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Abstract
We consider a simple nonlinear (quartic in the fields) gauge-invariant modification of classical
electrodynamics, to show that it possesses a regularizing ability sufficient to make the field
energy of a point charge finite. The model is exactly solved in the class of static central-
symmetric electric fields. Collation with quantum electrodynamics (QED) results in the total
field energy of a point elementary charge about twice the electron mass. The proof of the
finiteness of the field energy is extended to include any polynomial selfinteraction, thereby the
one that stems from the truncated expansion of the Euler–Heisenberg local Lagrangian in QED
in powers of the field strength.

Keywords: nonlinear electrodynamics, point charge energy, soliton

1. Introduction

One may say that the triumph of the renormalization theory is
not in that it has solved all the problems associated with
divergencies, but in that it succeeded in solving most of them,
while completely isolating others, so that their solution
became less topical and might have been postponed to an
undetermined future. Among these is the problem of the field
origin of masses. In quantum electrodynamics (QED) the
values of the electron mass and charge are treated as mutually
independent external empirical parameters fixed to be finite
by infinite renormalization. On the other hand, if the field
energy of the electron had not diverged, its mass might have
been, at least partially, related to its charge. We say ‘par-
tially’, because one cannot expect that all the electron mass
may be of pure electromagnetic origin, since the electron is
subject to other interactions. The divergence of the integral
for the electrostatic energy of the Coulomb field produced by
a charge forces to attribute a certain finite ‘classical radius’ to
the electron in order to equalise the field energy with the
electron rest mass.

The problem of the finite field energy is readily solved
within the nonlinear self-interaction model of Born and Infeld
[1] and other models [2], where the maximum electric field is
limited from above. Therefore, the electric field in the close
vicinity of a point charge remains finite, so does its field
energy. The Lagrangians in these models contain singularities

at the maximum values of the electric field, just necessary to
provide the finiteness of the field energy. But it is more
important that these models are not associated with the only
successful theory of electromagnetic interactions—QED,
neither with its electro-weak extension.

In the present paper we consider the nonlinear electro-
magnetic self-interaction caused by the quantum effects that
distinguish QED from the linear Maxwell electrodynamics. In
QED the self-interaction of electromagnetic field originates
from the fact that a photon creates a virtual electron–positron
pair that interacts with the electromagnetic field before it
annihilates to the photon again. This is how the photon senses
the electromagnetic field of its own. Formally, the non-
linearity is, in the simplest manner, taken into account by the
known action of Euler–Heisenberg. If expanded in powers of
the field this action supplies the modified Maxwell equations
with nonlinear terms. This is the vacuum realization of
equations of nonlinear optics.

In section 2 we consider the lowest, quadratic, term of
this expansion of the Euler–Heisenberg action in powers of
the electromagnetic field invariant
F = = −μν

μν ( )x F F B E( ) 1

4

1

2
2 2 as an independent model.

(The other field invariant G =x B E( ) ( · ) is kept equal to
zero, because it is not involved in the electrostatic problem
under consideration.) We find that in this model the modified
Coulomb field of a point charge can be written explicitly by
solving a cubic equation and that, although the electric field
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turns into infinity in the point, where the charge is located, the
space integral for the field energy concentrated in the mod-
ified Coulomb field converges. This is a new mechanism
providing the finiteness of the energy a point charge, different
from what was known within the Born–Infeld-like models.

In section 3 we prove the same finiteness of the field
energy for the nonlinear action taken as any finite-power
polynomial of F. This means that QED truncated at any finite-
power term of the Taylor expansion of the Heisenberg–Euler
action also provides this property.

In section 4 we come back to the simplest model of
section 2, which admits an explicit solution, and define the
self-coupling parameter in it as corresponding to the first term
of the expansion of the Heisenberg–Euler–Lagrangian. In this
way the field mass of the point charge e equal to that of
electron becomes a function of e with the numerical value
comparable in the order of magnitude with the mass of the
electron.

In Conclusion we discuss the unsolved problems risen by
the present approach.

2. The quartic model

We define the Lagrangian of a minimally nonlinear electro-
dynamics as

F F
γ= − +L x x x( ) ( )
2

( ( )) , (1)2

where F− x( ) makes the Lagrangian density of the standard
linear Maxwell electrodynamics, while the second term in (1)
is the quartic in the field-strength addition to it4. The field-
strength tensor is related to the four-vector potential μA x( ) as

= ∂ − ∂μν μ ν ν μF A x A x( ) ( ), where ∂ =μ ∂
∂ μ

.
x

Hence, the first

pair of the Maxwell equations,
 × = × + ∂ =B E B0, 0,0 with the electric and mag-
netic field strengths =E Fi

i0 and ϵ=B F ,i ijk jk remains stan-
dard. The self-coupling constant γ is presumably small
enough. It has dimension of inverse fourth power of mass.

The causality and unitarity principles applied to the local
effective action of any nonlinear electrodynamics result in
some requirements [3], of which the first one is γ > 0. Then,
the other requirements (in the present case, where the second
field invariant G = E B· is not involved) reduce to

F
⩽ 0,Ld

d

and
F F

+ ⩽ 0.L Ld

d

d

d

2

2
These are satisfied up to an infinite field

strength, provided that F < 0. This is a certain advantage as
compared to the Born–Infeld model [1], that becomes
inconsistent at too large electric field value. We shall be
dealing with this case of electric field taken alone in a special
Lorentz frame, F = −x E2 ( ) ,2 in the present paper.

We shall see that the model (1) possesses an attractive
property of providing finiteness to the field energy of a point
charge, like the Born–Infeld model [1] and unlike the linear
theory of electromagnetism. If we might think of it as of a
bare theory for possibly subsequent quantizing we are to point
a way of fixing the coupling constant γ. The quartic term F ,2

added to the Lagrangian, would participate within the slow-
and long-wave approximation in many processes, where (real
or virtual) light-by-light scattering is involved, like, for
instance: the photon (Delbrück) scattering and splitting off the
electric field of a nucleus and off a laser field [4], the photon
splitting off a magnetic field, formation of an anisotropic
medium for the photon propagation in an external field,
modification of the Coulomb field in a magnetic field [5],
nonlinear renormalization of electric and magnetic moments
in vacio [6] 5. Out of those nonlinear phenomena only the
ones associated with atoms have been up to now observed [7].
However, the experimental precision in the latter cases is not
enough to fix the constant γ in (1). On the other hand, the
same quartic term contributes to anomalous magnetic
moments of electron and muon, measured and calculated in
QED with high precision, and to atomic spectra. Recently a
new process depending on the light-by-light scattering was
proposed to be measured in heavy atom collision in LHC [8].
But even in these experimentally valuable cases a direct
separation of the contribution of γ would be difficult and, after
all, unnecessary. It will suffice to refer to QED as to a theory
perfectly responsible for the whole body of existing data,
relating to electromagnetism, except, perhaps, the discrepancy
with the muon magnetic moment. Correspondingly, the scale
of our coupling constant γ will be matched to QED, to be
more precise, it will be taken over from the local Euler–
Heisenberg effective action functional [9] that contains the
light-by-light scattering amplitude of soft long-wave photons
in its first term of the Taylor expansion in powers of the field
invariant6.

2.1. Field equations

The least action principle applied to the functional
∫=S A L x x[ ] ( )d4 provides equations of motion =δ

δ ν
0S

A x( )
,

which are the second pair of the Maxwell equations that are
nonlinear:

Fγ∂ − =μ
μν[ ]x F(1 ( )) 0. (2)

We are interested in purely electrostatic spherically symmetric
solution produced by a point-like static charge e, placed in the
origin. Then everywhere, except the point =x 0 this equation
is reduced to


γ+ =E E1
2

0. (3)2⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

Bearing in mind that at large = ∣ ∣r x the standard Coulomb
4 Greek indices span the four-dimensional Minkowski space–time taking the
values 0, 1, 2, 3, while the Roman indices are 1, 2, 3. The metric tensor is
η = − + + +μν diag( 1, 1, 1, 1), and bold symbols are reserved for three-
dimensional Euclidean vectors. The Heaviside–Lorentz system of units is
used throughout.

5 Certainly, another quartic addition, G2, would also contribute to these
processes to the same order, but it is not important for our present purposes.
6 See [10], where the authors are basing their estimates of the free parameter
in the Born–Infeld–Lagrangian on comparison with QED.
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field of the point charge e

π
= = =E r

r

e

r r
E x E x

x x
( ) ( ) ( )

4
(4)lin lin

2

should be implied as the boundary condition, we rewrite (3),
up to a curl, as

γ+ =E r E x E x1
2

( ) ( ) ( ). (5)2 lin⎜ ⎟
⎛
⎝

⎞
⎠

In understanding that the coordinate x is the only vector in the
central-symmetric problem we may write = E rE x( ) ( ) .

r

x

Then the mentioned curl must be discarded, because it cannot
be formed with x being the only vector, and the first Maxwell
equation  × =E 0 is trivially satisfied.

2.2. An exact solution to the quartic action

Now equation (5) becomes the cubic equation for E(r) (see
the procedure in [6])

γ
π

+ =E r E r
e

r
1

2
( ) ( )

4
, (6)2

2
⎜ ⎟
⎛
⎝

⎞
⎠

whose only real solution is given by the Cardano formula

γ γ γ

γ γ γ

= + +

− + −

E r
E r E r

E r E r

( )
( ) 2

3

( )

( ) 2

3

( )
. (7)

lin
2 3

lin

lin
2 3

lin

3

3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

For large distances, → ∞r , solution (7) behaves as the
Coulomb field ∼ =

π
E r E r( ) ( ) ,e

r
lin

4 2
which corresponds to

neglect of the nonlinear quadratic term inside the bracket in
(6), because it is much less than unity in this limit. The next-
to-leading term of expansion of solution (7) at → ∞r is

− γ ( )E r( ) .
2 lin

3 This result is readily obtainable by solving
equation (6) perturbatively [9] 7 and would lead to the
enhancing of the Coulomb singularity from −r 2 to −r ,6 if
continued blindly to short distances, →r 0, which is not
allowed, of course. As a matter of fact the asymptote of
solution (7) at →r 0 is

γ πγ
∼ =E r

E r e

r
( )

2 ( )

2

1
. (8)lin

1
3

1
3

2
3

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

This might also be immediately obtained from (6) if we
neglected the unity in its left-hand side in favor of the
quadratic term, much larger than unity in this limit. The
behavior of the electrostatic field (8), produced by the point
charge e via the nonlinear field equations (2), is essentially
less singular in the vicinity of the charge than the standard
Coulomb field =

π
E r( ) .e

r
lin

4 2
We shall see below that this

suppression of the singularity is enough to provide con-
vergence of the integrals giving the energy of the field con-
figuration (7). Note that, contrary to the customary situation

[1] in the Born–Infeld model, the singularity in our case is not
totally removed, but only suppressed to a sufficient extent.

Before proceeding with the field energy, we would like to
make a remark concerning the effect the present results may
have on the known phenomenon [12] of spontaneous elec-
tron–positron pair creation by an overcharged nucleus and
also on the phenomenon of strong absorption of electrons by
such nucleus occurring when the latter is treated as a (non-
gravitational) black hole [13]. These phenomena are owing to
the singularity of − r1 ,2 to which the singularity of the
Coulomb potential −1/r gives rise after the set of the Dirac
equations is reduced to one second-order differential
equation. This singularity causes the so-called fall-down on
the center, when the nucleus is point-like and its charge
exceeds the value =Z e137 .

With our singularity of the potential weaker than 1/r, the
fall-down takes place at no charge value, hence the electron
level does not sink into the Dirac see infinitely deep. How-
ever, it may reach its surface at a certain charge, larger than
137 to give rise to the above phenomena. Note that if we
borrow from QED the value (13) for γ, our electric field (7)
starts deviating from the Coulomb law at the distances

π
γ

π

π

=

= =

−

−

Ze
Ze m

Z

m
Z m

4

3

2
( )

3

40

1

137

1

137

3

10
0.014

1

1

1
2

3
4 1

4
1
2

1
4

1
2

1
2

3
4

1
4 1

2

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

from the point charge Ze. If we just cut-off the potential at this
distance, similarly to what Zel’dovich and Popov [14] did at
the real size of the nucleus, we get the critical charge some-
what larger than their Z = 172. The genuine critical charge is
expected to be smaller than this, because the potential in the
cut-off region is not zero, but it is attractive. A more thorough
study of solutions of the Dirac equation with the potential
found by us is needed to determine or better estimate the
value of the critical charge.

2.3. Finiteness of the field energy of a point charge

The Noether energy–momentum tensor for the Lagrange
density (1) is

Fγ η= − ∂ −ρν μν ρ
μ

ρνT x F A L x(1 ( )) ( ). (9)

By subtracting the full derivative Fγ∂ −μ
μν ρ( )x F A1 ( ) ,⎡⎣ ⎤⎦

equal to Fγ− ∂μν
μ

ρ( )x F A1 ( )⎡⎣ ⎤⎦ due to the field
equations (2), the gauge-invariant and symmetric under the
transposition ρ ν⇆ energy–momentum tensor

FΘ γ η= − −ρν μν
μ

ρ ρνx F F L x(1 ( )) ( )

is obtained. When there is only spherically symmetric electric
field, the energy density is

Θ γ γ γ= + − + = +E
E

E E E E
1

2 2
1

4 2

3

8
. (10)00

2
2

2 2 2 4⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

By multiplying (6) by E we obtain the relation =γ E r( )
2

4
7 In QED, with γ identified as equation (13) below, this nonlinear large-
distance correction to the Coulomb field is due to Wichmann and Kroll [11].
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E r( )lin −E r E r( ) ( ).2 Taking it into account the energy
density becomes

Θ = − +E r
E r E r

( )

4

3

4
( ) ( ).00

2
lin

Therefore, in order to determine the full electrostatic energy
∫ Θ00 d x3 stored in solution (7) we have to calculate two
integrals. The first one is

∫
γ π

=E r x e I( )d
3

2 (4 )

3

2
,2 3

2 1
3
2

1
4⎛

⎝⎜
⎞
⎠⎟

where

∫= + +

− + − =

∞
I y y

y y

1 1

1 1 d 0.885.

1
0

4

4
2

2
3 3

3

⎛
⎝⎜

⎞
⎠⎟

The second one is

∫ ∫
γ π

= =
∞

E r E r x e E r r e I( ) ( )d ( )d
3

2 (4 )
,lin 3

0 2 2
3
2

1
4⎛

⎝⎜
⎞
⎠⎟

where

∫= + + − + −

=

∞
−I y y y y1 1 1 1 d

3.984.

2
0

4 42
3 3 3
⎛
⎝⎜

⎞
⎠⎟

Finally the energy is

∫ Θ
γ π

γ π

= −

= < ∞

x e I I

e

d
3

2 (4 )

1

4
3

3

2

2.65
3

2 (4 )
. (11)

00 3
2 2 1

2

3
2

1
4

3
2

1
4

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

3. Polynomial model

It is straightforward to extend the above statement about the
finiteness of the field energy of a point charge to any non-
linear electrodynamics, with the effective Lagrange density
L F( )—in place of the quartic function F

γ x( ( ))
2

2 used in (1)—
being any function of F that grows as a finite power of its
argument, say F + ,n 1 ⩾n 1, when F → ∞. Neglecting again
the unity in the equation to appear in place of (6) we obtain in
place of (8) that the electric field’s singularity near the origin
is

Lπ
∼ −

+
+

+

E r
e n

r
( )

2 !

4
( 1) , (12)

n

n
n

( 1) 2
1

n
1

2 1⎛
⎝⎜

⎞
⎠⎟

where L +n( 1) is the +n( 1)-st derivative of L taken at F = 0.
(Note that, given the sign of the charge, the leading electric
field may have different signs depending on whether n is even
or odd.) On the other hand, the leading-in-the origin con-
tribution to the field energy density calculated as Noether’s

Θ00 will now, instead of E4 in (10), be proportional to +E n2 2.
In spite of this higher power, the integral for the field energy
∫ Θ xd00 3 with the substitution of (12) converges at the lower

limit as ∫ − +r
0

n
2

2 1 d r, i.e., even faster than that of (10). As for

convergence at large distances, it is ever provided by the
standard Coulomb long-range behavior of any nonlinear
solution with the long-range boundary condition

∼E r E r( ) ( ),lin when all nonlinearity in the equation of
motion should be disregarded.

The remark of the previous paragraph results in the claim
that in QED, if one truncates (like in [6]) the Taylor series
expansion of its nonlinearity at any given power of the field
invariant F, the solution of the corresponding nonlinear
Maxwell equations for electrostatic field of a point charge is a
finite-energy field configuration. It is meant that the effective
action of QED defined as the generating functional of the one-
particle-irreducible vertex functions, or the Legendre trans-
form of the generating functional of the photon Green func-
tions [15], is taken in the local, or infrared, approximation
[3, 6, 16]. It may be thought of as the Euler–Heisenberg
action calculated with the accuracy of any number of loops.

4. Towards field-mass of electron in QED

To estimate the result (11) we may substitute the value of the
coupling constant γ in (1) taken equal to the coefficient by the
corresponding quartic term in the expansion of the one-loop
Euler–Heisenberg–Lagrangian density L F G( , ),EH i.e. (note

that α = =
π

e

4

1

137

2

in the Heaviside–Lorentz system used
here) [9]

L F

F
F

γ
π

= =
=

e

m

d ( , 0)

d 45
, (13)

2 EH

2
0

4

2 4

where m is the electron mass, and e is the electron charge in
understanding that the point charge previously denoted by the
same letter now also is that of the electron. With this sub-
stitution the static field energy (11) of the electron considered
as a purely electric point-like monopole gives the result

∫ Θ α= =x m md 7.15 2.09 , (14)00 3 1
4

about twice as large as the electron mass.
Equation (14) carries us back to the old idea, put forward

by Abraham–Lorentz [17], and most advanced in Born–Infeld
electrodynamics [1], of an electron being a particle-like finite-
energy field configuration, in contemporary terms, the soliton,
whose energy would be of a completely field nature. This idea
got its extreme appearance in a rather successful attempt by
Infeld [18], called a ‘historical curiosity’ in [10], to determine
the fine-structure constant by equating the free dimensional
parameter, inherent in the Born–Infeld model and fixed by the
requirement, that the electron mass be of purely field origin,
with its value matching QED. Nowadays there is little basis to
believe that the electron mass may be due to its electro-
magnetic field alone, because electron is involved in other

4
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interactions, too. Nevertheless, it remains right that the
combination of the quantum field theory, as long as it is able
to produce such nonlinearity, which would make the field
energy of electron finite, with the postulate of the field origin
of its mass is apt of fixing the coupling constant. In this
respect the present finding that the finite mass may be pro-
duced without going beyond the most reliable theory of
electromagnetism, the QED, should be interesting.

Are there prospects for making the value (14) closer to
m? Higher powers of nonlinearity converge faster and faster
as the power grows, and produce some corrected values to
replace (14). Although these terms depend on Feynman dia-
grams with six, eight and more even-number prongs, the
corrected values of (14) will differ by more than powers of the
fine structure constant: note that equations (11) with (13) is of
the order of ∣ ∣e , so we do not face a perturbative series. On
the other hand, the realistic electron, besides being an electric
monopole, is also a point-like magnetic dipole, so the asso-
ciated magnetic field energy should be expected to contribute
to the total field mass [19]. A more challenging problem is to
take the both mutually interacting fields together, to which
end at least the term proportional to G x( )2 is to be added to
the Lagrangian (1).

5. Conclusion

We have considered classical models of nonlinear electro-
dynamics with polynomial self-interaction of the electro-
magnetic field, which may be viewed upon as created by the
power expansion of the local effective action of QED trun-
cated at any fixed power of the field invariant. Within the one-
loop approximation in QED this action is that of Heisenberg–
Euler. The point charge in every of these models is a soliton
in the sense that its field makes a finite-energy configuration.
This configuration—the nonlinearly modified Coulomb field
—has been found analytically in the simplest case, where the
nonlinearity reduces to a monomial of the fourth power of the
field. The classical radius of this charge is zero and its field
tends to infinity when approaching the charge slowly enough
to keep the field energy integral converging to what may be
referred to as the soliton rest mass. By equating the self-
coupling coefficient of that simplest model to the corre-
sponding coefficient in the field expansion of the Heisenberg–
Euler action we find that this mass is of the order of magni-
tude of the mass of the electron.

We must stress that the essence of our work is not in
finding nonlinear corrections to the Coulomb field of a point
charge. This is the case only when sufficiently large distances
from the charge are concerned, where the nonlinearity is
small. On the contrary, our goal is to define an extension of
the bulk of electromagnetic data from the larger distances,
where these are well established experimentally and are per-
fectly covered by the Maxwell theory of electromagnetism, to
small distances, different from the extension of the same bulk
of data defined by the Maxwell equations. Naturally, our
modified Coulomb law drastically differs from the usual one

at short distances, and this difference is beyond the scope of
perturbation.

The above results, certainly, do not finally solve the
problem of divergence of the self-energy of the electron,
because the treatment of high field strength inherent in it
requires involvement of hight-field asymptotic behaviour of
the effective action of QED, for which the power series
expansion is only an asymptotic series [9], with the
Schwinger effect of spontaneous pair creation by strong
electric field consequently lost. There are other troubles
concerning an applicability of the local approximation for the
effective action (i.e. its independence of space- and time-
derivatives of the field arguments) that may be destroyed in
the vicinity of the charge. The problem of finiteness of the
magnetic energy of the electron due to its magnetic moment
also remains. We hope to continue studying these and other
related matters in future.
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