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RESUMO

Dado um germe de aplicacio ! - ™ = €, de corank 1 na origem.
Consideramos uma perturbagdo estavel F, de I’ e investigamos a multiplici-
dade dos esquemas zero-dimensionais que ocorrem no discriminante A(F,).
Quando F é quase-homogéneo obtemos uma férmula exprimindo as multi-
plicidades em termos dos pesos e do grau.
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Abstract

How many cusps does a swallowtail have,

After it becomes a stable map,

Oh and how many swallowtails does a butterfly have,
After ...

(with apologics to B. Dylan)

Introduction

Counsider the map
F:C* o C?
(z.9) » (5" +2y),
(which is a section of the swallowtail singularity) and its perturbation
F.(z,y) = (z,y* + zy + e?).

The singular set of F is given by 4y* 4+ z = 0, and the discriminant A(F) of F (the
image of its singular set) is a curve with a singular point at the origin. The singular set
of F. is also a smooth curve, but its image A(F;) is a curve with 2 cusps (As-points)
and a double point (an A(; j)-point) — see Figure 1.

Figure 1: Discriminants of F' and F; — the swallowtail



[t turns out (and is well-known) that the number of cusps and double points is in-
dependent of the perturbation, provided the perturbation is a stable map. T. Fukuda
and G. Ishikawa [2] show that the number of cusps is given by the dimension of a
local algebra associated to F', and independently J. Rieger [8] gives formulae for both
the number of cusps and the number of double points in the case that F' is of corank
1 — see also [9]. T. Gaffney and D. Mond [4] give formulae for both the number of
cusps and the number of double points for a general finitely-determined map-germ
C? - C2

In this paper, we consider the analogous problem for map-germs F : C* = C";
that is, given such a map-germ, consider a perturbation which is stable, and ask how
many occurrences of each isolated feature in A(F;) there are. The features are the
zero-schemes of the title, and the numbers are the multiplicities. We are able to give
answers in the case that F' is of corank 1. In particular, if F' is weighted homogeneous,
then we give a closed formula for these numbers in terms of the weights and degrees
of F. However, unlike Fukuda, Ishikawa and Rieger, we do not consider the case of
real map-germs R? = R2,

A 3-dimensional example analogous to the swallowtail one above can be obtained
by taking a section of the butterfly:

F: ¢ o5 ¢
(z1,22,9) +—  (21,29,5° + 21y + w2y).
Here the singular set is a smooth surface in C3, whose image A(F) is a surface with
a cuspidal edge and a more degenerate point at the origin — see Figure 2. A stable
perturbation (or stabilization) F; can be given by

Fe(z1,22,9) = (z1,72,9° + T19y° + 22y + 3.

The interesting isolated features (zero-schemes) of A(F;) are the 2 swallowtail points
(Ag-points), and the 2 points where a cuspidal edge passes through a smooth sheet
(A(y,1)-points). There could in principle be a further isolated feature, namely a triple
point of A(F;) where three smooth sheets intersect (A(;;1)-points), but in fact it
doesn’t occur in this example. The purpose of this paper is to be able to predict
these numbers from the form of F', without studying F. explicitly. For example, if
y® were replaced by y% in the butterfly example above, then according to Theorem 1,
any stabilization would have 1 A(; ; 1)-point, 6 Ay 1)-points and 3 A3-points.

In general, let F' : (C",0) — (C",0) be a map-germ with a degenerate (non-
stable) singularity, and let F be a 1-parameter stabilization of F. We assume that
F is of corank 1 (that is, dFj has rank n — 1). If F' is finitely-determined, then the
singularity of F' (at 0) splits up into a number of non-degenerate zero-dimensional
(stable) singularities of F, which we now describe.

A stable map-germ G : (C",0) = (C",0) has an Ay singularity (k < n) if it is
left-right equivalent to the germ,



Figure 2: Discriminant of F. (¢ < 0) — the butterfly
(thick line is cuspidal edge, grey line is self-intersection, broken lines are hidden)

Moreover, any stable corank 1 map-germ is an Ay for some natural number k. As is
easily seen from the normal form, the set of points in C" where a stable map has an
Ay singularity is a submanifold of codimension &k (given by 1y = -+ = a1 =y =0).
The image of this set is also a smooth submanifold of codimension k. It turns out
(Mather-Gaffney geometric critierion [10]) that a map with only corank 1 singularities
is stable if and only if these submanifolds in the discriminant are in general position.

Suppose the map G : C* — C" is stable (and defined on some open subset of
C"). Let z be in the image of G, and put S = G~!(2) = {s1,...,54}. Suppose G has

an A, singularity (r; 2 0) at s; (for j =1,... ,d). Then z represents a zero-scheme
if and only if 71 + -+ + rq = n. That is, after suppressing those r; equal to zero,
P=(r..., () is a partition of n. We call such a multi-singularity an Ap-singularity.

In the case n = 2, the two possibilities are a cusp, with P = (2), and a double-fold,
with P = (1,1); for n = 3 the three possibilities are a swallowtail, with P = (3), a
fold-cusp, with P = (2,1) and a triple fold, with P = (1,1,1) — as in the examples
above.

The question is, given an A-finite (i.e. of finite A-codimension or equivalently A-
finitely determined) map-germ F : (C",0) — (C",0), and a partition P of n, how
many Ap singularities are there in a stabilization of F'. in a suitably small neighbour-
hood of 07 This number is independent of the particular stabilization chosen, and we
denote it fAp = fAp(F).



We consider corank-1 map-germs from X = (C",0) to Y = (C",0). Choosing
linearly adapted coordinates, we write
F:C"'xC - C"!'xC
(,y) = (z,f(z,y)).
When F'is weighted homogeneous, we put,

wy = wt(y), w; = wt(w;), (1)
d = degree(f), w = H?___ll w.

Let P = (ry,...,7¢) be a partition of n, with rp > 79 > -+, and call £ the length of
P. Define N(P) to be the order of the subgroup of S¢ which fixes P. Here S¢ acts on
R/ by permuting the coordinates. For example, for P = (4,4,2,2,2,1,.1,1) we have

N(P)=(2!)(3)2 = 72.

Theorem 1 Let F : (C",0) — (C™,0) be a corank-1 weighted-homogeneous A-finite
map-germ, with weights and degrees as above. For any stabilization of F', and any

n—1 n4(=1

w d
himiat T (—-»).
hAr N(P)w w) J)

i=l

partition P of n,

where £ as the length of P.

1 Intermediate results
Associated to X = C"™1 x C and P we will be considering various spaces. In partic-
ular,
X, = Cn—l x Cf’
X(’ - Cn.—l > C(’+n
We will also be considering a versal deformation F of F, with base CY, and then we
denote X, = C? x X, and similarly X0 = cd x x¢,
Let F: X = Y bean Ac-versal unfolding of F' (with base Cd), so that
F(u,z,y) = (u,, f(z,y,u)) = (4, Fu(z,y)).

For each partition P = (r1,...,7¢) of n we consider (following ideas of Gaffney

[3]) the subscheme V(P) of X¢:=C? x C* ! x C!, where £ = length(P), defined by

° yi #Yj,

N ~ F(u,z,y;) = F(u,a,y;), and
V(P) :=clos < (u,x,y1,....y¢) € X¢ o ) ol Yy B0

e F,hasa singularity of type A,
at (u,x,y;)



where ‘clos’ means the analytic closure in XC. Let # = w(P) : V('P) — C? be the
restriction to V(P) of the Cartesian projection X — C?. For generic u € C4, the
fibre 77 1(u) consists of those ‘multi-points’ (also known as ‘sets’) where F Las an Ap
multi-germ. We are thus interested in the degree of 7(P).

Proposition 2 If P = (ry1,...,r¢) s a partition of n, then
tp = ——degrela(P)
p = ———(legree|m ;

PROOF Lety = (y1,....y¢) € V(P) and o € S¢. We have

if and only if r,(;) = r; for each j = 1,...,£. There are N(P) such o. The points y
and y7 are distinct, but the corresponding sets are the same, and it is the sets that
are counted in fAp. O
Let Z(P) be the ideal defining V(P), and put
Z(P) = (Z(P) + WBlisy v« D] Ly v Bt} € gy,

corresponding to the intersection of V(P) with {0} x X; = X;. The main theorem
follows from the following results, which are proved in §2.

Proposition 3 V(P) is smooth of dimension d, and n(P) : V(P) = C is finite-1
and flat.

Proposition 4 Z(P) is a zero-dimensional complete intersection and hence the de-

gree of m(P) coincides with diincOx, /Z(P).

Proposition 5 If F' is weighted hormogeneous, with weights and degree as in (1), the
projection ©(P) : V(P) = C? has degree

1 n+6—1
d(P) = m ]]‘:[1 (d — Jwy).

2 Proofs

Nearby the (A,, +-- -+ A,,) multi-germs, there are points in the target with (»1+1)+
(ro+ 1)+ -+ (r¢+ 1) preimages (i.e. n+ £ preimages). We shall define an (n + £)-
tuple scheme in X‘=C"~1 x C"*, which on the appropriate diagonal specializes to
the ideal defining (A,, +--- 4+ A,,) multi-germs (Lemma 6 below).

(@}



We denote the coordinates of X¢ by

In X there is a diagonal of particular interest, namely,

which can be parametrized in the obvious way by (z,y',...,y%):
(z,y) = (:z:,yl,...,yl,yz,...,y2,...,y{';,...,y(),

with y' repeated 7; + 1 times. This corresponds to an embedding of X¢ in X°.
Let Zn(p) be the ideal defining A(P), that is

A generic point of A(P) is one of the form (2) with y' # 37, for i # j.
We define a sheaf of ideals J(f,P) C Oye by

J(f,Py=(hili=1,...,.n+£-1),

with
L BN €7 Al NN (7) AL €7 K
b oty TEUAE TR T (girt=
h=V=h0t S SR .
Loy o T 5wttt e o)t
O ¢/ h P9 I 9
where V = V(yd, - ,y,l.] T TR ,yf.[) is the Vandermonde determinant and

£ = fla,yp).
Lemma 6 ([6. Lemma 2.7]) At a generic point of A(P) we have,

TUEP +Iapy = By (85 F1ve ooy (Byfes- -1 (O f)e)
+(f @,y = fla,9"):2 <i <) +Taep).



PROOF OF PROPOSITION 3 It is clear that V(P) is an analytically closed set of
dimension d. In fact, it follows from [5, Cor. 4.3.3] that V(P) is smooth of dimension
d. The projection w(P) : V(P) — C? is a finite mapping. Indeed, f is finitely A-
determined and Ap is a (-stable multigerm, so by the Mather-Gaffney geometric
criterion [10], the fibre over zero is either the origin or empty. Moreover, the ideal
Z(P) defining the fibre of m over zero is obtained as the specialization of J(f,P) to
the principal diagonal Ag, whose generators are y' —y/, for i,5 = 1...1. In fact, by
Lemma 6,

TP+ Tag = (Byf)s-- ., (7)) + Tno.
The generators (9, f), ..., (c‘);,"+l“1f) form a regular sequence in C*" 1+ So, by [7]
the projection 7(P) : V('P) — C4 is flat. a

PROOF OF PROPOSITION 4  If it were not a complete intersection, the projection
w(P) would not be finite. O

PROOF OF PROPOSITION 5 Note that
degree(h;) = d — 1wy,

so that the product of all the degrees of the h; is

n+(—1

[T (d—-jwo).

i=1

From Bezout’s theorem applied to the ideal J(F,P)+Zp), it follows that its degree

15

1 n+(—1 1 n+(-1
—— [ (d-jwo)wi = — (d = jw).
wy " w j=1 wjw E
Therefore, by Lemma 6 above, this is also d(P). O

3 Multiplicities of strata in A; discriminants

In this final section, we use Theorem 1 to give a simple formula for the local multi-
plicity of the closure of each stratum in the discriminant of an Ay singularity.
Consider the stable Ay map f : CF — CF,

flay,....ep_1,y) = (X, ..., X, Y ) =(%q,... .,:l:k_l,yk+1 -{-:ztlyk_1 + o Tp_1Y).

This map is clearly weighted homogeneous, with weights wt(x;) = wt(X;) = ¢+ 1,
wt(y) = 1 and wt(Y) = k + 1. The discrimminant A(f) is stratified by the various



Ap multi-germs, where P = (rq,...,7¢) is a partition of n < k+ 1 — £. Denote
this stratum by Ap and its closure by Zp. Zp is an algebraic subvariety of CF of
dimension D = k — n. Note that Goryunov [5, §4.3] shows that if n > k+ 1 — £ then
Ap is empty (his D(pq, ..., pr) corresponds to our Ap for P = (1 +1,..., pup+1)).

Theorem 7 The multiplicity of Zp at the origin is given by,

1
NP (PHUDD 1) (D~ £+2),

where D = dim(Zp) and N(P) s defined in the introduction.

To prove this, we first need a lemma on the geometric structure of Ay discrimi-

nants.

Lemma 8 Let Zp be as above, and let (z;) be any sequence of points in Zp converging
to 0. Then

ToZp = lim T, Zp = {X,Y)|Y = Xp—n41 = Xp—np2 = = X1 = 0}

PROOF As is well-known and easy to see, the discriminant of f coincides with the
discriminant of the orbit map oq : Cf — Cf for the action of the permutation
group Si41, where ij is identified with the subspace of CF*! the sum of whose
coordinates vanishes, and Sy acts on Ck+1 by permuting the coordinates. Consider
the extension o of ¢ to C**1 defined as usual by,

o Ck+l i Ck+l

(:‘/l-,'”:yk-}-l) = (Zyi: Zyiyj’”--,yl"'yk-{-l)-
i i<j

Clearly. CF is to be identified with the subspace of C*+1 with vanishing first coordi-
nate. It will be more convenient for computations to change coordinates in the target
of o so that o takes the form

5('.1/1;-~-:3/k+1) . (th Zy;zv Zy}‘,,zy,k“)
i i i

1

Note that the linear subspaces of the form T)Zp are preserved by the differential at
the origin of this change of coordinates; indeed the differential is a diagonal matrix.
Denote by A the discriminant of &.

Given the partition P = (ry,...,7r¢) of n, the stratumn A‘p is the image under & of
Yp C CH parametrized by



where y; occurs with multiplicity 7;, and the y; are distinct. Write 6p for the restric-
tion of & to Lp. Using this parametrization of Lp, p has the form,

Thus, at a point y € Lp, the differential of op is

71 § s ',-(
21191 ik 21¢ye
dop(y) = ; :

(k+Driyf - (k+1)reyf
Notice that the top £ x £ minor is equal to 2! ([]r;) V(y1,...,y¢), where V is the
Vandermonde determinant, which is non-vanishing on Ap. Consequently, at points
of Ap, the tangent space to Ap projects isomorphically onto C! (defined by the
vanishing of the last & — £ coordinates).
Finally, since the k — £ components of & are of strictly higher degree than the first
2, it follows that in the limit as (y1,...,y¢) = (0,...,0), the tangent space to Ap
tends to C’. Intersecting source and target with Cf and Cf respectively shows that
the same is true of the tangent space to Ap, as required.
O

PRrROOF OF THEOREM 7 It follows from this lemma that the multiplicity at 0 of Zp
is given by the intersection multiplicity of Zp with the n-dimensional subspace

{(X,Y)| X1 =+ =Xp_n =0},

which is transverse to this unique limiting tangent space Ty Zp, and it remains for us
to compute this multiplicity.
To this end, consider the map g : C* = C" defined by

glut, .o un—1,y) = (U1, .o U, ¥ gy o uy),
which is induced from f by the immersion v : C* — Ck,
Yy(ur, ..., un—1,y) =(0,...,0,u1,...,un-1,Y),

in the sense that foy=+vyog.

By the lemma, this inclusion is transverse to A(f) away from the origin, so that it
is Ka(y)-finite, and consequently, g is A-finite (Damon [1]). Moreover, a stabilization
ge of g is obtained by perturbing the embedding v to an embedding 7. transverse to
A(f), and a fortiori transverse to Zp. If . is transverse to Zp, then im(vy.) N Zp =
im(vy:) N Ap is a finite set (for dimensional reasons).

The points of this intersection are precisely the image under «, of the points in
C" (the image of g.) over which g. has Ap an singularity. Since g is weighted ho-
mogeneous, the number of such points is given by Theorem 1. A simple computation
then proves Theorem 7. O
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