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Abstract. We use group algebra methods to study cyclic codes over finite

chain rings and under some restrictive hypotheses, described in section 2, for

codes of length 2pn, p a prime, we are able to compute the minimum weights
of all possible cyclic codes of that length.

1. Introduction

Let R be a finite commutative ring with unity. A linear code of length n over
R is a submodule C of Rn. A linear code C is cyclic if, for every codeword x =
(x0, . . . , xn−1) ∈ C, its cyclic shift (xn−1, x0, . . . , xn−2) is also in C and many of the
important codes in use are of this type. It is well-known that cyclic codes of length
n over a ring R can be identified with the ideals of the group ring RA, where A is
the cyclcic group of order n.

The Hamming weight of an element in Rn is the number of its non-zero coordi-
nates. We denote by w(C) the minimum weight of the code, which is the smallest
Hamming weight of non-zero elements in the code.

A commutative ring R is a chain ring, or a uniserial ring, if the set of all ideals
of R is a chain under set-theoretic inclusion. A ring R is local if it has a unique
maximal ideal which is actually two-sided. We recall the following.

Proposition 1.1. ([3, Proposition 2.1]) For a commutative ring R the following
conditions are equivalent:

(i) R is a local ring and the maximal ideal M of R is principal.
(ii) R is a local principal ideal ring.

(iii) R is a chain ring.

Notice that, since M is maximal, then R = R/M is a field and M is the set of
non units of R and its Jacobson radical; hence, it is nilpotent. Let a be a (fixed)
generator of the maximal ideal M . Then a is a nilpotent element and we denote its
nilpotency index by t.
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Proposition 1.2. ([3, Proposition 2.2]) Let R be a finite chain ring, with maximal
ideal M = 〈a〉. Then:

(a) For some prime q and positive integers k and l with k ≥ l, we have

|R| = qk, |R| = ql

and the characteristic of R and R are powers of q.
(b)

|
〈
ai
〉
| = |R|t−i, 0 ≤ i ≤ t.

In particular, |R| = |R|t, so k = lt.

Codes over chain rings have been the object of intensive recent research; see, for
example, [2], [3], [4], [7], [8] and [9].

Minimum weights and dimensions are very important parameters of codes, as
they determine the error-correcting capacity and the amount of information the
code is capable of transmitting, respectively. In what follows, we compute the
minimum Hamming weights and dimensions of an extensive family of cyclic codes
of length 2pn, extending results from [1]. It should be noted that, to this end,
we are using the Hamming weight while others weights are possible for codes over
rings, such as the homogeneous weight (see [11]). Under some restrictive hypothesis
described below, the family we consider is the family of all minimal codes.

2. Minimum weights

In what follows, R will denote a finite commutative chain ring with unity
of order |R| = qk, where q denotes a prime rational integer, and maximal ideal
M = 〈a〉. Let t denote the nilpotency index of a. Set R = R/M . Then |R| = ql

with ` = k/t.
Also, we shall denote by A a cyclic group of order 2pn, such that gcd(q, p) = 1,

and write A = B ×G where G is the p-Sylow subgroup of A and B = {1, d} is its
2-Sylow subgroup.

We denote by ϕ Euler’s ϕ-function; i.e., for a positive integer m, ϕ(m) denotes
the number of positive integers smaller that m that are relatively prime to m. We
denote by o(q) the multiplicative order of q in the group of units U(Z2pn). Notice
that o(q) = ϕ(pn) if and only if q is a generator in U(Z2pn).

Given a field K and a subgroup H of a group G such that
gcd(char(K), |H|) = 1, the element

Ĥ =
1

|H|
∑
h∈H

h,

is an idempotent of KG known as the idempotent determined by H.
Ferraz and Polcino Milies proved the following.

Theorem 2.1 ([5], Teorema 3.2). Let K be a field with q elements and A a cyclic
group of order 2pn as above, where p an odd prime, such that o(q) = ϕ(pn) in
U(Z2pn).

If ei, 0 ≤ i ≤ s, denote the primitive idempotents of KG, then, the primitive

idempotents of KA are
(

1+d
2

)
ei and

(
1−d
2

)
ei, 0 ≤ i ≤ s.

Since G is a cyclic group of order pn its chain of subgroups is:

G = H0 ⊃ G1 ⊃ · · · ⊃ Gn = {0},
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where Gi is the unique subgroup of G of order pn−i and the primitive idempotents
of KG are

e0 = Ĝ and ei = Ĝi − Ĝi−1, 1 ≤ i ≤ n.

In what follows, we shall always assume that o(q) = ϕ(pn) in U(Z2pn), just to be
able to consider these codes as minimal. In the general case, they are not necessarily
minimal but are still a significant family of codes.

The proof of the following result is straightforward.

Proposition 2.2. Let R be a chain ring and M the maximal ideal of R. then

RG

MG
∼=
(
R

M

)
G.

As gcd(q, n) = 1, by Maschke’s Theorem [10, Corollary 3.4.8], we have that
[R/M ]G is semisimple and there exist orthogonal primitive idempotents e0, . . . , em
such that RG = RGe0 ⊕ . . . ⊕ RGem. By [6, Proposition 7.14], there exists a
unique family of orthogonal primitive idempotents {e0, . . . , em} on RG such that
RG = RGe0 ⊕ . . .⊕RGem.

The minimum weight of a code of the form KA
[(

1±d
2

)
ei

]
was computed in [5].

A very similar result holds over chain rings, but requires new arguments.

Theorem 2.3. Let C = RA(ak( 1±d
2 )ei) be a code, with 0 ≤ k < t. Then

w(C) =

{
4|Gi|, if 0 < i ≤ n
|A|, if i = 0

Proof. We consider first the case of an index i with 0 < i ≤ n. Let T = {τ1, . . . , τn}
be a transversal of Gi in G; i.e., a full set of representatives of cosets of Gi in G. As

ak
(1± d

2

)
ei =

(
ak
(1± d

2

)
ei

)
· Ĝi,

we have that C ⊂ RA
(
ak
(

1±d
2

)
Ĝi

)
. Thus, an element α 6= 0 ∈ C, is of the form

α = (x1τ1 + . . .+ xnτn)
(
ak
(1± d

2

)
Ĝi

)
.

If only one coefficient xia
k is different from 0, then α = (xiτi)

(
ak
(

1±d
2

)
Ĝi

)
and

there exist βi ∈ RA such that

α = (xiτi)
(
ak
(1± d

2

)
Ĝi

)
= βi ·

(
ak
(1± d

2

)
ei

)
.

As Ĝi−1 · Gi = Ĝi−1 and ei · Gi−1 = 0, multipying the equality above by Ĝi−1

we get (xiτi)
(
ak
(

1±d
2

)
Ĝi−1

)
= 0. Since (xia

kτi) · Ĝi−1 and (xia
kτi) · dĜi−1 have

disjoint supports we must have (xia
kτi) · Ĝi−1 = 0, and thus xia

k = 0, a contradic-
tion. Consequently, w(C) ≥ 4|Gj |.
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Choose an element g0 ∈ Gi−1 \Gi. Notice that (1− g0) · Ĝi−1 = 0. Take

α = (1− g0)ak
(1± d

2

)
Ĝi

= (1− g0)ak
(1± d

2

)
(Ĝi −Gi−1)

= (1− g0)ak
(1± d

2

)
ei,

so α = (1− g0)ak
(

1±d
2

)
Ĝi ∈ C. As w(α) = 4|Gi|, it follows that w(C) = 4|Gi|.

Finally, consider a code of the form C = RA
[
ak
(

1±d
2 e0

)]
and take 0 6= α ∈ C.

We can write α in the form

α =
∑
g∈G

xgga
k

(
1± d

2

)
e0 +

∑
g∈G

ygdga
k

(
1± d

2

)
e0,

with xg, yg ∈ R.

As g · e0 = e0 = Ĝ e d · ( 1±d
2 ) = ±( 1±d

2 ), we have that

α =
(∑

akrg

)(1± d
2

)
e0 with rg ∈ R.

As
(∑

akrg
)
∈ R and w(e0) = |A|, it follows that w(C) = 2|G| = |A|.

3. Non minimal codes

A non minimal code is the direct sum of codes of the form RA
(
aki
(
1±d
2

)
ei
)
.

We shall consider first the case when all the idempotents involved are of the form
aki( 1+d

2 )ei. The case when e0 is not involved is simpler.

To simplify notations, we shall denote an ideal of the form RA
(
aki
(
1±d
2

)
ei
)

as

〈aki 1±d2 ei〉.

Theorem 3.1. Let C be a code of the form

C =

〈
aki1

(
1 + d

2

)
ei1

〉
⊕ . . .⊕

〈
akil

(
1 + d

2

)
ei`

〉
,

where 0 ≤ kij < t, 1 ≤ j ≤ `, and 0 < i1 < i2 < . . . < i`. Then

w(C) = 4|Gi` |.

Proof. First, note that w(C) ≤ w(〈aki` ( 1+d
2 )eil〉) = 4|Gi` |.

As Gi` ⊂ Gij , for ij < i`, we have Ĝi` .eij = eij , 1 ≤ j ≤ `. Thus α = αĜi` so

C ⊂ 〈ak( 1+d
2 )Ĝi`〉, where k = min{ki1 , . . . , ki`}.

Let T = {τ1, . . . , τn} be a transversal of Gi` in G and set α ∈ C, α 6= 0. We can
write

α = (x1τ1 + . . .+ xnτn)ak
(

1 + d

2

)
Ĝi` , with xi ∈ R.

If there exist just one coefficient x such that xak 6= 0 we write α in the form

α = xτak
(

1 + d

2

)
Ĝi` with τ ∈ Γ.

Advances in Mathematics of Communications Volume 14, No. 2 (2020), 233–245



Cyclic codes of length 2pn over finite chain rings 237

On the other hand, as C = 〈aki1 ( 1+d
2 )ei1〉 ⊕ . . . ⊕ 〈aki` ( 1+d

2 )ei`〉, there exist
β1, . . . , β` ∈ RA such that

α = β1a
ki1

(
1 + d

2

)
ei1 + . . .+ βla

ki`

(
1 + d

2

)
ei` = xτak

(
1 + d

2

)
Ĝi` .

As Gi1−1 ⊃ Gij , for 1 ≤ j ≤ `, we have Ĝi1−1.eij = 0.

Thus, multiplying the equation above by Ĝi1−1 we get

xτ(ak
(

1 + d

2

)
Ĝi1−1) = 0.

As xτ(akĜi1−1) and xτ(akdĜi1−1) have disjoint support, we have xak = 0, a con-
tradiction. Therefore w(α) ≥ 4|Gi` |.

Consequently w(C) = 4|Gi` |.

When the code involves e0 there are two different cases. We consider first the
case when all the idempotents from e0 to idempotents e` are involved.

Theorem 3.2. Let C be a code of the form

C =

〈
ak0
(

1 + d

2

)
e0

〉
⊕
〈
ak1
(

1 + d

2

)
e1

〉
⊕ . . .⊕

〈
ak`
(

1 + d

2

)
e`

〉
,

where 0 ≤ kj < t, 0 ≤ j ≤ `.
Then w(C) = 2|G`|.

Proof. As ak
(
1+d
2

)
ei = aki

(
1+d
2

)
eiĜ`, for 0 ≤ i ≤ `, we have, as before, C ⊂

〈aki
(
1+d
2

)
Ĝ`〉.

Set k = max{k0, . . . , k`}. Note that

ak
(

1 + d

2

)
Ĝ` = ak

(
1 + d

2

)[
Ĝ` − Ĝ`−1 + Ĝ`−1 − · · ·+ Ĝ1 − Ĝ0 + Ĝ0

]
= ak

(
1 + d

2

)[
e` + e`−1 + . . .+ e2 + e1 + e0

]
.

Since 〈ak( 1+d
2 )ei〉 ⊂ 〈aki( 1+d

2 )ei〉 ⊂ C for 0 ≤ i ≤ `, we have

〈ak(
1 + d

2
)Ĝ`〉 ⊂ C.

Then, C = 〈ak( 1+d
2 )Ĝ`〉. As akĜ` and akdĜ` have disjoint supports, we have

that:

w(C) = w

(
〈ak(

1 + d

2
)Ĝ`〉

)
= 2|G`|.

Now we consider codes involving e0 but different from the above.

Theorem 3.3. Let C be a code of the form

C =

〈
ak0
(

1 + d

2

)
e0

〉
⊕
〈
aki1

(
1 + d

2

)
ei1

〉
⊕ . . .⊕

〈
ak`
(

1 + d

2

)
ei`

〉
,

where k0 < t, and {i1, . . . , i`} ( {1, . . . , i`}. Then, w(C) = 4|Gi` |.
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Proof. First, note that w(C) ≤ w(aki` ( 1+d
2 )eil) = 4|Gi` |.

As Gi` ⊂ Gj , for j < i`, we have Ĝi` .ej = ej . Thus, as above, C ⊂ 〈ak( 1+d
2 )Ĝi`〉,

where k = max{ki1 , . . . , ki`}.
Let T = {τ1, . . . , τn} be a transversal of Gi` in G and take α ∈ C, α 6= 0. We

can write α = (x1τ1 + . . .+ xnτn)(ak( 1+d
2 )Ĝi`), where xi ∈ R.

Assume now, by way of contradiction, that there exists only one coefficiente x of

α such that xak 6= 0. Then α = xτak( 1+d
2 )Ĝi` , with τ ∈ T . As

C =

〈
ak0
(

1 + d

2

)
e0

〉
⊕
〈
aki1

(
1 + d

2

)
ei1

〉
⊕ · · · ⊕

〈
aki`

(
1 + d

2

)
ei`

〉
,

there exist β0, β1, . . . , β` ∈ RA, such that

α = β0a
k0

(
1 + d

2

)
e0 + β1a

ki1

(
1 + d

2

)
ei1 + . . .+ βla

ki`

(
1 + d

2

)
ei`

= xτak
(

1 + d

2

)
Ĝi` .

As {i1, . . . , i`} $ {1, . . . , i`}, there exists an index ir ∈ {1, . . . , i`} such that the

idempotent ( 1+d
2 )eir is not in the initial sum. Let ir be the smallest such index.

Multiplying both sides of the equality above by Ĝir , we get

αĜir = xτak
(

1 + d

2

)
Ĝir

= β0a
k0

(
1 + d

2

)
e0 + β1a

ki1

(
1 + d

2

)
ei1 + · · ·

· · ·+ βla
kir−1

(
1 + d

2

)
eir−1.

Notice that the ideal

J =

〈
ak0
(

1 + d

2

)
e0

〉
⊕
〈
ak1
(

1 + d

2

)
ei1

〉
⊕ · · · ⊕

〈
akir−1

(
1 + d

2

)
eir−1

〉
is as in Theorem 3.3 so its minimum weight is w(J) = 2|Gir−1| = 2pn−ir+1 and

αĜir ∈ J .

As w(αĜir ) = w
(
xτak

(
1+d
2

)
Ĝi`

)
= 2|Gir | = 2pn−ir < w(J) we get a contra-

diction.
Thus there exist at least two coefficients xr, xs such that xra

k and xsa
k are non

zero, so w(C) ≥ 4|Gi` | and thus w(C) = 4|Gi` |.

The case when all the idempotents involved are of the form aki( 1−d
2 )ei is not

different.
Now, we will compute the minimum weight of codes that involve ideals of both

forms. As before, we study first codes not involving e0.

Theorem 3.4. Let C be a code of the form

C =

〈
aki1

(
1± d

2

)
ei1

〉
⊕ · · · ⊕

〈
aki`

(
1± d

2

)
ei`

〉
,

where 0 ≤ kij < t, 1 ≤ j ≤ `, 0 < i1 ≤ i2 ≤ . . . ≤ i`−1 < i`, and assume that at

least one idempotent of the form ( 1+d
2 )ei and one idempotent of the form ( 1−d

2 )ej
are involved in C.

Then w(C) = 4|Gi` |.
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Proof. Note that w(C) ≤ w(〈akil ( 1±d
2 )ei`〉) = 4|Gi` |.

Also, as in the previous results, we have that C ⊂ 〈akĜi`〉, where k = min
{ki1 , . . . , ki`}. Let T = {τ1, . . . , τn} be a transversal of Gi` in G and set α ∈ C,
α 6= 0. Then we can write

α = (x1τ1 + . . .+ xnτn + x
′

1dτ1 + . . .+ x
′

ndτn)akĜil`,

with xj , x
′

j ∈ R.
Assume first, by way of contradiction, that there exists only one coefficient x in

the expression of α such that xak 6= 0, so that α = xakdδτĜi` , where δ is equal to
either 0 or 1, and τ ∈ T .

As α ∈ C, there exist βi1 , . . . , βi` ∈ RA such that

α = βi1a
ki1

(
1± d

2

)
ei1 + . . .+ βi`a

ki`

(
1± d

2

)
ei` ,

and we can write

α = xakdδτĜi` = βi1a
ki1

(
1± d

2

)
ei1 + . . .+ βi`a

kil`

(
1± d

2

)
ei` .

Multiplying the equality above by Ĝi1−1, we get

xakdδτĜi1−1 = 0.

Thus, xak = 0, a contradiction.
Assume now that there exist precisely two coefficients x1, x2 in the expression of

α such that x1a
k 6= 0 and x2a

k 6= 0. Then,

α = (x1d
δτ + x2d

δ′τ
′
)akĜi`

= βi1a
ki1

(
1± d

2

)
ei1 + . . .+ βi−`a

ki`

(
1± d

2

)
ei` ,

where both of δ and δ′ are equal to either 0 or 1, and τ, τ ′ ∈ T . Suppose that the
last idempotent in this expression is ( 1+d

2 )ei` , the other possibility being similar.

As ( 1+d
2 )( 1−d

2 ) = 0, multiplying by ( 1−d
2 ) we get

α

(
1− d

2

)
= (x1d

δτ + x2d
δ′τ
′
)ak
(

1− d
2

)
Ĝi`

= βj1a
kj1

(
1− d

2

)
ej1 + . . .+ βjsa

kjs

(
1− d

2

)
ejs ,

where js < i`.
This shows that α( 1−d

2 ) belongs to code

C
′

=

〈
akj1

(
1− d

2

)
ej1

〉
⊕ · · · ⊕

〈
akjs

(
1− d

2

)
ejs

〉
,

which is as in the previous theorem.

But w(α( 1−d
2 )) = w((x1d

δτ + x2d
δ′τ
′
)ak
(
1−d
2

)
Ĝil`) = 4|Gi` | and w(C

′
) =

4|Gjs |. As |Gi` | < |Gjs |, a contradiction.
A very similar argument shows that if there are precisely three coefficients x1, x2,

x3 such that x1a
k, x2a

k and x1a
k are non zero, we get again a contradiction.

Therefore, w(C) ≥ 4|Gi` | and thus w(C) = 4|Gi` |.
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To complete the study of ideals not involving e0 we need to consider first a
particular case.

Lemma 3.5. Set

C =

〈
ak1
(

1 + d

2

)
ei

〉
⊕
〈
ak2
(

1− d
2

)
ei

〉
,

where i 6= 0, and k1, k2 6= t.
Then w(C) = 2|Gi|.

Proof. Let k = min{k1, k2}. Then

C ⊂
〈
ak
(

1 + d

2

)
ei

〉
⊕
〈
ak
(

1− d
2

)
ei

〉
⊂

〈
ak
(

1 + d

2

)
Ĝi

〉
+

〈
ak
(

1− d
2

)
Ĝi

〉
⊂

〈
akĜi

〉
.

Let T = {τ1, . . . , τn} be a transversal of Gi in G and α ∈ C, α 6= 0. Then

α = (x1τ1 + . . .+ xnτn + x
′

1dτ1 + . . .+ x
′

ndτn)akĜi, with xj e x
′

j ∈ R.

Suppose that there exists only one coefficient x of α such that xak 6= 0. Then,
there exist β1 and β2 ∈ RA such that

α = xdδτakĜi = β1a
ki

(
1 + d

2

)
ei + β2a

kj

(
1− d

2

)
ei,

where δ = 0 or δ = 1 and τ ∈ T .
Multiplying the equality above by Ĝi−1, we get xakdδτĜi−1 = 0. Thus, xak = 0,

a contradiction. Therefore w(C) ≥ 2|Gi|.

Now, take g0 ∈ Gi−1 \Gi and consider α = (1− g0)akĜi, where k = max{ki, kj}
so w(α) = 2|Gi|. Also,

α = (1− g0)akĜi = (1− g0)ak(Ĝi − Ĝi−1 + Ĝi−1) = (1− g0)ak(ei + Ĝi−1).

As (1− g0)Ĝi−1 = 0, because g0 ∈ Gi−1, then

α = (1− g0)akei = (1− g0)ak
(

1 + d

2

)
ei + (1− g0)ak

(
1− d

2

)
ei ∈ C.

Thus w(C) ≤ w(α) = 2|Gi|. Then w(C) = 2|Gi|.

We are now ready to complete this case.

Theorem 3.6. Let C be a code of the form

C =

〈
aki1

(
1± d

2

)
ei1

〉
⊕ · · · ⊕

〈
aki`

(
1 + d

2

)
ei`

〉
⊕
〈
ahi`

(
1− d

2

)
ei`

〉
,

where 0 ≤ kij , hij < t, 1 ≤ j ≤ `, 0 < i1 ≤ i2 ≤ . . . ≤ i`−1 < il`.
Then w(C) = 2|Gi` |.

Proof. By the previous lemma, we have

w(C) ≤ w
(〈

aki`

(
1 + d

2

)
ei`

〉
⊕
〈
ahi`

(
1− d

2

)
ei`

〉)
= 2|Gi` |.

Let T = {τ1, . . . , τn} be a transversal of Gi` in G and α ∈ C, α 6= 0.
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We can write

α = (x1τ1 + . . .+ xnτn + x
′

1dτ1 + . . .+ x
′

ndτn)akĜi` .

Suppose, again, that there exist only one coefficient x in the expression above
such that xak 6= 0.

As α ∈ C, there exist βi1 , . . . , β`1 , β`2 ∈ RA such that

α = βi1a
ki1

(
1± d

2

)
ei1 + · · ·+ β`1a

ki`

(
1 + d

2

)
ei` + β`2a

hi`

(
1− d

2

)
ei` .

Then

α = xakdδτĜi`

= βi1a
ki1

(
1± d

2

)
ei1 + · · ·+ β`1a

ki`1

(
1 + d

2

)
ei` + β`2a

ki`2

(
1− d

2

)
ei` .

Multiplying the above equality by Ĝi1−1, we get xakdδτĜi1−1 = 0. Thus xak = 0,
a contradiction. Therefore w(C) ≥ 2|Gi` | and thus w(C) = 2|Gi` |

Now we consider ideals involving e0. As a first step, we will assume that if j is
the greatest subindex such that ej is involved, then

(
1+d
2

)
ej is involved, say, but(

1−d
2

)
ej is not, the symmetric case being identical.

Theorem 3.7. Let C be a code of the form

C =

〈
ak0
(

1 + d

2

)
e0

〉
⊕
〈
ah0

(
1− d

2

)
e0

〉
⊕ · · ·

⊕
〈
aki
(

1 + d

2

)
ei

〉
⊕
〈
ahi

(
1− d

2

)
ei

〉
⊕ · · · ⊕

〈
akj
(

1 + d

2

)
ej

〉
,

where 0 ≤ ki, hi ≤ t, for 0 < i < j, kj < t and k0 or h0 < t. Then w(C) = 4|Gj |.

Proof. Note that w(C) ≤ 4|Gj | and C ⊂ akĜj , where k is the minimal non zero
exponent of a. Let T = {τ1, . . . , τn} a transversal of Gj in G and α ∈ C, α 6= 0.
We can write

α = (x1τ1 + . . .+ xnτn + x′1dτ1 + . . .+ x′ndτn)akĜj

Using exactly the same technique as in Theorem 4.4, we can show that there are
at least four coefficients whose product with ak is non zero.

Therefore w(C) ≥ 4|Gj | and thus w(C) = 4|Gj |.

Finally, we consider the case when the code C involves e0 and both
(
1+d
2

)
ej and(

1−d
2

)
ej .

Theorem 3.8. Let C be a code of the form

C =

〈
ak0
(

1 + d

2

)
e0

〉
⊕
〈
ah0

(
1− d

2

)
e0

〉
⊕ · · ·

⊕
〈
aki
(

1 + d

2

)
ei

〉
⊕
〈
ahi

(
1− d

2

)
ei

〉
⊕ · · ·

⊕
〈
akj
(

1 + d

2

)
ej

〉
⊕
〈
ahj

(
1− d

2

)
ej

〉
,

where at least either k0 or h0 is less than t and kj < t and hj < t. Then w(C) = |Gj |
or w(C) = 2|Gj |.
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Proof. We shall assume first that all idempotents of the form
(
1±d
2

)
ei are involved

in C, for 0 ≤ i ≤ j; i.e., that ki, hi < t, for 0 ≤ i ≤ j.
As before, we have that C ⊂ 〈Ĝj〉. Therefore, w(C) ≥ w(〈Ĝj〉) = |Gj |.
As in the proof of Theorem 4.2, one can show that 〈akĜj〉 ⊂ C so actually

w(C) = |Gj |.
Now, assume that there exists an index r such that either kr or hr is equal to t.
Note that

〈
akj
(
1+d
2

)
ej
〉
⊕
〈
ahj

(
1−d
2

)
ej
〉
⊂ C and thus, by Lemma 3.5 we have

w(C) ≤ 2|Gj |.
If k denotes the minimum of all exponents of a, we have as always that C ⊂<

akĜj > and, taking a transversal T = {τ1, . . . , τn} of Gj in G, and element α ∈ C,
α 6= 0, we can write

α = (x1τ1 + . . .+ xnτn + x
′

1dτ1 + . . .+ x
′

ndτn)akĜj .

One can show, as in the proof of Theorem 4.3, that there exist at least two
coefficients in this expression above, whose product by ak is non zero. Hence w(α) ≥
2|Gj | and, in this case, w(C) = 2|Gj |.

4. The number of words in a code

Since most of the codes over chain rings are not free, we cannot compute dimen-
sions and is then relevant to find the number of words in each code. We begin with
a simple case.

Theorem 4.1. If C =
〈
ak
(
1±d
2

)
ei
〉
, then, the number of words of C is

|C| =
{
|R|t−k if i = 0,

|R|(t−k)(pi−pi−1), if i > 0.

Proof. Since e0 = Ĝ we have that RAak
(
1±d
2

)
e0 = Rake0, so∣∣∣∣〈ak (1± d

2

)
e0

〉∣∣∣∣ = |Rak| = |R|t−k.

When i > 0,

ak
(

1 + d

2

)
ei = ak

(
1 + d

2

)
(Ĝi − Ĝi−1).

so

ak
(

1 + d

2

)
Ĝi = ak

(
1 + d

2

)
ei + ak

(
1 + d

2

)
Ĝi−1,

where ei
(
1+d
2

)
Ĝi−1 = 0. Hence

[RA]ak
(

1 + d

2

)
Ĝi = [RA]ak

(
1 + d

2

)
ei ⊕ [RA]ak

(
1 + d

2

)
Ĝi−1.

Notice that

[RA]ak
(

1 + d

2

)
Ĝi = [RakA]

(
1 + d

2

)
Ĝi = [RakG]

(
1 + d

2

)
Ĝi

= [RakG]Ĝi

(
1 + d

2

)
.

As [RakG]Ĝi ∼= Rak[G/Gi] (see [10, Lemma 3.6.6]) we have∣∣∣∣[RA]ak
(

1 + d

2

)
Ĝi

∣∣∣∣ = |R|t−k(|G|/|Gi|) = |R|(t−k)(p
n/pn−i).
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As a similar computation holds for [RA]ak
(
1+d
2

)
Ĝi−1, we get∣∣∣∣[RA]ak

(
1 + d

2

)
ei

∣∣∣∣ = |R|(t−k)(p
i+pi−1),

as claimed.

Corollary 4.2. Let C be a code of the form

C =

〈
ak0
(

1 + d

2

)
e0

〉
⊕
〈
ah0

(
1− d

2

)
e0

〉
⊕ · · ·

· · · ⊕
〈
akm

(
1 + d

2

)
em

〉
⊕
〈
ahm

(
1− d

2

)
em

〉
.

Then

|C| = |R|γ ,
where γ =

∑m
j=1(2t− kj − hj)(pj − pj−1) + (2t− k0 − h0).

5. Free cyclic codes over finite chain rings of lenght 2pn

Let A be a cyclic group of order 2pn, R a chain ring with
gcd(| R |, | A |) = 1 and orthogonal primitive idempotents ( 1±d

2 )ei, 0 ≤ i ≤ n.

Theorem 5.1. Let γ be a transversal of Gi−1 in G and τ a transversal of Gi in
Gi−1. Then RA( 1±d

2 )ei is a free code with basis

B =

{
c(1− b)

(1± d
2

)
Ĝi|c ∈ γ, b ∈ τ \ {1}

}
over R, where the positive sign in the base elements refers to the ideal RA( 1+d

2 )ei
and the negative sign to RA( 1−d

2 )ei.

Proof. We will prove that the code RA( 1+d
2 )ei is free. The proof that RA( 1−d

2 )ei
is free being similar. First we show that elements in B belong to the code.

For b ∈ τ \ {1}, we have

(1− b)
(

1 + d

2

)
Ĝi−1 =

(
1 + d

2

)
Ĝi−1 −

(
1 + d

2

)
bĜi−1 = 0,

because b · Ĝi−1 = Ĝi−1.

Then, c(1 − b)
(
1+d
2

)
Ĝi = c(1 − b)

(
1+d
2

)
(Ĝi − Ĝi−1 + Ĝi−1)

= c(1 − b)
(
1+d
2

)
ei + c(1 − b)

(
1+d
2

)
Ĝi−1 = c(1 − b)

(
1+d
2

)
ei. Therefore, B ⊂

RA
(
1+d
2

)
ei.

Now, we show that B is linearly independent.
Let xcb ∈ R, where c ∈ γ, and b ∈ τ \ {1} be such that∑

c∈γ b∈τ\{1}

xcbc(1− b)
(

1 + d

2

)
Ĝi = 0.

Thus

0 =
∑
c∈γ

(
∑
b∈τ

xcbc(1− b)
(

1 + d

2

)
Ĝi)
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=
∑
c∈γ

(
∑
b∈τ

xcbc

(
1 + d

2

)
Ĝi)−

∑
c∈γ b∈τ

xcbcb

(
1 + d

2

)
Ĝi

= 1
2 (
∑
c∈γ

(
∑
b∈τ

xcbcĜi)−
∑

c∈γ b∈τ

xcbcbĜi) +
1

2
(
∑
c∈γ

(
∑
b∈τ

xcbdcĜi)

−
∑

c∈γ b∈τ

xcbdcbĜi).

The elements of the sum (
∑
c∈γ(

∑
b∈τ xcbcĜi)−

∑
c∈γ b∈τ xcbcbĜi) have supports

that are disjoint with the elements of the sum

(
∑
c∈γ(

∑
b∈τ xcbdcĜi)−

∑
c∈γ b∈τ xcbdcbĜi) . Thus,(∑

c∈γ(
∑
b∈τ xcbcĜi)−

∑
c∈γ b∈τ xcbcbĜi

)
=(∑

c∈γ(
∑
b∈τ xcbdcĜi)−

∑
c∈γ b∈τ xcbdcbĜi

)
= 0.

We prove now that the elements of the sum

(
∑
c∈γ

(
∑
b∈τ

xcbcĜi) −
∑

c∈γ b∈τ

xcbcbĜi) has disjoint supports. To this end, we prove

that, for every c, b fixed, the element cbĜi has disjoint support with any other ele-

ment in this linear combination. As b ∈ τ , then Ĝi and bĜi have disjoint supports.

Thus cĜi and cbĜi have disjoint supports. If cj 6= ck, then cjĜi and ckĜi have
disjoint supports. As τ is a transversal of Gi in Gi−1, we have that for bj 6= bk ∈ τ ,

cjbjĜi and ckbkĜi have disjoint supports. Therefore, xcb = 0, ∀c ∈ γ and b ∈ τ .

By Theorem 4.1, the number of elements of RA( 1+d
2 )ei is given by

| R |t(p
i−pi−1)=| R |(p

i−pi−1) .

The number of elements of the code generated by B over R is given by | R |(|γ|·(|τ |−1))

where (| γ | ·(| τ | −1)) = |G|
|Gi−1| · (

|Gi−1|
|Gi| − 1) = (pi − pi−1).

As this code is contained in RA( 1+d
2 )ei, equality follows. Therefore RA( 1+d

2 )ei
is a free code with basis B.

A code C = RAak
(
1+d
2

)
ei, with 0 < k < t, is not free, because α · at−k ·

ak
(
1+d
2

)
ei = 0, for all α ∈ RA.
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