação à base canonica de (C = R2

que é
1 = (1,0) ei= (0,1)
Dai temos
Lu(l) =u1=u=a+bi
Lu(i) = ui = (a +In')z' = —b+ ai

e sua matriz é então

a _
b a

Observe que a matriz da multiplicação por u, Lu é exatamente a matriz que repre—
senta H = a + bi quando interpretamos (C C M(2) (1.5)
Portanto multiplicar v = a: + yi por u : a + bi é o mesmo que
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a — :1: _ am — by
b a y

— bz + ay
Como de fato ocorre na forma:
(a + bi)(.7: + yi) : (aa: — by) + (ba: + ay)i

1.9. A transformação de C dada pela multiplicação por u, Lu, se decompõe no produto
de uma rotação por uma homotetia. De fato, seja a matriz de Lu

a —b
(b a )

se a = b = 0 então a rotação pode ser qualquer e & homotetia nula;
se a ou b não se anula então aº + b2 # 0 e podemos escrever

a ——

__ ). a/Ã —b/Ã
b a _ b/A a/A

com A : Vaz +bº. Como (a/A)2+(b/)x)2 : (a2 «l-bº)/(A)2 = 1, temos que existe 0 E R
tal que cosô = a/A e sinº : b/A e aí temos a decomposição desejada

a —b _ 2 2 (3030 —sin0
(b (z)—WL +b<sinº cost?

dada pela rotação de ângulo 0 e & homotetia de razão Vaº + b2

De maneira como foi definido, o 0 que aí está pode ser tomado como o ângulo que o
vetor (a, b) faz com (1,0)

De. igualdade acima, tiramos que
a + bi = Voº + b2(cos(9 + isinô)

1.10. O segundo membro é chamado de reproeentação polar do número a + bi

1.11.

Definição 3. O amamenta do número complexo z = a+bi # O é o ângulo Oque permite
a, representação polar acima,.

9 = mªg(z)

Observe que se 9 é argumento, então 2k1r + 9 também é para k 6 Z e portanto a
igualdade arg(z) : arg(w)é sempre mod(27r)

1.12.

Deíim'ção 4. 0 conjugado de um número complexo z = a; + yi é 2 = a: — yi

1.13. A conjugação como uma aplicação
— : C —> (C

z H 2
é um automoríismo de corpo, isto é:

Ela é a sua prórpria inversa, pois É = z, vale ainda que zã Z 0 e que 2 é real se e só
se 2 = 2.
Exercício: Veriúque as propriedades acima..
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1.14.

Deiinição 5. O valor absoluto do número complexo z é : |z| : x/zã

Exercício: Verifique as seguintes propriedades para o valor absoluto:
1) |Z“)! = IZIIWI

2) |Z+WI 5 IZI + |“)!
3) HZ! - lººl! S |Z - ªº!
4) Se z : A(cosô +isin9) com A real não negativo, então A : |Z]

1.15.

Proposição 1. Dado z e (C e n natural positivo, existe a raiz n-e'sima de z, que
denotamos por (72

Dem: Tomamos 2 na forma polar z = |z|(cost9 + z'sin 0). Por exercícios ante-
riores temos que a = leKcósº/n + isinB/n) é uma raiz n—ésima de 2 pois a" =
(W)"(cosnB/n + isinnB/n) : |z|(cost9 + isin 0) = z. (C.Q.D)

1.16. Existem n raízes n—êsimas de um número complexo z # 0 e estas formam os
n—vértices de um polígono regular de n—lados. Tais vértices estão sobre o círculo de
centro zero e raio W. De fato, temos zº : à(cos 0/n+isin9/n) com A = "' [zl uma
raiz n—ésima de z, onde 0 é um dos argumentos de z, digamos O 5 0 _<_ 27r. Acontece
que para qualquer k inteiro, 9 + 2k7r também é argumento de z e daí o conjunto das
raízes n—ésimas de z depende de k 6 tem a forma polar:

zh : Ã(COS(9+12Lk7r) + isin( 9+12Lk7r ))
Para k = 0 temos a raiz de argumento 0/n tomada inicialmente, Basta examinarmos

o que se passa com o a'rg(zk)

um(zk) = % + kz?“

Estes argumentos são de números distintos para k = 0, 1,2, . . . ,n — 1, para k = n
temos arg(zn) = % + 21r : a'rg(zo)e daí por diante haverá repetição por exemplo,
arg(zn+1) = arg(z1). Para k: < 0 ocorre o mesmo pois: ——kªg— + (n + Mºn—" = 21r
O ângulo entre z,; e zh“ é 27r/n e IzkI = Adaí z0,z1, . . . ,zn_1 formarem os Vértices

de um polígono regular de 'n lados sobre o círculo de raio A = Q/l-z—l

1.17. O círculo unitário S1 é fechado pela multiplicação complexa, pois |zw| = |z| |w| :
1, contem a unidade 1 e os inversos, pois |z_1| = |z|_1 = 1. Portanto S1 é um grupo.
As raízes n—e'simas da unidade 1 estão em Sl, ( dentre elas está a propria unidade)
formam um conjunto fechado pela multiplicação pois (zizº-)" : zgªz? = 1.1 = 1 e
contém os inversos, (zi—1)" : (zi?)—1 = 1. Assim sendo elas formam um grupo finito
com n elementos, digamos In: In C 51.

Seja m : cos 27r/n + isin 27r/n. Então 11) é um gerador do grupo I",, isto é, todo
elemento de In é uma potência de 11). Em outras palavras as raízes n—ésimas da unidade
sao:
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A

1=wº=w” 117112211)"—1
7 , 7 7

Exercícios:
1) Determine todos os geradores do grupo das raízes n-e'simas da unidade In. O que

acontece se n é primo?
2) Para w o gerador acima, mostre que: 1 + 111 + 1172 + ' - « + nin—1 = O, e generalize

para 1 + wk + wmª + º ' — + mºª—Dk : 0 onde n não divide k.

1.18. Temos dado atenção a aspectos algébricos dos números complexos com alguma
interpretação geométrica até agora. A definição de valor absoluto ou norma de um
número complexo z: |z| = x/z_ã é o elemento de ligação dos números complexos, ou
seu lado algebrico, com a topologia do plano de R2 = (C. Observamos que a métrica
euclideana de Rº, ou seja, a distância usual entre dois pontos z = m + z'y e 2' = :17' + iy'
é exatamente, |z — z'| = ((:1: — m')2 + (y — y')2)1/2.

Uma vez que temos as operações + e . em (C que definem (C e temos a topologia
de R2 = (C usual, devemos olhar para a compatibilidade das operações de adição,
multiplicação e inversão, isto é, as funções

a : C x C —> C
(z,z') H z+z'

,u:C><C—+C
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(z, z”) H zzl

j : C — [O)X —> C
2 r—> z—1

são contínuas. C x C é considerado com a topologia produto. Tal continuidade decorre
respectivamente das seguintes desigualdades:
(ª)|Z+Z'-Zo-Zôl S lZ-ZO|+|2'-Zôl
(MHZZ' - Zazá! S IZoIIZ' _ 26! + |Zô|lz — Zel + |Z — ZoIIZ' * 26!

(i)!»f1 - 261! S IZIªIZ — Zollml“1

1.19. Decorre daí que toda função obtida efetuando—se suscessivas operações de adição,
multiplicação e inversão são contínuas e, seu domínio de validade. Como por exemplo
as polinômiais:

p : C —-+ C
p(z) : ELO «z,-zi, ai e C

ou as racionais:

foCC—vC
N) = 5%

onde p e q são polinômios, q # 0 e U é o complementar dos zeros de q.
Nas construção dos complexos, pedimos que existisse solução para a equação $ª + 1 =

0. Na realidade obtivemos muito mais.

1.20. O teorema fundamental da algebra. Todo polinômio de grau positivo com
coeficientes em C tem uma raiz em C.

Dem: Seja p(z) = ELI (z,-z:i polinômio de grau 17, Z 1, donde a,, 7ª 0. Queremos
zo E C tal que p(zg) = 0. Vamos conseguir um tal zo examinando o mínimo para
[p(z)|. Vamos mostrar que |p(z)| tem que assumir mínimo em C e depois provar que
tal mínimo tem de ser O.

IMZ)! = Izl"l%í% ++ + ' ' ' + ª'"— +ªnl
Dado E > O existe r > O tal que Izl > 7“ nos dá cada Iz—Sh-I < e/n. Portanto
ls+£à+w+%+anl z leal—e
Dai vem que para |z| = 2'r > 7'

|p<z>| > (2r)”(lanl — a)
Consequentemente, dado k > 0 qualquer, podemos escolher um e > O tão pequeno

e um r tão grande que teremos |p(z)l > I:: para fora de um certo disco. como os discos
são fechados e limitados, isto é, compactos, concluímos que |p(z)|deve assumir mínimo
num ponto zo & C.

|p(z0)| 5 |p(z)| para, qualquer 2 E C. Basta concluirmos agora que |p(zo)| : 0.
Vamos concluir por absurdo.
Suponhamos que |p(zg)| = 6 > 0.
Vamos mostrar que, neste caso, existe zl & C com |p(z1)| < |p(z0)|; daí o absurdo.

Tomemos uma situação mais específica e sem perda de generalidade normalizemos o
polinômio p(z) para g(z) : c_1p(z + zo).
Assim zo é mínimo com lp(z0)| = c se e somente se, |g(z)| assume mínimo em 0 com

lg(0)[ : 1. Então 9 é da forma:
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g(z) = 1 +bkzk+m +bnz" tal que bk # O,bn #0.
Queremos agora em 21 6 C tal que |g(z1)| < 1. Temos que
l9(z)l 5 l1 + bkzkl + Ibi—+13"CH + ' ' ' + bnznl
Como existe raiz k-ésima de qualquer complexo, temos solução u para bkz'º = —|bkl

e claro que |u| = 1. Para 7” > () temos então que bk(ru)k = ——|bk|rk.

Para o segundo termo vale: nº“
Ibk+1zk+1 + . . . + bai 5 rk+1lbk+1+m+ bnz'íl < rk+l<lbk+1| + . — — + |an)

para [zl : r < 1
Tomando agora ,. < |bk|_k temos 'rlbklk < 1 e se 7' < lbk|([bk+1l + - — - + |!)7,|)_1 temos

lbk+lzk+1 + » - — + buzz! < r'ºlbkl
Daí concluímos que

uma < 1 — lane Habu = 1

Portanto com r como acima e 11 temos zl = ru satisfazendo |g(z1)| < 1 (C.Q.D)

1.21.

Teorema 1. Seja p(z) polinômio com coeficientes em (C de grau 11 _>_ 1. Então existem
z1,zg,...,zn emC tai que
me = %(z—ZI)(z—zz)...<z—a)
Dem: Seja p(z) = il=0 (z,-zi, an # 0,71 2 1

pelo teorema fundamental da álgebra, existe uma raiz zl para p(z), isto é , p(z1) = 0.
Consideremos & divisão de p(z) por (2 — zl)
MZ) = (Z “ 11)P1(Z) + r1(Z)

com grau de r1(z) menor que grau de (z — zl) que é 1. Logo T1(Z) é constante. Mas
substituindo 2 por zl acima temos 0 = 'r1(z1) donde r1(z) é a constante nula.

Conseguimos assim fatorar p em p(z) = (z —— z1)p1(z), temos que grau de pl : n -— 1.
O mesmo raciocínio se aplica a pl e chegamos assim a um 252 tal que p(z) = (z —— z1)(z ——

zº)p2(z). Repetindo o processo chegamos &

P(Z) = (z _ Z1)(Z " Zz) - - - (Z — Zn)pn(z)
Como grau de p é n temos p,, (2) constante e pela multiplicação indicada é o coeficiente

de z", isto é, an. (C.Q.D)

Observação 2. É claro que estas n raízes de p não precisam ser distintas duas a duas.
0 número de fatores em que uma mesma raiz aparece é chamado de multiplicidade da
raiz. Assim podemos escrever
p(z) = %(z — z1)m1(z — 252)?"2 . . . (z - zig)?“

com zi # zj e m,- a multiplicidade de Z,,

1.22. Compactiíicação de C. A introdução do ponto 00 (infinito) torna o espaço mais
apropriado ao estudo das funções complexas. Como veremos adiante, por exemplo,
funções do tipo p/q quociente de dois polinômios, que em (E tem problema com os
zeros de q, estarão definidas no espaço todo. Por outro lado, o nosso espaço tem uma
interpretação geométrica simples, será a esfera de dimensão dois S2 .

O espaço métrico (C = R2 não é compacto mas todo ponto tem uma vizinhança
compacta, por exemplo, um disco, isto é, ele é localmente compacto. Neste caso existe
um processo para se ”compactificar”o espaço introduzindo—se um novo ponto, 00 que
se costuma chamar de infinito.
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1.23.

Definição 6. Seja 00 um elemento não pertencente a C e 'r a topologia de C
(E = «: U [00]

e uma topologia ? em C

A e "F (=) A e 7' ou AC (complementar de A em C) está em C e é compacto aí.
(C, ?) é o compactificado de C
Exercícios: ,.
1) Veriãque que de fato, '? é uma topologia em C e que induz 7 em C.
2) Se Dn é o disco de centro 0 e raio n > O inteiro, de C; mostre que a família

(DãlneN de subconjuntos de C é um sistema fundamental de vizinhanças do infinito
00.

O espaço C foi uma ampliação de C onde levamos em conta apenas a estrutura
topologica. Queremos agora considerar a estrutura algébrica de C e ver como a mesma
poderia ser ampliada a C mantendo-se sua compatibilidade com a topologia, isto é, de
modo as nossas operações permanecerem contínuas segundo a topologia de C.

1.24. Definições:
Adição: aEC, ai—oo=oo+a=oo
Multiplicação: a e C, a # 0, aoo : ooa = 00, ooº : 1

Divisão: aeC a/oo=0 e a7£0 a/O=oo
É de facil veriíicação, usando sequencias e a topologia dada a C que :

A axpiviçãowassim extendida É continua
+:CxC—[(oo,oo)]—>C
A multiplicação também

N
. : C x C— [(O,oo),(oo,0)] —> C
Assim pomo a divisão
:; f: x cc _ [(oo,oo),(0,0)] _» (6

Observação 3. Não é possivel se extender continuamente a adição a oo+oo pois dado
a E C qualquer, existem sequencias (zn) e (22) convergindo para 00 cuja soma converge
paraa. Basta tomarzn=n e zÇL=a—n temos que zn+z,'I =n+a—n=a,
Portanto não podemos especificar a de modo a preservar a continuidade.
Verifique que o mesmo ocorre para os demais casos omitidos

Ooo=? oo/oo=? O/O=?
Observe ainda que:
00 não tem oposto pois 00 + a = 00 no entanto existe —oo : (—1)oo = co
00 não tem inverso pois ooa = 00 no entanto existe (>e—1 : 1/00 : 0
Assim sendo, com excessão dos quatro casos oo+ 00, 000, 00/00 e 0/0 as operações

estão bem definidas e são continuas.

Do ponto de vista algébrico a nova situação ficou um pouco estranha, isto é, demanda
um certo cuidado, mas do ponto vista topológico ficou ótima, como veremos a seguir.
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1. 25. Um homeomorfismo de (É com a esfera Sº, a projeção estereográíica.
Seja Sº: [(Ç,n,ÇÇ)m]R3/Ç2 + nº + Çº—-— 1] a esfera unitária do R3
Vamos identificar o plano complexo (C: Rºcom o plano dos eixos de € , 1]. Portanto

1 = (1,0) = (1, 0, 0) e i = (O, 1) = (0, 1,0). O círculo unitário S1 C C passa então a ser
o equador de .5'2

Sejam N = (0,0, 1) o ”polo norte”e S = (O, O, —1) o ”polo sul”.
Definamos agora a projeção estereográfica:

7r : S2 -— [N] —> (C

"(577770 = (x,y)
onde (x:, y) 6 (5,17, Ç) estão alinhados com o polo norte N, como na figura acima.

Calculemos uma. expressão analítica para 'E.

Queremos determinar A tal que
à((êmí) —(0 0 1))+(0 0 1)= (ªas/,O) ºu
(A5, AÚ7A(Ç _ 1) + 1)—_ (l', 97 0)7 dºnde
::=/Kg, y=An, A(Ç—1)+1 =0donde
_ 1 _ € __A—É,$—1_Ç,y——lj_z.
Portanto

«(en,ç) = (ªgf)
Como tiramos o polo norte, Ç < 1 e temos acima uma função contínua.
Vemos pela geometria. que 7r tem inversa. Calculemos então & mºema.
Temosquezr=1—É—Ç , y=1—7_7? e£2+n2+Ç2= ].
Seja. (a:, y)_— x + iy. Temos quelª_ __ 2+ 2

zz— xº + y2 IHã1=C (JV—Cj11_C
Dondel+zz=1—-2—ÇeÇ= zz
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Substituindo temos 5 = 1332 e 77 = 173% ou & = Izª, 77 = zFT???
A inversa de 7r tem então a expressão

“'1(z)=(â%ai%%)
que é também Eontínua, W é portanto um homeomorfismo de .S'2 — [N] em C

Temos C C C = C U (00). 7r—1 se estende continuamente a C pondo 7r—1(oo) = N e
portanto o mesmo ocorre com 7r , 7r(N ) = 00.
É fácil perceber a continuidade geometricamente pois (zu) —> 00 se e somente se,

(7r_1(zn)) -+ N . Podemos ve-las também das expressões analíticas.
Assim sendo temos a extensão

7r : S2 —+ C

como um homeomorfismo. Topologicamente, C nada mais é do que a esfera S2 onde C
corresponde o complementar de [N].
Assim sendo, ao trabalhamos com C podemos pensar no plano R2 assim como em

S2 —— (N) e ao considerarmos o ponto 00 podemos pensar em Sº. (O espaço natural
para desenvolvermos a teoria das funções complexas é de fato Sº)

Podemos transportar a estrutura algébrica de C para S2 pela projeção estereográfica
assim:

7r : 82 ——> C
19 '—> 7r(p) = 2

10 + «1 = r_1(7r(p)+ ”(CD)

pq = «4%qu
p/q = flww/“(QD

Observe que o ponto infinito, que na esfera é o polo norte N, não se distingui dos
demais pontos de 32, do ponto de vista topologico. A diferença ocorre apenas no
aspecto algebrico e neste sentido o zero e a unidade também são especiais.
Como 1r é um homeomorflsmo, a estrutura topológica (os abertos) do plano C = R2

corresponde, por 7r à estrutura topologica (os abertos) da esfera Sº. O mesmo não
ocorre com as métricas usuNais de C e Sº.
Vamos identificar S2 = C. Assim a métrica usual de S2 como subespaço de R3 tem

a seguinte expressão para z e z' ”finitos”.
_ _Jírí'l_d(Za Z,) _ 2[(1+z3)(1+z'?)11/º

Dividindo ambos os termos da fração por |z' | e agora tomando % : 00 temos
d(zvºº) =É?

1.26.

Definição 7. Chamamos de esfera de Riemann a esfera .5'2 com a estrutura complexa
proveniente da identificação de S2 com C

A projeção estereográíica,
Tr : 5'2 —> C,

além de preservar as topologias, preserva círculos e ângulos, como veremos a seguir.
Vamos expressar a equação de um círculo com variável complexa.
O círculo de centro a e raio 7“ > O é o conjunto
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Sr(a) =[ze C/lz—a| =r)CC=R2
A equação então de um círculo no plano C

[2 -— al = 7' ou
[2 — a|2 = T2 ou

(7: — a)(E—ã) = T2

1.27. zi -— ã'z — a2+ aii — T2 = 0. Um círculo S na esfera S2 está também num plano
P do R3

C = S2 0 P
Portanto a equação de um círculo S na esfera .5'2 pode sr escrita como a equação de

um plano em R3 com as variáveis restritas aos pontos da esfera, isto é
82:£2+772+Ç2=1

P:A£+Bn+CÇ+D=0
Com A, B, C e D reais. '

Observe que para que exista o círculo é preciso que a distância da origem do R3 ao
plano P seja no máximo igual a 1. Nesta situação limite o círculo se reduz a um ponto,
o de tangencia de P com S'2

Vamos expressar 5,77, C em função de z e (C Via projeção estereográflca. Vimos então
que

& _ 34.3 _ iíE—z! Ç _ zE—l
'— 1+z'z' — 1+zE _ 1+z3

Pondo na equação de P temos:
A-ª—ââ + Bulª—z; + C—Ííãê + D = º

donde
A(z+3) +iB(z —E) +C(z?z'— 1) +D(1 + z'z') = O

donde
(A—z'B)z+(A+iB)E+ (C+D)ZE+D — C= 0 ou
(G+ D)z2+ (A+z'B)z+ (A+z'B)ã+D — C = 0

Esta equação em 2 e 'z' é semelhante a equação do círculo no plano (C em (1.27).
Examinaremos inicialmente o caso em que o coeficiente de z'z' é nulo, isto é,

O + D = 0
Ficamos com

(A—Bz')z+ (A+Bi)'z'+D —C= 0

Para 2; = :1: + iy temos
(A—Bi)(.r+iy) + (A+Bz')(a:—iy) +D—C =O

2Am+2By+D—C=0
Esta é a equação de uma reta r no plano (C, se A ou B não nulo.
Chegamos a asta equação com condição de C + D = O e portanto o plano

P :A£+Bn+CÇ+D=0
passa pelo polo norte N = (O, O, 1), como se nota também facilmente geometricamente
pois a projeção 7r leva o círculo S de 52 numa reta de (C = R2 e portanto o plano do
círculo deve conter N.
Só os círculos de S2 por N é que vão em retas de (C com «(N) = 00.
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(A“

A
Suponhamos agora O + D # 0. Estamos assim com uma equação do tipo

1.28. azE+Bz+Bã+fy=0. a =C+D ,6=A+Bi 7:0—0
com a e 7 reais, a # O que podemos supor a > 0

Na equação de (1.27) temos um fator ?“2 que determina o raio do círculo. Vamos
introduzi—lo na equação acima, assim

z2+ãz+gí+g +r2 =r2 ou
az2+ãz+62+7+ar2 : arº 01 > 0

Para chegarmos na equação do círculo devemos ter então
cry — [33 =_—a27'2 isto é,

_ a'y —— BB _<__O pois _rº = z2+ Éz+gz+ %% = (z+ g)(3+ %)

e a equação em (1.28) é de um círculo se e só se

av — 62? 5 0

pois assim tomamos rº : 535? e temos o raio do círculo como sendo r e o centro —%

Se associarmos a equação (1.28) a matriz (% É) a condição para que represente
um círculo é det(M) g 0. Acabamos de verificar o seguinte

1.29.

Proposição 2. A projeção estereogm'fica 7r : S2 —> (É lem circula em ”circulo, Aqueles
que passam por N=(0,0,1) são levados em retas de C. (uma. reta de C e' uma reta de
C união com [m])

Chamaremos também as retas de C de círculos infinitos, ou pelo infinito oo.
Queremos verificar agora que a projeção estereográfica preserva ângulos entre círculos.

1.30. Na figura acima, a reta TN tangencia 7r_1('r) em N e portanto tangencia Sº em
N. O mesmo vale para a reta TGV. O círculo 7r_1('r) e r estão no mesmo plano e portanto
TN também, já que tangencia 7r—1('r). Como r e rNsão ainda paralelas ao plano R2 = C
são então paralelas entre sí.

rN//'r
O mesmo vale para r' e rJN
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rw/r'
Assim sendo, os ângulos determinados por (r,7" ) e (TN, r'N) e que se correspondem,

são iguais
Seja «[z] : r 0 T' e p = 7r“1(z). Queremos analisar o ângulo formado por 7r_1(r)

e 1r“1(r' ) em p e as retas tornadas 'I'N e TSV se cortam em N. Ocorre porem que há,

uma simetria na configuração 7r_1(r) U 7r"1 (r' ) em relação a um plano perpendicular
do segmento que une N a p, passando pelo ponto médio.

Esta simetria diz que os ângulos indicados na. figura acima entre TN e TQ, e rp e T;,
são iguais. Ao girarmos r para r, no sentido anti—horário o mesmo ocorre de 77»; pra Tiv
(observando-se de fora de Sº) e o oposto ocorre com o giro de T,, para T;. Portanto se
quisermos que 7I'_1 (e portanto 7r) preserve, além dos ângulos o seus sentidos também
devemos tomar a orientação de S2 com a normal para dentro, ou seja, o sentido positivo
de giro é o de entrada do ”saca rolhas”.

Provamos acima então a seguinte proposição:
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1.3 1 .

Proposição 3. Orientando-se os ângulos do plano C no sentido anti—horário e os de
Sº no sentido horário (visto de fora), a projeção estereogrãâca 77 preserva ângulos entre
círculos inclusive a orientação,

2. As TRANSFORMAÇÓES DE MOEBIUS

2.1.

Definição 8. Uma transformação de Moebius é uma hinção do tipo

o : (& —> &

(z) _ az + b
o _ cz + d

ºnde, a, b, c, d sãº elementos de (C e ad — bc # 0.

Observação 4. a. Tomemos z # O e dividamos ambos os termos da fração
a + b/z
c + (1/2

Para z = 00 as operações fazem sentido e temos

o(z) :
a(oo)=a/c

b. Asolução cz+d=0;z=—d/c nos dáoponto que vai paraooopois
— d — d bc —

o(—d/c)= a/c+b= a+ :bc ad=
O Oc 0

já que bc—ad7É0
c. No caso (2) acima aparece já uma boa razão para se pedir na definição, que ad —

bc # 0, mas a razão e' mais forte ainda. Esta condição nos garante que a transformação
o seja inversível.

az+b ,o(z)-w- cz+d nos da, paracz+d7é0
'w(cz+d) = —dw+b
z(c'w—a) = —dw+b

Para tirar o valor de z precisamos de em — a # 0, ou. seja, w # a/c mas para z finito
w : a/c não ocorre pois deveríamos ter

az+b
cz+dacz+ad=acz+bc

ad=bc
ad—bc=0

a/c=

contra a hipótese.
Logo para em — a 7ª 0 para z finito e podemos escrever

—d b
a'1('w) : z : ___w+cw — a

e temos a inversa de o, com da — bc # 0.

As transformação de Moebius são portanto homeomorfismos de (E em (É



18 A. CONDE

2.2.

Proposição 4. O conjunto de todoas as transformações de Moebius M, com a operação
de composição formam um grupo.

Dem: A identidade i : & —> (E tal que i(z) = z é evidentemente de Moebius. Já
vimos que todo a e M tem inversa 0—1 e M. Falta apenas veriíicar que para a e o' em
M & composta, (to—1 e M.

a'z + ()

c'z + d'a(z) _ az + b

cz + d

talquead- bcaé0ea'd' —.b'c'7é0
«1553 + b _(aa' + bay; + (ab' + M)
cãº—ªg: + d (de + c'd)z + (b'c + dd')

Tem o formato certo, devemos verificar a condição:

(aa' + bc')(b'c+ dd') + (ab! + bd')(a'c + c'd) # 0

Mas desenvolvendo chegamos &:

(ad — bc)(a'd' — b'c') # 0

Portanto a composta é de Moebius e M é um grupo. (C.Q.D).

o'(z) =

oo' : a(o')

2.3.

d

de Moebius o(z)= ““Lª, a condição ªd _ bª ?ª O é exatamente º dªt (ª Z) # 0“

Observação 5. (a) Se associamos a matriz complexa 2 x 2: (ª b) a transformação

(b) Olhando a expressão composta ao] acima vemos que a matriz que dá oo' é ex-
] I I

atamente o produto das matrizes: a b a bl, = a'a + bc' ab' + bd,
c d e' d a c + c'd b'c + dd

(c) O conjunto das matrizes complexas 2 x 2 com determinante não nulo, GL(2,C)
forma um grupo com a operação de multiplicação. O que vimos acima diz que a corre—
spondência

h : GL(2,(C) —» M

b az + b
h a =_((c d))(z) CH d

e um homomorjismo de gmpo.É claro que e' sobre. Ela não e' entretanto bium'uoca pois

h((ª; Z)>=h<k<('; à)»; kaªº
Por exemplo, as matrizes que vão na identidade são exatamente as diagonais

(a a);
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2.4. Observemos que uma transformação de Moebius genérica
az b

a(z) :à, ad—bcsé0

pode ser obtida pela composição das seguintes:
(a) translação: T(Z) = z + e
(b) multiplicação: ”(z) : fz
(c) inversão: i(z) = %

De fato:
se 6 = 0 temos a(z) : %z + à que vem da composição :: «_» %z v—> %z + %.

paracaéo pomos o(z) = a_n—74.5 ecalculamosres obtendo r : ªbç—ªd e s = % A
composiçãoéentão zr—rczr—rcz—l—dHàHa—ÍÉH “LH-%s
Representando a composição na forma matricial, isto é, considerando-se as matrizes

como em (2.3), temos:

& 11'1 !; cª'od d : d d e(o 1) (o 1) (o 1)

(“2 ZH? % ?)(ºí % % íª)

Façamos agora uma análise geométrica dos três tipos de transformações que geram
os demais

2.5. A translação a(z) = z + b. Em (E

Se b=0 temos identidade. Se b # 0 este determina um feixe de retas paralelas ( com
o oo em comum) e a tranlação move os pontos ao longo destas retas, isto é, o feixe fica
invariante pela translação e a(oo) = 00.
Em S2
A projeção estereog'ráflca relaciona aquele feixe de retas paralelas (pelo infinito)

com um feixe de círculos tangentes entre sí no ponto N = 00. Portanto a translação
interpretada em Sº deixa tal feixe de círculos invariantes e desloca os pontos ao longo
dos mesmos. O ponto N fica fixo pela tranlação.

2.6. A multiplicação a(z) : az. Em (E e com a real
Neste caso, o feixe de retas pela origem é que fica invariante. Trata-se aqui de uma

homotetia se a > 0 ou o negativo de uma tal se (1 < 0. Temos dois pontos fixos a(O) = O

e a(oo) = 00 e estes são os únicos se a 75 1.
Para a não real e la! = 1 temos
o feixe de círculos cocentricos, com centro na origem deixado invariante por 0, pois

esta é exatamente a rotação de ângulo 0 = a'rg(a). a tem dois pontos fixos a(O) = 0 e
a(oo) = 00.
No caso em que a não é real e la! yª 1, a não deixa nenhum feixe de círculos ou retas

invariantes. a contínua deixando 0 e co lixos. Há um feixe de curvas entretanto que
são invariantes. São as espirais:

z = eªº(cos(ÉTa-rz + k) + isin(ã?z[m + k))

com k constante real (para cada espiral) e :17 o parametro real da mesma. Verifique que
az está na espiral.
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z+b

os pontos se movem ao longo destas espirais dãlocando-se do ângulo 0 : a'rg(a),
0 < 0 < 27r. A figura acima representa o caso Ia! > 1.

Vejamos agora como fica a representação geometrica da multiplicação em Sº.
a(z) : az, a real

a(z) : az, [al = 1 e a não real
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a(z) = az , a não real e

2.7. A inversão a(z) = N'“ . Emõ:

A. CONDE
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Temos os pontos fixos qªl) = 1 , a(—1) = —1 e a(O) = oo, a(oo) = 0.
Uma transformação de (C, relacionada com esta e que admite uma análise simples e

a conjugada de 0
©?Ti:—>

5(2 V

Nll

“Ó!

observe que É não é de Moebius.
se |z| : 1 temos z? = 1, donde

1
o(z) = % = z

e portanto ? é identidade quando restrita, ao círculo unitário S 1.

Em) = oo e
Ú(oo) = 0

sezECz#Otemos
argÚ(z) : —arg(5) = arg(z)

e portanto z e E(z) estão na mesma semi—reta e

Iõ(z)ll7«| = I;! = 1

Então a transformação E em C é a inversão segundo o círculo unitário

Sabemos da geometria elementar que a inversão no plano leva retas em círculos pela
origem e vice-versa, que preserva ângulos e inverte orientação.
Como a conjugação em C leva círculos em círculos e retas em retas, preserva, ângulos

e inverte a. orientação concluímos que:
O : (C ——+ (C

1
2 H --

z
que é a composição de “a” com a conjugação, leva círculos em círculos, retas (que são

círculos infinitos) em círculos pela origem, preserva ângulos e orientação.
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.
K+

,%
Duas retas tem o ooem-comu-m. Escolhidas as orientações para as mesmas, definimos

o ângulo no 00 como o ângulo num ponto Bníto com orientação oposta. Observe que
assim, cr preserva ângulo e orientação mesmo no 00

N7

Na figura acima representamos õ“. Observe que o ângulo em 2: que corresponde ao
ângulo em 0 é o mesmo inclusive em orientação. Quando compomos com a conjugação
para obter cr este se inverte. Assim, com a definição que demos para o ângulo no 00
seu valor e orientação são preservados.

Anah'semos a inversão agora. na esfera Sº. Nesta ela tem uma descrição bastante
simples pois é a rotação de ângulo 1r que deixa 1 e -1 Exos.
De fato a(l) = 1, a(—1) = —1, a(O) = 00, a(oo) = 0 e 0'(Z) = E, se |Z! = 1 e portanto

não pode ser a reflexão em relação ao plano equatorial. Para concluir, basta verificar

que a(z) = — preserva a distância na esfera.
z
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2lz—z'l
d(Z, z') = ———((1+ ZEXI + X?)?” =

1 1 .d(;, ;) (verifique)

2.8. As transformações de Moebius preservam círculos, ângulos e orientação. Esta
conclusão vem do fato de translações multiplicações e inversão terem tais propriedades
e geram por composição aquelas.

A inversão a(z) : % sendo uma rotação na esfera, deixa invariante o feixe de círculos
”paralelos”com centro em 1 (ou —1). Este feixe interpretado no plano, é o feixe com
centro no eixo real e ortogonal ao círculo Sl

#

O eixo de (0,1) pertence ao feixe e é o círculo pelo 00.

2.9. Os exemplos que temos analisado tem um ou dois pontos fixos; a não ser que seja
a identidade, com todos fixos. Tal fato é geral:

az + b
cz+d=znosdaa(z) :

az+b= z(cz+d) donde

czz+(d—a)z—b=0
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que é uma equação do segundo grau em 2 se 6 # 0. Portanto teremos uma solução se
(d—a)2+4bc =O eduas caso contrário. Sec: 0 temos: (d—a)z—b= 0, se d—a7E 0
temos umasoluçãozg=d—ÍE, c=0ed=0nos dáb=0e

o(z) = z
é a identidade. Então se a tiver três pontos fixos é a identidade.

2.10.

Proposição 5. Dados zl, 22, z3 distintos em C e w1,w2,w3 distintos em (C , existe uma
única transformação de Moebius o tal que:

o(a) = wl
a(zz) = wz
0%) = 103

A Dema-“Vejamos inicialmente a unicidade.— Sejam a e r de Moebius com
o(zi) = T(Zi) para. 1" = 1,2, 3.

Então o o 'r'l(zi) = z,- como a o 7—1 é de Moebius e tem três pontos Exos, temos
o o 1—1 = I. Portanto

o = T

Para construir 0 vamos supor inicialmente que z,- 7£ oopara z' = 1,2, 3. e wl = 1,
1112 = 0 e 1113 = 00.

Daí podemos escrever diretamente
ª(z) = 42123/“ª?

zl = 00 pomos (I(z) : %%
zz : oo pomos a(z) = ªzL—“z—zf—

23 = 00 pomos o(z) = Eªi—7232-

Podemçs agora produzir o caso geral a partir destes Dados zl, zz, 23 e wl, 102, w;,
T(zl) = º = ”(ml)
T(22) = 1 = 77002)
T(23) = º = "(ms)

Então o = 77—1 o T é a solução. (C.Q.D)

2.11. Dizemos que duas transformações de Moebius o e 'r são equivalentes quando
existe uma transformação de Moebius 17 tal que

a : 777'17—1

Neste sentido podemos enunciar

2.12.

Proposição 6. Toda transformação de Moebius o é equivalente a uma translação T ou
a uma multiplicação u.

T(Z) = z+ b “(z) = az
cr # I verifica o primeiro caso se e só se a tem um único ponto jim-o. Portanto o segundo
se verifica em caso contrário.

Dem: Suponhamos 0 com um único ponto fixo zo
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º(a)) = Zn

Consideremos ”(z) : 7%, portanto 77(z(,) = 00. Daí temos que non—1 (00) = 00 e este
é o único ponto fixo de non—1 pois

77077—191) = 21 =? GCD—1%» = 771021)

e n_1(21) é ponto fixo de o, logo n1(z1) : zo e zl : 77(z0) = 00.
Se 5 = non—1 tem apenas o 00 fixo então 5 é uma translação pois se

az + b
g(Z) _ CZ+d

temos que g(oo) = % : oo, donde (: = 0. A equação de determinação dos pontos fixos e'

czº+(d—a)z—b=0
donde(d—a)z——b=0ez=d—É_aez=ooseparãa=deãexpressãode£íica

b
€(Z)—2+ã

Suponhamos agora o com dois pontos fixos o(zo) = zº # 21 : o(zl).
Consideremos "(z) = Z_ ªº, n(z0) = O e n(z1) : oo.“ 1

Seja & : nan—1, então g(oo) : ooe €(0) = 0.

az + b
g(z) _ cz + d

€(oo)=%=oonosdác=0
b ,£(O)=—ã=0nos dab=0, donde

& = %
(con)
Observação 6. 5 : non—1 e' chamado também de conjugada de cr por n. Passar
de o para E e' uma espécie de mudar de referencial ou observar de modo diferente o
”mesmo”fenômeno topológico. & e a tem as mesmas propriedades geométricas. Sabe—

mos que as transfomnações de Moebius preservam circulos, ângulos e orientação. Se
a deixa um círculo C invariante então & deixa invariante o círculo 17(C). Assim feixes
invariantes por 0 vão em feixes invariantes por € .

2.13. Dados dois círculos C1 e C2, em (C o conjunto dos círculos S ortogonais & ambos
61 e C; é chamado de um feixe de círculos. Se C1 e 62 tem um só ponto em comum,
então o feixe de círculos que C1 e Cz determinam é chamado de feixe parabólico. Se
61 e Cg tem dois pontos em comum então o feixe é hiperbólico. Se C1 e Cg não tem
ponto em comum o feixe que eles determinam é chamado elítico.
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Exemplos em (E

Parabólicas

Hiperbólicas

Elíticas

Se ZF (01,65) é o feixe determinado pelos círculos C1 e Cg de C observe que se 81 e
52 são círculos de ]: (01,62) então C1 e Cg estão no feixe determinado por S; e Sg, ou
seja, os feixes f(C1,C2) e .?(31,52) são mutuamente ortogonais. Para ver isso basta
levarmos, por uma transformação de Moebius, os exemplos da esquerda acima nos da
direita, pois fica óbvia a ortogonalidade dos feixes f(Cl, Cg) e f(Sl, 52).

Caso parabólico:
Se Cl n Cg : [zo] o feixe 301,62) é formado por circulos que se tangenciam em

[zo]. Tomemos a de Moebius com
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a(zo) : 00
Assim, o feixe f(Chcg) vai no feixe f(a(C1),a(Cg)). Mas a(Cºo), a(Ce) são retas
paralelas e portanto o feixe correspondente é o de retas paralelas, todas ortogonais &

a(Cºo) e 0'(C€). Consequentemente o feixe que contem a(Coo) e a(Ce) também é de retas
paralelas e temos & ortogonalidade mutua, o memso então valendo para. suas imagens
inversas por a

eo C$(C )C GQ)
Cl

Cf(ºg)

02

º(Cp)

Caso hiperbólico
C1 0 C2 = (za, zl]. Neste caso tomamos a de Moebius com

a(zg) = 0 e a(zl) = 00
e aplicando o mesmo argumento acima,.

Cl

02
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Caso elítico
Dados COO e CE que não tem ponto em comum, tomamos dois círculos 51 e 52

ortogonais a ambos Cºo e CE e estes tem dois pontos em comum zo e zl. Daí procedemos
como no caso hiperbólico. Obtemos a mesma configuração.
Se ]: é um feixe de círculos, denotamos por fl o feixe perpendicular a .7: . Então

temos
]: parabólico :) fl parabólico
]: hiperbólico (:) fl elítico

Chamamos também fl de dual ou conjugado de ]: .
Temos então uma geometria que envolve pontos, círculos, ângulos e orientação. O

conjunto das transformações de Moebius M é um grupo de transformações que preser—
vam tais elementos. Portanto raciocinarmos numa configuração é equivalente a fazer-
mos o mesmo com sua imagem por qualquer transformação de Moebius. Se estamos
trabalhme em C, procuramos sempre envolver o zero ou o infinito para termos retas,
feixe de círculos cocentricos, etc. Quando usamos a esfera de Riemann já. não faz muita
diferença.
As transformações de Moebius não preservam em geral a distância euclideana de

C. Mais precisamente as únicas que preservam são as rotações, translações e suas
composições.

2.14. Observe que a inversão segundo um círculo C em (É ou a reflexão segundo uma
reta R (que chamaremos também de inversão) pode ser dada em termos de círculos e
ortogonalidade.
Exercício:
1) Prove que se a é transformação de Moebius e (z, z' ) são inversos segundo O então

(o(z),a(z' )) são inversos segundo a(C).
2) Usando o exercício (1) e a noção de equivalênica (2.11), mostre que a composição

de duas inversõeg segundo círculos 01 e 02 de (É é uma transformação de Moebius.
3) Seja X C (C. Verifique que o conjunto das transformações de Moebius a deixam

X invariantes, isto é, a(X ) = X formam um subgrupo de M.
4) Se X C (É é um círculo ou uma reta ele divide (É em duas regiões A e B. Verifique

para a em Mcom a(X) : Xi)sezg EAea(zo) €Aentãoa(A)CA
ii) se zo G A e a(zo) & B então O'(A) C B e a(B) C A (Dê um exemplo

deste caso)
5) Mostre que se a é uma transformação ( homeomorâsmo) de (E que preserva círculos,

ângulos e orientação então ela é de Moebius.

2.15.

Definição 9. Se uma transformação de Moebius deixa um feixe parabólica ou hiperbólico
ou elítico invariante (cada, círculo) ela recebe respectivamente o nome do feixe de
círculos conjugado. Caso ele não deixe nenhum feixe invariante e' chamada Loz—

odrômica,

6) Verifique que uma transformação de Moebius:
parabólica. é equivalente a uma translação;
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hiperbólica é equivalente a uma homotetia;
elítica é equivalente a uma rotação.
7) Escreva uma homotetia de razão A como composição de duas inversões em círculos

C] e 02 de C
8) Se a é parabólica, hiperbólica ou eh'tica toda equivalente a ela o será respectiva-

mente. N
9) Se a deixa um círculo de (C invariante cr não é loxodrômica.
Na esfera, os feixes de círculos acima descritos correspondem aos das figuras abaixo,

com as mesmas definições, pois a projeção estereográfica preserva círculos e ângulos.
Parabólico e seu conjugado, também parabólico, por um ponto genérico da esfera.

Elítico e seu conjugado, hiperbólico por dois pontos genéricos da esfera.

2.16. Existem alguns subgrupos do grupo das transformações de Moebius que quere-
mos destacar:

1) O semiplano de Poincaré.
N

Seja P o semiplano superior de (C
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P=[z€õ / Im(z)20 ou 2:00]
Seja Mp C M o subgrupo das transformações de Moebius que deixa P invariante

aeMpêaeM e a(P)=P
Vamos descreve—las por suas expressões analíticas

az + b—; ad -— bc # O
cz + d

Como a(P) = P e a tem inversa então a leva os reais nos reais incluindo 00, assim
como sua inversa.

///2(//7//._“
Sejam º(zl) = 1, a(zz) : 0 e O(Z3) = 00. Então 21,22,Z3 são reais (ou 00). Como os

pontos e respectivas imagens determinam cr podemos esrcevê—la com coeficientes reais.
az+b
“Em, ad—bC7ÉO

a(z) =

a(z) =
a, b, c e d reais.
Para saber se a preserva o semiplano superior basta examinar 0 num ponto de P,

digamos i.( 2.14 exercício 4)
, ai + b

(I(z) _ ci + d
e devemos pedir Ima(z') > 0. Vejamos

ai+b __ (ai+b)(d—ci) _ bd+ac+ (ad—bc)i
cz" + d _ c2 + dº _ cº + dº

Portanto a condição Ima(z) > O é equivalente a ad — bc > 0.
P juntamente com o grupo de transformações Mp é chamado de semiplano de

Poincaré.

2) O disco unitário
N

Sejam D o disco unitário de (C e MD o subgrupo das transformações de Moebius que
deixam D invariante.

aeMpêaeM e a(D)=D
Como a tem inversa temos que o círculo unitário é também invariante

a(81)= S1
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Vamos determinar as transformações de MD usando o conhecimento que temos das
transformações de semiplano de Poincaré. Para isto tomamos uma 5 e M tal que

€(D) = P
por exemplo, podemos tomar 5 assim

80) = 1

&(—i) = 0
g(i) : oo donde
WFÉHÉW
g(z) : [2121

Como 5 preserva círculos temos que Sl vai em R U foo). Para saber se o disco D vai
um P basta ver onde vai o zero.

, €(0)_=ri E P. , ,

Observe agora que a E Mp se e somente se 5—105 & MD. Calculemos tomando as
matrizes que representam estas transformações

az + b

cz + (1

onde a, b, c e d são reais quaisquer que satisfazem ad —— bc > 0. Então temos apenas
a b a b
(c d)comdet(c d)_ad—bc>0

z + i
Z =a )

iz + 1

Uma transformação genérica de MD é então do tipo
5105

portanto tem para matriz de coeficientes

l 1 —i a b 1 i _l (a+d)+(b—c)i (b+c)+(a——d)i
2»—'i 1 c d i 1 —2 (b+c)—(a—d)i (a+d)—(b—c)i

Como a, b, c, (1 são reais quaisquer, apenas com ad — bc > 0, os números complexos
que aparecem na primeira linha são quaisquer. A divisão por 2 é irrelevante e temos
que a matriz de uma transformação genérica de MD é do tipo

e f(? a)
Como esta tem o mesmo determinante que o de a a transformação de MD é do tipo

ez +
fz + ?

Daí temos e 74 0 e podemos expressa—la de outra maneira.

+ %
_ e z + %

%z + 1 9 %z + 1

a(z) =

i
1

. 1
com matriz (i

T(Z)= com eê—f—f>0

f(Z) =
6 , . ' . ..Como : tem norma 1 este e do tlpo eºº. Fmalmete podemos escrever entaoe

T(Z) e —Ãz+ 1
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Portanto, T E MD é uma composição de uma transformação do tipo
2 — h

—Ãz + 1

com uma rotação de ângulo 0. Como a rotação está em N[D temos T também em iªi/ID.

Observe que h = .É, logo [hl < 1 e que 'r(h) = O e ”f(li) = 00 e que h e % são inversos
um do outro segundo o círculo S 1.

sªut-ª

Vejamos que os pontos fixos de 'r também são inversos um do outro segundo S1, se
não estão em Sl, isto é, 'r(zo) == zo e zoª #1.
De fato, seja

T(z)=a_z+b, então
bz+ã

1 â+bT(==z_º ou
20 %+ã

(1)_a+bz0_ª_5+az0_
_ m+5 _1_—-_1____1_ 1

—(b%+a) "Twº) ”zº _z—O

, 1 » _ 1 1 -Se zo esta em S entao zo _ fã e pode haver um outro ponto fixo zl em S indepen-
dente.
Exercícios:
&) Seja a E M hiperbólica. Mostre que seus pontos fixos são inversos um do outro

segundo algum círculo invariante por a.
b) Se um ponto fixo 29 6 D de a 6 Mp, é interior a D, então a é hiperbólica e existe

7" & MD tal que 7'O'T_1 é uma rotação.
c) Se a & MD tem um único ponto fixo zo, este está em Sl, 0 é parabólico e portanto

equivalente a uma translação.
(1) Se O' 6 Mp tem dois pontos fixos zo e zl com zo em 51 então zl deve estar também

em S1, a é elitica e portanto equivalente a uma homotetia.
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3. ROTAÇÓES DA ESFERA

As rotações da esfera S2 correspondem em (INI, Via projeção estereográíica, a trans—

formções de Moebius particulares.
Pelo exercício (5) de (2.14) e pelo fato da projeção estereográãca preservar círculos,

ângulos e orientação temos que as rotações da esfera produzem em (C transformações
de Moebius. Vamos determinar suas expressões analítioas.
Uma rotação a tem dois pontos fixos na esfera p e —-p, se 7r é projeção estereográfica

e «(p) = zo então 7r(—p) : _Él'õ (Verifique),
Seja T(Z) =%, isto é, 'r(z(,) = 0 e T(—%) = 00.
O feixe hiperbólico de círculos determinado pelos pontos zo e —% é levado por T no

feixe de círculos centrado na origem. Portanto a transformação
rar—1 = p

é de Moebius, tem 0 e co fixos e deixa invariante o feixe de círculos de centro zero,
sendo então uma. rotação

p(2) = %
com [u] = 1

a : T_lpT
Para obtermos uma matriz para O basta multiplicarmos então

1 zº u 0 1 —z0 __5 1 0 1 "56 1 —

_ mªmã —UZO+ZO _— ªbª—%% “Zoª-H _

_ u 0 1+ízgã ——zo+ãz0_ 0 1 wªza-rã uz025+1)
Temos então uma matriz do tipo

'a 0 a b
0 1 6 &

a(z) =ufª- com lu] = 1
—bz+ã'

isto é,

a e b quaisquer.
Podemos expressa-1a de forma mais simples assim,
Sea=0

a(z)=u——_b—Bª ou

1
= -- =1.a(z) vz,|v|

Sea7é0
à

a(z)=ug Z+ª ou
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z — c
a(z) — ”fêz-Ii , I'ul — 1

Como a identidade é deste tipo (c=0, V=1) e a composição de duas rotações é uma
rotação temos que a composição de duas dos tipos acima é do mesmo tipo. Temos
então um subgrupo Msz de M, que corresponde ao grupo das rotações de Sº. Observe
que I usada acima é também rotação. As do tipo

2 — a
ãz + 1

correspondem a rotações de S2 cujo eixo de rotação passa pelo equador, isto é, seus
pontos fixos estão em 51.

T(Z) =

4. ROTAçõEs E TRANSLAÇÓES EM 111)

Já vimos que uma transformação a de M que deixa ID) = [z E (C tal que |z| < 1]
invariante é da forma:

o(z) =ª com [al > lb] (1)

Operando com a expressão sem alterar o podemos chegar a:

ª(z) = %%%&—1 (º)
onde 21 = -—ª e da) = 0 com |z1| < 1. Como % tem norma 1 temos que % = eiª,
donde

a(z) : eiª—;Z—zzjr—l

Se pg é a rotação de centro zero e ângulo 9 de 1D) e

hz: (Z) : “lª—1
temos a decomposta em:

a = pg 0 hz1

Observe qne h,zl é uma transformação hiperbólica de ID com dois pontos fixos.
Se zl = re“? então os pontos fixos são 51 = “P e «52 = —e'ªp

hzi (z) =%hzdzl) = º hZ1(0) = —21 (3)
hzác) = d hdd) = º'
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Vamos analisar algumas consequencias da decomposição dada em (2), isto é

a = pg 0 hz1

i) a fixa o centro de 1D se e só se a é uma rotação euclideana. Se a fixa zo # 0 temos
que a é conjugada (nan—1) a uma rotação euclideana pa. Como pa roda um diametro de
1D) de um ângulo a, a ” roda”um ortocírculo por zº de um ângulo a também. Chamamos
cr de rotação de ID).

ii) Suponhamos zo e zl pontos distintos de 11). Então h fixa zl e zo se e so se h é a
função identidade (isto decorre de (i)), logo duas transformações de III) são iguais se e
so se coincidem em dois pontos distintos aí.
iii) Seja então a : pg 0 hz1 como em (2). Se p,, é a rotação euclideana com centro O

e ângulo razo temos a : pg 0 p,r op,r o hzl : p(9+,,) o (p" o hzl) (4).
A transformação OJ = p7r o hz1 é dada por

º'(Z) = iªi-Z; (5)

e mais oJ(0) = zl e a'(zl) = 0. Como o' tem um ponto fixo em 1D) da forma Azl
(0 < )— < 1) segue que a é uma rotação em 1D) em torno do seu ponto fixo e de ângulo
razo (por (ii)). Concluindo:
Cada transformação de M que deixa. ID invariante é produto de duas rotações em

ID uma sempre euclidiana. Ainda a é também produto de uma ,,translaçãoliem D por
uma rotação euclideana em 1D).

Exercicios
1) Considere a = pg 0 hz1 como em (2). É possível a decomposição a : pg 0 hª com

22 # zl? Justifique a resposta. Ainda, responda e justifique a mesma questão quando
cr é a composta de duas rotações.

2) Considere G = [hzl : zl e ID)], hzl como em (3). G é um grupo para a composição
de transformações? Justifique a resposta.

3) Seja zl E D, zl # 0. Considere I = [tzl : t e [0,11). Seja 5 um círculo cujo
diâmetro seja ] . Construa um ortocírculo T em D que seja ortogonal a S e também a
seu diâmetro ] . Conclua que T 0 I é o ponto fixo de p7r o hzl.

4.1. Métricas em ID). Afim de entendermos melhor as transformações de M que deixam
1D) invariante vamos procurar propriedades de pares de pontos de 1D que não se alteram
quando transformados por tais funções de 1D). Na verdade estamos interessados em
metrizar 1D) de sorte que suas transformações de Moebius sejam isometrias. Vamos
então imitar um procedimento euclideano para esse fim.

Consideramos no plano euclideano uma lista de quatro pontos, Pl, Pg, P3, P4
P

Pg
3

P4
P1

Uma condição necessária e suficiente para que exista uma isomeria euclideana levando
[PI, Pg] sobre [P3, P4] é que as translações Pl — P2 e P3 — P4 tenham o mesmo módulo.
Na nossa situação vale o seguinte:
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Lema 1. Seja zl,z2,w1,w2 uma lista de elementos de 11). Existe então uma trans-
formação o de 1D) com o(zi) : wi (z' = 1,2) se e so se os números h22(z1) e hwº(w1)
tem o mesmo módulo.

Dem.: Admitimos a em ID tal que o(zi) = wi. A transformação h = hm o a o hg; é
de D, lixa zero e h(hZz (z1)) : th('w1). Por (i), h é uma rotação euclideana e com isto

lhzz(21)l = Ihw2(w1)l (6)

Suponhamos que valha (6). Logo existe 0 e .5'1 tal que ewhz2(z1) = hw2(w1). É
imediato então que o = hg; o pg 0 hª leva zi em wi, (i = 1, 2). I

Em vista desse resultado definamos para os para de pontos de 1D)

DO(zmz) = lha/zl)! = Jª'—ªL (7)[l'—Ézzll

Vale então:

Proposição 7. D9 e' uma métrica em lll).

Dem.: É claro que DO(z1,z2) = DO(z2,z1) e este número não é negativo, é zero se e
só se zl = 22. Resta estabelecer que se z1,zz,23 são pontos de 1D) então DO(z1,z2) +
DO(22,23) 2 DO(zl, z3). Pelo lema anterior não há. perda de generalidade supormos
zl = a: > 0,z2 = 0 e 23 = z. Temos então que mostrar que DO(m,0) + DO(O,z) Z
D0(1L',Z), 011 sejª, a,“ + [ZI Z |1z—_:z|'

É suficiente para isto provar que

%Zªpma0<x<le0<lzl<l (8)

Temos
14—le 2 _ 1+2z|z|+mª|zlª—1+mz+]zl2—mºlz|2 _ l—mº l—zº

(I—l—zlzi) “ 1+2m|z|+zº|z[2
2

_2
1 _ %%%&"? (9)

(Ifrjznº = 1 —%ªi (10)

Subtrajndo (10) de (9) temos

(1 —zº><1 —zº)(.1_—;z,z — ª?) = (1 =xº)(1 — mªmi-';; 71352“ )2 0 (11)

.
Corolário 1. A igualdade (11) e' satisfeita se e so' se R(z) = —[z|, isto e', se e so' se
z, 0,11: são colineares. Mas isto equivale a dizer que z1,z2,23 estão nesta ordem em um
ortocírculo de D,

A proposição & seguir engloba o lema (1) e a proposição (7) no contexto do semiplano
H = [z e (C : Im(z) > O] e pode ser facilmente provada.

Proposição 8. Seja z1,z2,w1,w2 uma lista de elementos de H. Existe então uma
transformação a' desse espaço tal que o(zi) = m.; (i=1,2) se e só se [J(h22(z1))l =
|J(hw2(w1))l-
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z—zo
yo”Aqui, hª, é definida por hz(,(z) = Z0_— zo + z'yo & IHL Mais, Dô(zl,z2) :

|J(h22 (z1))| é métrica em El.

Pela boa definição de Dô, através de um cálculo direto, obtemos

Proposição 9. A transformação J : lHI ——» 1D) satisfaz pam zhzz em lHl

DO(J(ZI)7J(Z2))= ô(zi,22)
Estas últimas proposições podem ser entendidas da seguinte forma: DO(Dô) é função

distância entre os pontos de H))(lHI). As transformações de ID)(IHI) são DO(Dô)—isometrias.
Por fim, J é uma isometria entre H e 1D).

Vamos retificar as métricas D0 e Dê pois são limitadas e ainda, não satisfazem &

propriedade de aditividade nos segmentos de ortocírculos, ou seja, 22 é do segmento
[z1,Z3] se e só se D(z1, 22) + D(z2,z3) : D(Z1,23).
A métrica que procuramos é da forma D = fo De onde f : [O, 1] —-> IR+ é estritamente

crescente e ilimitada. Escolhendo g : tania,"1 (inversa da tangente hiperbólica) ou uma
sua múltipla cg (e > O) resolvemos a questão. Tomaremos f = 2tanh_1. Formalmente
temos

Proposição 10. Existe uma métrica D em 1D tal que
(i) D = f o Do
(iz) D(z1,z2) +D(z2,23) = D(zl,23) se e só se 7,2 E [z1,23] e [z1,23] e segmento de

um ortocírculo de 1D).

Dem.: Sejam z1 e 22 pontos distintos de 1D). Estes determinam & e 52 (em S 1) que são
os extremos do ortocírculo de 1D) determinado por 21 e zz. Podemos supor que a ordem
no arco é a de 52 para 51 e a disposição da quadra é &zzzlãl. Seja a uma transformação
de 1D) tal que a(52)_— —1,a(zz) : 0,0(z1) = a: > 0 e a(êl) = 1. Definimos então

D(z1,z2)—_ 2tanh 1(:L')=ln1—+ªª,:1:= DO(z1,z2)
Por construção D—_ f o Do onde f : 2tanh 1. Ainda D(z1,zz) = D(22,Z1) e este
número não negativo é zero se e só se zl : zz. Vamos então estabelecer (ii).
Suponhamos um terceiro ponto z3 e seja. 2 : a(z3). Temos D(z1, Zz) + D(z2, 23) =

D(x, O) +D(0, z)_— 2(tanh_1(rc)+tanh—1(|z|)) : 2tanh1%—_ a (12) e também
D(:z:, z)_— 2tanh“1[m_z|_— b (13)
Como tanh1 é estritamente crescente, a > b se e só se I—H-L > Ill—__ªl. 0 corolário

da proposição (1) garante que esta última relaçãoe correta e mais, vale a igualdade se
e só se 2»; € [zh Z3] e [z1,23] está contido em um ortocírculo de 1D). .

l—xz

Podemos transportar a métrica D para lHI definindo aí
D'(z1, Zz) = D(J(21),J(Z2))

Desta maneira J é isometria relativamente às métricas retificadas. Reforçamos mais
uma vez que as transformações de IDGHi) continuam isometrias relativamente às métricas
novas. Não esqueçamos que essas isometrias preservam ângulos orientados.

Uma isometria de lD?(lH[) que reverte a orientação dos ângulos é a inversão por um
ortocírculo.

Proposição 11. Seja L nm ortocírculo de 1D) e (TL a, inversão por ele definida. Então
UL e' uma isometnía de ID) que reverte a orientação de ângulos aí.
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Dem.: Podemos supor, sem perda de generalidade, que (TL é a inversão pelo diâmetro
real de D. Assim oL(z) : 5. E a restrição de uma reflexão euclideana ao disco 11). Por
isso reverte a orientação dos ângulos. Por fim, D(oL(z1), aL (z2)) : 2tanh—1 ªªi-fl :
D(zl, 22) e então UL é isometria de lll). '
Uma inversão por L é também chamada de reflexão por L ou simplesmente reflexão

de 1D ( L C D).
Exercícios
1) Defina reflexão por um ortocírculo de H.
2) Demonstre as proposições 2) e 3)
3) Do não é aditiva em um diâmetro de 1D). Mostre esse fato.
4) Considere zo em um ortocírculo C. Mostre que a equação D(zo, z) = 3; > 0 tem

exatamente duas soluções em C para cada y.

4.2. Caracterização das isometrias de DGH). Como uma reflexão não é uma trans-
formação de Moebius mas é também uma isometria a questão natural a saber é se
existem outras isometrias que não são funções de Moebius. A resposta é a seguinte:

Proposição 12. Seja a uma isometria de 1D). Então ou a e' de Moebius ou existe uma
reflexão O;, tal que a o UL seja de Moebius.

Dem.: Seja 0 uma isometria e admitamos que o tenha dois pontos fixos distintos.
Apoiados na aditividade de lll) em ortocírculos concluímos que o fixa aquele C deter—
minado pelos dois pontos. Se o = 00 temos o o 00 : id e então é de Moebius. Se
a # oc existe Po fora de O tal que o(PO) # ao(P0)(*). Seja C'l o ortocírculo por PO

que é ortogonal a C.
Como a preserva Oi e D(Po, QO) = D(U(P0), o(Q0)) segue o(Po) = Pg pelo exercício

(4) da secção anterior. Assim, o fixa Cl.
Seja então P tal que esteja fora de C U Cl. P é dos ortocírculos ortogonais & C e

C” por P. Como o(P) é dos mesmos, segue o(P) : P e aí a : id.Admitamos agora que o tem apenas um ponto fixo F. Para P # F consideremos a
rotação de ID) em torno de F que traz o(P) de volta a P. Segue disto que p o o tem
dois pontos fixos distintos. Aí então pelo caso anterior a :: p—1 (é de Moebius) ou
O'L O Cf = p—l.
Finalmente se o não tiver pontos fixos em 1D) seja o' : ooh;1 onde a : aª(O). Com

isto 0 é ponto fixo de o! . Se o' tiver dois pontos fixos concluímos ou o = hª, ou existe
L tal que 01, o o : ha. Se 01 tiver apenas um ponto 6x0 neste caso usamos o mesmo
racioncínio do caso anterior para concluir nossa tese. .
Corolário 2. Seja a uma isometria em ]D. Se a preserva ângulos orientados então o
e' de Moebius. Caso contrário, reverte-os e existe L tal que UL o o e' de Moebius.

Corolário 3. Duas isometrias de 1D) são iguais se e só se coincidem em três pontos que
não são de um mesmo ortocírculo. Se ambas preservam (revertem) a orientação então
são iguais se e só se coincidem em dois pontos distintas.
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Dem.: Suponhamos o e oi isometrias que revertem a orientação (dos ângulos orienta-
dos) e coincidem em dois pontos distintos. Logo oL o o e oL o o' coincidem nos mesmos
pontos se L for o ortocírculo determinados pelos tais. Disto al, 0 o : aL o o” em 11)

pois são de Moebius. Assim o = o' . As demais teses são consequências imediatas da
proposição 12 e corolário 2. .

Destacaremos a seguir a família dos ortocírculos de 1D) através da seguinte

Proposição 13. Se a é uma transformação de Moebius de ID então o' é produto (com—
posição) de duas rejiexões por ortocírculos aí. Senão, supondo o isometria de 1D), ou é
uma reflexão ou é produto de três, ainda por ortocírculos de 1D).

Dem.: Seja o = me 0 ha onde a = o_1(0). Seja L(E) o ortocírculo ortogonal ao
diâmetro de D, que contem a, pelo ponto médio m(0) do segmento [O, a] ([——a, a]). Seja
L' = pg(E). Temos então hª = 03 o 01; e p29 = cry 0 03 pelo corolário 2.

E

A
&'

Assim o : (IL: o (IE o O“); o (TL : al,: 0 al,. Para finalizar, se a não for reíiexão e não
for de Moebius o o CTM é de Moebius e a tese segue, para M ortocírculo de 1D .

Vamos conluir esta secção fazendo uma animação das transformações de Moebius
sugerida pela. proposição anterior. Especificamente vamos considerar o subgrupo das
rotações euclideanas de D, S = “[Pt : t e R], e uma translação ha, de 1D), Exada (& > O).
Consideremos as transformações

at=p2toh =oEtooL
Eo Et

E

A,
“'ª'

ªtoUO
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Exercícios
1) Sejam P(] e P1 pontos de 1D) e S = [P 6 1D) : D(P0,P) : D(P1,P)]. Então S é

um ortocírculo de ID). Determine condições sobre o par [PI,P2) para que S seja um
diâmetro de 1D).

2) Seja a uma isometria cujo conjunto de pontos fixos é exatamente um ortocírculo.
Então o é uma reflexão através desse arco.

3) Exiba uma isometria que é produto de três reflexões e não é uma reflexão.
4) Faça uma animação de transformações de Moebius em El a partir de uma família

de translações ( ot : pg 0 ht)
4.3. Geometria Hiper-bélica. O ”programa de Erlangerlªproposto por Felix Klein
(1872) para o estudo de geometria era o seguinte:

Seja G um grupo de transformações de uma espaço Y ( G é um subgrupo do grupo
das bijeções de Y com a operação de composição destas aplicações). Consideremos X
subconjunto de Y tal que para qualquer h e G temos h(X ) : X e ainda dados ml e 1132

em X existe sempre h em G com h.(rc1) : mz.
Os elementos de X são chamados de pontos e os de G de transformações de pontos

ou movimentos em X. Se uma ngra F' de X (F, é apenas um subconjunto de X) é
imagem de outra F através de um movimento em X elas são ditas G—congruentes.
Figuras especiais são (como no caso de geometria euclideana plana) pontos, retas,

segmentos de retas, círculos, cênicas e polígonos. Relações habituais entre essas figuras
são incidência (entre ponto e reta ou círculo), paralelismo e perpendicularismo (entre
retas), distância entre pontos, comprimento de curvas e áreas de polígonos. A G-
geometria de X é então o estudo de propriedades (de figuras) que são invariantes
pelas transformações de G. Isto é dito de forma um pouco vaga como ”o estudo dos
invariantes da ação de G sobre X”. Vejamos então a noção de ação de G em X.

Definição 10. A ação de um grupo G de tmnsformações de X, sobre X, é a dinâmica
provocada em X pelos movimentos de seus pontos. Mais formalmente a ação de G
sobre X e' afunção a : G x X —> X tal que a(h,a:) = h(x)
No nosso caso, pelo que foi visto nas secções anteriores, tanto faz estudarmos a ação

de MUD) = grupo das transformações de Moebius de 1D sobre 1D), como estudar MUHÍ)

: grupo das transformações de Moebius de 11-11 agindo sobre 151 pois estes são isomorfos
via, conjugação por uma isometria de H sobre ll). Mesma consideração pode ser feita a
respeito das ações dos grupos de isometrias sobre 111) e lili.

Para o que segue seja M(X ) o grupo das transformações de Moebius de X bem como
Iso(X ) aquele das isometrias de X. (X e [ID, H)).
Deíinição 11. Um movimento em X e' qualquer elemento de [so(X) Ele é dito própm'o
se for de M(X )

Definição 12. Um subgrupo S de Iso(X ) é dito a l—parâmet'ro (real) se for imagem
homomorfa do grupo (IR, +)
A notação usual é S : [ht : t 6 R] ou simplesmente S = [ht]. Ainda conven—

cionamos que h1 :: h é denominado de gerador de [ht] : S .

Definição 13. O S—ciclo por a: em X ou o h—ciclo por a;, onde h e' gerador de S, é
“f(x) : t e R]
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Vamos exibir subgrupos (a um parâmetro) de M(X ) para cada tipo de transformação
de X. Como imagem homomorfa de um subgrupo a um parâmetro é ainda um tal,
vamos nos restringir às transformações sob formas normais:

h(z)=1+z ht(z)=t+z
W) =m ,

”(Z) = pªz
,
(p > 0) (*)

h(z) = eººz ht(z) : eªtºuz (0 € IR)

Delinição 14. Um h-ciclo é um hipercz'clo se h for hiperbólica, um horocz'clo se h for
parabólica e ciclo elz'tico se h for elítica. Em todos esses casos h 75 MX

Definição 15. X é denominado de plano hiperbólico. Cada elemento x de X é de-
nominado ponto desse plano .

Definição 16. Uma reta hiperbólica de X é um hiperciclo que é um ortocírculo.

Definição 17. Uma. curva equidz'stante em X e' um hiperciclo que não é ortocírculo.

Definição 18. Um círculo hiperbólico é qualquer ciclo elítico de X.

Algumas consequências das deúnições são as seguintes:
R1) Se h for hiperbólico então um único hiperciclo de li é uma reta hiperbólica. É

a reta L invariante de h. Os demais hiperciclos são curvas equidistantes de L em X.
Isto pode ser visto tomando—se h sob forma normal em H.

(A)
A t(B)

Uoo)

Vt & R D'(A, B) : D'(ht(A), ht(B))
R2) Um círculo hiperbólico é qualquer círculo (euclideano) contido em X. Isto é

justificado pelo exercício 3 pág 49.
R3) Dados 271 e 122 pontos de X existe sempre um movimento (próprio) levando um

no outro. Porém um par de pontos é imagem de outro par se e só se a distância dos
primeiros é igual a dos últimos. Dessa forma DX e (D, D') gera um invariante para que
dois pares de pontas sejam congruentes. Tal invariante é o número real ”distância entre
os elementos de cada par ”. É pois um invariante da ação de M(X) Logo também
o é da ação de Iso(X ) porque M(X ) está contido em Iso(X) Os invariantes para
ternos, quadras e n—uplas de pontos em geral são dados em função destes mais alguma
condição.
E invariantes para retas hiperbólicas? Comecemos com:

Definição 19. Duas retas hiperbólicas L e M de X são paralelas se os extremos de seus
arcos determinam exatamente três pontos na banda de X. (811) : S1 e ôlHI : RU (cc))São ultra paralelas em X se não têm ponto em comum e os extremos de seus arcos
determinam quatro pontos na borda desse espaço.
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'Fica evidente que as duas noções de paralelismo são relações simétricas porém não
são transitivas. Este é um traço marcante que diferencia a geometria hiperbólica da
geometria euclideana. Mais:

R4) Dados um ponto zo de X e uma reta hiperbólica L aí, com zo não pertencente
L, existem infinitas retas hiperbólicas M, M C X, por zo tal que L e M são ultra-
paralelas. Ainda, existe um par L1 e L2 de retas hiperbólicas de X cada uma contendo
zo e tal que L1 e M e L2 e [W são paralelas.
Vamos introduzir um invariante para pares de retas hiperbólicas ultra-paralelas.

Antes

Definição 20. As retas hiperbólicas L e M são perpendiculares (entre sí) se cortam-se
em ângulo reto pelo ponto comum zº. Dizemos também que uma é perpendicular a
outra por za.
R5) Sejam R e S ultra-paralelas em X. Então existe uma reta hiperbólica T de X

tal que T é perpendicular a cada uma delas. Ademais, T é única. Para justificar o
resultado, podemos supor que E emana de co. Senão, usamos um rotação de ângulo
reto pelo ponto médio do arco que a define.

A
R

a. T

C
b

IT .
0 O'm '

O ponto b em S é definido pela inversão de O segundo o círculo S . Desta maneira T
é a reta hiperbólica por a e b.

Observemos que na construção de T fica claro que D' (a, b) é o mínimo do conj unto
[D'(z1, zz) : zl & Sezz & R] tendo-se em conta que C é uma curva equidistante de R.
Por isso definimos D' (R, S) = D' (a, b) e este número é então o invariante de um par de
ultraparalelas. Vale então:
Re) Um movimento transforma um par de ultra paralelas em outro se e só se os

invariantes são iguais.
Isto é claro pois se D'(a, b) : D'(c, d) existe a (em M(X)) tal que o(a) = c e a(b) = d

e assim a(T) = T' onde T e T' são as retas hiperbólicas perpendiculares a cada par.
Logo um par é transformado no outro.
E oportuno aqui observar que se colocarmos orientação nos paras os invariantes são

somente de I so(X) Especificamente, suponhamos cada par igualmente orientado. Vale
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então R6 para Iso(X ), mas o exemplo abaixo mostra que a igualdade dos invariantes
somente é insuficiente para M(X)
Exemplo: Sejam RS ultraparalelas igualmente orientadas e R'S' = RS igualmente

orientadas mas de forma reversa a original. Uma reflexão pela perpendicular comum
valida R6 mas não existe elemento de M(X ) que transforme um par orientado em outro.
No caso de retas hiperbólicas concorrentes o invariante de M(X ) é o ângulo orientado.

No caso de ]so(X ) é a medida do ângulo (sem orientação) que é o invariante.
Continuemos explorando resultados envolvendo a métrica de X. Vamos falar de

comprimento de curvas de X.
Sejam zo e wo pontos de X e 0 uma curva de X que os liga , isto é: existe função

contínua & : [0,1] —» X com &[O, 1] : (7,5(0) : 29 e g(l) : wo. Uma partição 0 :
to < tl < < tn, : 1, n 2 1, de [0,1], determina uma lista de pontos &) = g(tg) =
743,51 = £(t1),... ,gn = g(tn) = um que podem ser ligados por segmentos de retas
hiperbólicas, [$$—4, &], gerando então um poligonal 7r inscrita em C. Definarnos l(7r) :Sºl DX (fi—hªil
Se acrescentarmos um novo ponto na partição anterior obtemos daí uma poligonal

7r' que, pela desigualdade triangular de DX, satisfaz l(7r' ) _>_ l(7r). Definimos então:

Definição 21. Z(C) : sup,,[l(7r) : 7r é poligonal inscrita em C ]

R7) Sejam zl e zº pontos de X e C uma curva de X que os liga. Então I(C) Z
l([Zl, Z2D : DX(Z17 z2)'
De fato, [zh 22] é uma poligonal que liga zl a 22 e assim Z(C) 2 Mm, zzl) = DX (21, Zz)

pela aditividade de DX em segmentos hiperbólicos.
Seja C uma curva contínua qualquer de X.

Definição 22. I(C) : sup[l(Cg) : Co e' contínua, Cg Ç O e liga dois pontos de 0].
Definição 23. KG) é denominado o comprimento de C em X .

R7) e R3) nos dizem que a curva [zh Zz] é a de menor comprimento em X ligando zl
a Zz.
R9) Os horociclos e os hípercíclos tem comprimento infinito.
Vamos especializar a fórmula para comprimento de curva dada na definição anterior.

Para isto vamos assumir que C, C C D, seja retificável. Assim, se (t,) é uma partição
de [O, 1] seja (&) a lista de pontos em C onde & = g(ti), 0 5 z' 5 n, & : [O, 1] —+ C. Temos
então:

Dªi—1,50 = 2tgh—1D0(€i—1, &)
Pelo teorema do Valor Médio

Dez--be) = 2/1 — sªlºns—4, &) 0 < vz- < Unªi-him")

“”) =E àDOGi—hfi) =z —2'—D0(€i—1, &)_21 1111”
onde vn é ajustado em função dos &ºs e C. Por fim o processo limite usual nos dá
R10)

“C) —
2|dC|-/Q 1- w
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Definição 24. Para. cada z em 1D) dl : Tªg?—Idª e' denomindado o elemento de

arco em (D, D). Ainda, o elemento de área aí e' dl2 =
y/d1122+dy2 , z=z+iy)
Definição 25. A área de uma região em D é

// frª-mí???

dedy, (|dzl =

se a integral existir,

Exercícios:

(1) Usando dê , & (z) [ªf—1 (£: J"1), verifique que o elemento de arco em (El, D')
no ponto 11) é Iªn—05. Por conseguinte o elemento dearea é ªªi—%,;- (w-— a:+iy '.)Im w

(2) Uma circunferência de raio 7“ em (D, D) tem comprimento água] & 27rsenh7ª.
(3) Seja R um disco (circular) de raio ?“ (segundo D) em 1D) e R' o disco congruente

& E com centro em O e com raio euclideano pg. Então a área. de R em (ID, D)
é 41rsenhªg.

(4) Usando isometrias de H mostre que um triângulo A de ângulos (1,6 e 7 é
transformado em um outro A' como na flgura, abaixo.

cos(1r — a) 0 COSUJ + 9)

Conclua que a área de A é igual à diferença das áreas das faixas, com lados
paralelos em comum, subentendídas pelos lados AB e BC

(5) Mostre que a. area da faixa de lados paralelos e arco AB é
ººº<º+º> ºº msm“) me _

z=oas(7r—a) 'y=x/11—z:ã y2 z=ººª(7r_ºi) v 1 — :L'2 7r—a sen(t)

(6) Combinamos (4) e (5) e obtemos que a área de A é 'E — (a + B + 0)
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