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ABSTRACT. We use group algebra methods to study cyclic codes over finite
chain rings and under some restrictive hypotheses, described in section 2, for
codes of length 2p™, p a prime, we are able to compute the minimum weights
of all possible cyclic codes of that length.

1. INTRODUCTION

Let R be a finite commutative ring with unity. A linear code of length n over
R is a submodule C of R™. A linear code C is cyclic if, for every codeword =z =
(zo,...,Tn_1) € C, its cyclic shift (z,_1,x0,...,Zn_2) is also in C and many of the
important codes in use are of this type. It is well-known that cyclic codes of length
n over a ring R can be identified with the ideals of the group ring RA, where A is
the cyclcic group of order n.

The Hamming weight of an element in R™ is the number of its non-zero coordi-
nates. We denote by w(C) the minimum weight of the code, which is the smallest
Hamming weight of non-zero elements in the code.

A commutative ring R is a chain ring, or a uniserial ring, if the set of all ideals
of R is a chain under set-theoretic inclusion. A ring R is local if it has a unique
maximal ideal which is actually two-sided. We recall the following.

Proposition 1.1. ([3, Proposition 2.1]) For a commutative ring R the following
conditions are equivalent:

(i) R is a local ring and the mazimal ideal M of R is principal.

(i) R is a local principal ideal ring.
(#ii) R is a chain ring.

Notice that, since M is maximal, then R = R/M is a field and M is the set of
non units of R and its Jacobson radical; hence, it is nilpotent. Let a be a (fixed)
generator of the maximal ideal M. Then a is a nilpotent element and we denote its
nilpotency index by t.
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Proposition 1.2. ([3, Proposition 2.2]) Let R be a finite chain ring, with mazimal
ideal M = (a). Then:

(a) For some prime q and positive integers k and | with k > 1, we have
IR =¢*, [Rl=¢
and the characteristic of R and R are powers of q.
(b) ‘ o
|{a")|=|R["", 0<i<t
In particular, |R| = |R|!, so k = lt.

Codes over chain rings have been the object of intensive recent research; see, for
example, [2], [3], [4], [7], [8] and [9].

Minimum weights and dimensions are very important parameters of codes, as
they determine the error-correcting capacity and the amount of information the
code is capable of transmitting, respectively. In what follows, we compute the
minimum Hamming weights and dimensions of an extensive family of cyclic codes
of length 2p™, extending results from [1]. It should be noted that, to this end,
we are using the Hamming weight while others weights are possible for codes over
rings, such as the homogeneous weight (see [11]). Under some restrictive hypothesis
described below, the family we consider is the family of all minimal codes.

2. MINIMUM WEIGHTS

In what follows, R will denote a finite commutative chain ring with unity

of order |R| = ¢*, where ¢ denotes a prime rational integer, and maximal ideal
M = (a). Let t denote the nilpotency index of a. Set R = R/M. Then |R| = ¢'
with ¢ = k/t.

Also, we shall denote by A a cyclic group of order 2p™, such that ged(q,p) = 1,
and write A = B x G where G is the p-Sylow subgroup of A and B = {1,d} is its
2-Sylow subgroup.

We denote by ¢ Euler’s p-function; i.e., for a positive integer m, ¢(m) denotes
the number of positive integers smaller that m that are relatively prime to m. We
denote by o(q) the multiplicative order of ¢ in the group of units U(Zg,n). Notice
that o(q) = ¢(p™) if and only if ¢ is a generator in U(Zapn).

Given a field K and a subgroup H of a group G such that
ged(char(K), |H|) = 1, the element

~ 1
H=— h,
2
is an idempotent of KG known as the idempotent determined by H.

Ferraz and Polcino Milies proved the following.

Theorem 2.1 ([5], Teorema 3.2). Let K be a field with q elements and A a cyclic
group of order 2p™ as above, where p an odd prime, such that o(q) = @(p™) in
U(Zopn).

If e;, 0 < i < s, denote the primitive idempotents of KG, then, the primitive
idempotents of KA are (%)ei and (%)ei, 0<i<s.

Since G is a cyclic group of order p™ its chain of subgroups is:
G=Hy>G; D DG, ={0},
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CYCLIC CODES OF LENGTH 2p" OVER FINITE CHAIN RINGS 235

where G; is the unique subgroup of G of order p"~* and the primitive idempotents
of KG are

60:@ andeizéi—éi,l, 1<t <n.

In what follows, we shall always assume that o(g) = ¢(p™) in U(Zapn), just to be
able to consider these codes as minimal. In the general case, they are not necessarily
minimal but are still a significant family of codes.

The proof of the following result is straightforward.

Proposition 2.2. Let R be a chain ring and M the mazimal ideal of R. then

RG R
— x| — |G
e = (a1)
As gcd(g,m) = 1, by Maschke’s Theorem [10, Corollary 3.4.8], we have that
[R/M]G is semisimple and there exist orthogonal primitive idempotents €, ..., en
such that RG = RGeéy @ ... ® RGe,,. By [6, Proposition 7.14], there exists a

unique family of orthogonal primitive idempotents {eq,...,e,} on RG such that
RG = RGeg @ ... ® RGey,.

The minimum weight of a code of the form KA {(%)ei] was computed in [5].

A very similar result holds over chain rings, but requires new arguments.
Theorem 2.3. Let C = RA(a*(14%)e;) be a code, with 0 < k <t. Then

(4Gl ifo<i<n
w(C) = { Al if i = 0

Proof. We consider first the case of an index ¢ with 0 < i <n. Let T = {m,...,7n}
be a transversal of G; in G} i.e., a full set of representatives of cosets of G; in G. As

(0= (150 6

we have that C C RA (ak (%)éz) Thus, an element o # 0 € C, is of the form

a=(x1m+...+ znTn)<ak(%i)@l)

If only one coefficient z;a* is different from 0, then a = (xln)(ak(%)éz) and
there exist 8; € RA such that

o= tuna (o (20)3) = (1))

As @i,l -Gy = éi,l and e; - G;_1 = 0, multipying the equality above by G;_1
we get (J;Z-Ti)(ak(%)@i_l) = 0. Since (z;a"7;) - éi_l and (x;a%7;) - d@i_l have

disjoint supports we must have (xiakﬂ-) . @i,l =0, and thus z;a* = 0, a contradic-
tion. Consequently, w(C) > 4|G,|.
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236 ANDERSON SILVA AND C. POLCINO MILIES

Choose an element gg € G;—1 \ G;. Notice that (1 — go) - @_1 = 0. Take

a = (l—go)ak<%)éi
- (1_go)ak(%)(éi—az_l)
= (1—90)ak<1§d)6u
soa=(1-goa (1id)G € C. As w(a) = 4|Gy], it follows that w(C) = 4/G;|.

Finally, consider a code of the form C' = RA [ (%deo)} and take 0 # a € C.
We can write a in the form

+d 1+d
o= ngga ( ) eo + Z ygdga (2) €o,

geG geG
with z4,y, € R.

Asg-eg=eg=Ged- (1£4) = £(1£9), we have that

a = (Za rg) <1id) eo with r4 € R.

s (X afry) € R and w(eg) = |A], it follows that w(C) = 2|G| = |A]. O

3. NON MINIMAL CODES

A non minimal code is the direct sum of codes of the form RA (aki (H[d) ez)
We shall consider first the case when all the idempotents involved are of the form
aki (Hd)el The case when e is not involved is simpler.

To simplify notations, we shall denote an ideal of the form RA (aki (%) ei) as
(a" 1:td e).

Theorem 3.1. Let C be a code of the form

1+d 1+d
oo () oo (5590

where 0 < ki, <t, 1 <7</, and 0 <iy <ig<...<ip. Then
’UJ(C) = 4|Giz|-

Proof. First, note that w(C) < w({a* (H4)e;,)) = 4|Gy,|.

As G;, C Gy, for ij < ig, we have @ig~€i_7~ =e;,1 <j <L Thus a= 045; SO
C C (ab (4D E,,), where k = min{ki,, ... ki,}.

Let T = {71,...,7,} be a transversal of G;, in G and set o € C, a # 0. We can
write

1+d
2

If there exist just one coefficient z such that za* # 0 we write « in the form

a= (11 + ...+ x,m)d" < ) éim with z; € R.

1+d\ ~
a = zra” <—£> G;, with 7e€Tl.
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On the other hand, as C = (a%n1 (H)e;,) & ... @ (abie(H2)e;,), there exist
Bi,...,B¢ € RA such that

1+d 1+d 1+d\ ~
o = Bakn (;L> eiy + ...+ Bakie <J2r> ei, = wra <J2r> G-

As Gy 1 D Gy, for 1 < j < ¢, we have @il,l.eij =0.
Thus, multiplying the equation above by @il_l we get

1 N
x7(a” (;d> Gi-1) =0.

As xT(akéil_l) and xT(akdéil_l) have disjoint support, we have za* = 0, a con-

tradiction. Therefore w(a) > 4|G;,|.
Consequently w(C) = 4|G,,|. O

When the code involves eg there are two different cases. We consider first the
case when all the idempotents from eq to idempotents e, are involved.

Theorem 3.2. Let C be a code of the form

o= ()b (o (59 oo o (150)).

where 0 < kj <t,0< 5 < /.
Then w(C) = 2|Gy|.

Proof. As a ( JQF“”)eZ = gki (%) ei@g, for 0 < i < /¢, we have, as before, C C

(ah (554) Go).
Set k = max{ko, ..., ki}. Note that

() - (3
e

1+d ~ ~ ~
ha ) —Go1+Goq — -+ G1 — Gy + Go)

[\')

) ecte1+...+ex+er+egl

Je;) C C for 0 < i < ¢, we have

(8 c e

Then, C' = (a*(2)G,). As a*G; and a*dG, have disjoint supports, we have

w(€) = w (@ (5 G0 ) =206

Now we consider codes involving ey but different from the above.

Theorem 3.3. Let C be a code of the form

1+d o (14d 1+d
(e (5o (2391
where ko < t, and {i1,...,i¢} C{1,...,4e}. Then, w(C) = 4|G,,|.
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Proof. First, note that w(C) < w(ab (H)e;,) = 4|G,, |-

As G;, C Gy, for j < iy, we have CA;'u.ej = e;. Thus, as above, C C <ak(%)éu>,
where k = max{ki,,..., ki, }.

Let T = {7,...,7n} be a transversal of G;, in G and take o € C, o # 0. We
can write a = (17 + ... + ann)(ak(lg—d)éi[), where z; € R.

Assume now, by way of contradiction, that there exists only one coefficiente z of

a such that za* # 0. Then a = xTak(ngd)@ié, with 7 € T. As

o <ak0 (1 ; d) eo> - <aki1 (1;61) e> o <ak (1;65) e>

there exist By, f1,...,8¢ € RA, such that
14+d ) 14+d . 14+d
a = Poako (2> eo + Bra’ (2) e + ...+ Bakie <2> €iy

1+d\ 4
= z7a® <—;> Gi,.

As {i1,...,i¢} G {1,... i}, there exists an index i, € {1,...,i¢} such that the

idempotent ( 1;d)eir is not in the initial sum. Let i, be the smallest such index.

~

Multiplying both sides of the equality above by G;, , we get

N 14d\ ~
aG; = zrd” (;) G,

1+4d - (14d
_ ﬁoako( 5 >60+61ak11<2 >6i1+"'

. 1+d

Notice that the ideal

1+d 1+d ) 1+d
1= (5o (o o (59)0n)

is as in Theorem 3.3 so its minimum weight is w(J) = 2|G;, _1| = 2p" "+ and
Oé@ir e J.

As w(aG;,) = w (:wak (L54) éw) = 2|G;,| = 2p" " < w(J) we get a contra-
diction.

Thus there exist at least two coefficients z,, zs such that z,a* and z,a* are non
zero, so w(C) > 4|G;,| and thus w(C) = 4|G,,|. O

The case when all the idempotents involved are of the form aki(lgd)ei is not

different.
Now, we will compute the minimum weight of codes that involve ideals of both
forms. As before, we study first codes not involving eg.

Theorem 3.4. Let C be a code of the form

o= (o ()} (5)).

where 0 < ki]. <t,1<j<Ll,0<i; <ig<...<idp_1 <ip, and assume that at
least one idempotent of the form (IJQF—d)ei and one idempotent of the form (%)ej
are involved in C.

Then w(C) = 4|G;,|.
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Proof. Note that w(C) < w({a"(£%)e;,)) = 4|G,,|.
Also, as in the previous results, we have that C C <akéu>, where k = min
{kiys...,ki,}. Let T = {m,..., 7} be a transversal of G;, in G and set o € C,

a # 0. Then we can write
a=(x1m1+ ...+ xpnmn + :vlldn + ...+ :clndTn)akailg,

with xj,x;» €R.

Assume first, by way of contradiction, that there exists only one coefficient = in
the expression of a such that za* # 0, so that a = xakd‘sréié, where ¢ is equal to
either O or 1, and 7 € T

As a € C, there exist 5;,,..., 08, € RA such that

1+d 1+d
a=pak <2 )€i1+-~~+5uak” (2 >€u,

and we can write

A 1+d 1+d
o = zabd°rG;, = B,k (2> ei, + ...+ Bi,akut <2) €ip-

~

Multiplying the equality above by G;,_1, we get
wakd6T6i1,1 =0.

Thus, za® = 0, a contradiction.
Assume now that there exist precisely two coefficients 1, x5 in the expression of
a such that z1a* # 0 and z2a* # 0. Then,

a = (r1d°7 + xgd‘s/rl)akéie
1+d 1+d
6i1aki1 <2> € +...+ ﬂi—ﬁakik <2) €ips

where both of § and ¢’ are equal to either 0 or 1, and 7,7’ € T. Suppose that the

last idempotent in this expression is (%d)eig, the other possibility being similar.

As (H9)(45%) = 0, multiplying by (15%) we get

1-d 1-d
“\ 2

(x1d57 + JL‘Qd(S,T,)CLk () éiz
where j5 < ig.

2
(1—d - (1—d
= leak” — )&+ + Bjsakgs 5 ) Ciss
2 2
This shows that a(%d) belongs to code
/ 1—-d 1—-d
= (oo ()
which is as in the previous theorem.
But w(a(5%)) = w((z1d°7 + 29d? 7 )a¥ (15%) Gie) = 4]G;,| and w(C') =
41G;.|. As |G;,| < |Gy, ], a contradiction.
A very similar argument shows that if there are precisely three coefficients 1, z2,

x5 such that z1a”*, zoa® and x1a* are non zero, we get again a contradiction.
Therefore, w(C) > 4|G;,| and thus w(C) = 4|G,,|. O
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To complete the study of ideals not involving ey we need to consider first a

particular case.
o= (7)) (o (57) )

where i # 0, and k1, ks # t.
Then w(C) = 2|G;].

Proof. Let k = min{ki,ka}. Then
1+d 1—d
Ll ()
1+d\ » 1—-d\ -~
< (e (7))
C <ak@i> .
Let T = {71,...,7n} be a transversal of G; in G and o € C, a # 0. Then
a= (11 + ... +TpT + xlldﬁ +...+ l‘;ldTn)akGi, with z; e m; € R.

Suppose that there exists only one coefficient = of a such that za* # 0. Then,
there exist $; and B> € RA such that

~ 14d 1—-d
a = zd’rad*G; = B <J2r> e; + PBoaki (2> €,

Lemma 3.5. Set

where 6 =0oréd=1and 7€ T. R R
Multiplying the equality above by G;_1, we get za*d’rG;_1 = 0. Thus, za* = 0,
a contradiction. Therefore w(C) > 2|G,|.

Now, take go € Gi_1 \ G; and consider a = (1 — go)a*G;, where k = max{k;, k;}
so w(a) = 2|G;|. Also,
a=(1-g9)a"Gi=(1-go)a"(Gi — Gii1 +Gi1) = (1 — go)a¥(e; + Gi_1).

~

As (1 —g9)G;—1 = 0, because gy € G;_1, then
1 1-—
a=(1-go)a"e; = (1—go)a* (;d> e + (1 - go)a” (Qd) e; € C.
Thus w(C) < w(w) = 2|G;]. Then w(C) = 2|G,. O

We are now ready to complete this case.

Theorem 3.6. Let C' be a code of the form

C = <6Lki1 (1:2td) ei1> PP <aki£ <1—;d> ei(> ey <ahig (1;(1> e”>’

whereogkij,hij <t, 1<j<l,0<i1<ia< ... <ipq <l
Then w(C') = 2|G,,|.

Proof. By the previous lemma, we have
1+d 1-d
w(C) <w (<akiz (;) eie> ® <ahie (2) eiz>> = 2|G},|-
Let T ={71,...,7n} be a transversal of G;, in G and « € C, a # 0.
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We can write
a= (171 + ...+ TpTn + x;dﬁ + .+ x;dTn)ak@ie.

Suppose, again, that there exist only one coefficient x in the expression above
such that za® # 0.
As a € C, there exist 8;,,..., B, B, € RA such that

(14d (1+d (1—-d

(1+d . 1+d : 1—d
= Bjan <2> ei, + o+ Bran (2) ei, + Br,a" <2> Ciy-

Multiplying the above equality by @il_l, we get xakd‘sTéil_l = 0. Thus za* =0,
a contradiction. Therefore w(C) > 2|G;,| and thus w(C) = 2|G,, | O

Now we consider ideals involving eg. As a first step, we will assume that if j is
the greatest subindex such that e; is involved, then (1'2"‘1) e; is involved, say, but
1-d

(T) e; is not, the symmetric case being identical.

Theorem 3.7. Let C' be a code of the form
1 1-—
¢ = (e () ) (o (557 e
2 2
(1+d (1—-d (1+d
kt [N . hl [N . PR kJ — .
(o (50 ) (o (7)o (o (5) )

where 0 < ki, h; <t, for 0 <i<j, kj <t and ko or hg <t. Then w(C) = 4|G,|.

Proof. Note that w(C) < 4|G,| and C C a’“éj, where k is the minimal non zero
exponent of a. Let T'= {7,...,7,} a transversal of G; in G and o € C, o # 0.
We can write

a= (111 + ...+ TuTh +2idT + ..+ x;dTn)akéj

Using exactly the same technique as in Theorem 4.4, we can show that there are
at least four coefficients whose product with a* is non zero.
Therefore w(C') > 4|G,| and thus w(C) = 4|G}|. O

Finally, we consider the case when the code C involves eg and both (id) e; and

1—d 2
(+39) e;-

Theorem 3.8. Let C be a code of the form
1+d 1-d
Cc = ako 1+d e YD {ah [ —— e Y-
2 2
1+d 1—-d
(50 (o (7))o
(1+d (1-d
oo () ol (57) )
where at least either ko or hg is less thant and k; <t and hj < t. Thenw(C) = |G}]

or w(C) = 2|Gy|.
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Proof. We shall assume first that all idempotents of the form (%) e; are involved
in C, for 0 <1i < j;ie., that k;, h; <t, for 0 <i < j.

As before, we have that C' C (éj) Therefore, w(C) > w((G ) =1Gjl.

As in the proof of Theorem 4.2, one can show that (a G]> C C so actually

w(C) = |G-

Now, assume that there exists an index r such that either k,. or h, is equal to t.

Note that <aki (1'5d) ej> &) <ahi (%) ej> C C and thus, by Lemma 3.5 we have
w(C) < 2/G;].

If £ denotes the minimum of all exponents of a, we have as always that C C<
a*G; > and, taking a transversal T = {71,...,7,} of G; in G, and element a € C,
a # 0, we can write

a= (1 +...+ T, + l‘lldTl 4+ x;dTn)ak@j.

One can show, as in the proof of Theorem 4.3, that there exist at least two
coefficients in this expression above, whose product by a* is non zero. Hence w(a) >
2|G,| and, in this case, w(C) = 2|Gy|. O

4. THE NUMBER OF WORDS IN A CODE

Since most of the codes over chain rings are not free, we cannot compute dimen-
sions and is then relevant to find the number of words in each code. We begin with
a simple case.

Theorem 4.1. IfC = <a’l€ (%) 61'>, then, the number of words of C is

|C| _ |R|t7k o if i =0,
T [R|R@E Y i > 0.

Proof. Since eg = G we have that RAd* (Hd) eop = Ra"eq, so
1+d —
(o (52w
1 1 ~ ~
a” (;—d) e =a* <_|2_d> (Gi —Gi-1).

1+d\ 45 1+d 1+d\ ~
ak< B >G (2 >6¢+ak(2 )Gi—la

where e; (1+d) i—1 = 0. Hence

e (l+d L+dY) L (1+dY 4
< 5 = [RA]d* —5 )¢ @ [RA]a — Gi_1.
Notice that
ok (1 : d) G = [Rd*A (1;6[) G: = [Ra*G] (1?) a;

e (1 ; d) .
s [Ra*G)G; = Ra*[G/G;] (see [10, Lemma 3.6.6]) we have
e ()
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As a similar computation holds for [RA]a® (1£4) Gi_1, we get

’[RA]ak (T) e;

as claimed. O

— |§|(t*k)(ﬁn“rpi"l)7

Corollary 4.2. Let C be a code of the form
1+d 1—-d
c = (ak - eo ) B {a" [ — ey ) ---
2 2
1+d 1—-d
o () e (o (7))

|Cl=IR]",
where v = Y1 (2t — kj — hy)(p7 — pP1) 4 (2t — ko — ho).

Then

5. FREE CYCLIC CODES OVER FINITE CHAIN RINGS OF LENGHT 2p"

Let A be a cyclic group of order 2p" R a chain ring with
ged(| R |,| A]) =1 and orthogonal primitive idempotents (1£%)e;, 0 <i < n.

Theorem 5.1. Let v be a transversal of G;—1 in G and T a transversal of G; in

Gi_1. Then RA(%)@ is a free code with basis

B= {c(l fb)(l;id)éﬁc evbe T\{l}}

over R, where the positive sign in the base elements refers to the ideal RA(%d)ei
and the negative sign to RA(35%)e;.

Proof. We will prove that the code RA(1$%)e; is free. The proof that RA(15%)e;
is free being similar. First we show that elements in B belong to the code.
For b € 7\ {1}, we have

1+d\ » 1+d\ 4 14+d\  ~
(1-0b) <2> Gi1 = (2> Gi—1— <2> bGi—1 =0,

because b - Ai,l = 6171-
Then, C(]. - b) 1Td Gz = C(]. - b) (172d) (GZ - Gifl + Gifl)
= c(1 —b) () e; + c(1 — b) () Gioy = (1 —b (44)e;. Therefore, B C

RA (1) e
Now, we show that B is linearly independent.
Let 2., € R, where ¢ € v, and b € 7\ {1} be such that

14+d\ »
Z xcbc(l - b) (;) G1 =0.
cevy ber\{1}
Thus

0 = S(Cwacti-0 (45)é

cey ber
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= 3 wac (14;1) G)— > wach (1‘2%) G

ceEy ber cEy beT
= %(E (E TepcGy) — g $chbG E E xcbch
cey ber cey ber cey beT
— E ZepdebGy).
cey ber

The elements of the sum (3., (3 e, TepcG) = ey ber 2epcbG;) have supports
that are disjoint with the elements of the sum

(Ceer(Cper TabdeGi) = e yer TepdebGy) . Thus,
Zcey(ZbET ‘ercai) - ZCE'y beT beCbéi) =

>eer(Dper TevdeGi) = 3 e ber mcbdchi) = 0.
prove now that the elements of the sum
Z Zxcch Z zpcbG;) has disjoint supports. To this end, we prove
cEy ber cey beT

that, for every c, b fixed, the element cbé- has disjoint support with any other ele-

ment in | this hnear combination. As b € 7, then G and bG have d15301nt supports.

Thus cG and ch have disjoint supports. If ¢; # ci, then ch and ckG have

disjoint supports. As 7 is a transversal of G; in G;_1, we have that for b; # by, € 7,

cjbj@i and ckbkél- have disjoint supports. Therefore, x4, =0, Vc € v and b € 7.
By Theorem 4.1, the number of elements of RA(X4)e; is given by

'R |t(pi 1)_‘ R |(p ')

The number of elements of the code generated by B over R is given by | R |(I7I-(I7I=1)
G Gi- i i—

where (| 7| (|7 | =1) = @2 - (S5 = 1) = (" = p').

As this code is contained in RA(1$%)e;, equality follows. Therefore RA(1E4 e,
is a free code with basis B. O

A code C = RAd* (H‘d) e;, with 0 < k < t, is not free, because a - a'~* -
k (1'2"—‘1) e; =0, for all @ € RA.
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