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RESUMO

Daxlo um gonna (Io apncadno P NT!" —> 49", (“lo corank 1 na origmn.
Consideramos uma perturbagéo estével F5 de F e investigamos a multiplici—
dade dos esquemas zero-dimensionais que ocorrem no discriminante A(FE).
Quando F é quase-homogéneo obtemos uma formula exprimindo as multi—

plicidades em termos dos pesos e do grau.



Multiplicities of zero-schemes in quasihomogeneous
corank—l singularities

W .L. Marar, J.A. Montaldi, MAS. Ruas

November 1996

Abstract
How many cusps does a swallowtail have,
After it becomes a stable map,
Oh and how many swallowtails does a butterfly have,
After . . .

(with apologies to B. Dylan)

Introduction
Consider the map

F : c2 -+ 02
(my) H (13114 + my),

(which is a section of the swallowtail singularity) and its perturbation

Fete, y) = (av,y4 + my + 6y2).

The singular set of F is given by 4g3 + a: = (l, and the discriminant A(F) of F (the
image of its singular set) is a curve with a. singular point at the origin. The singular set
of F5 is also a smooth curve, but its image A(FE) is a curve with 2 cusps (Ag-points)
and a double point (an Ann-point) — see Figure 1.

Figure 1: Discriminants of F and F5 — the swallowtail



It turns out (and is well-known) that the number of cusps and double points is in-
dependent of the perturbation, provided the perturbation is a stable map. T. Fukuda
and G. Ishikawa [2] show that the number of cusps is given by the dimension of a
local algebra associated to F, and independently J. Rieger [8] gives formulae for both
the number of cusps and the number of double points in the case that F is of corank
1 —— see also [9]. T. Gaffney and D. Mond [4] give formulae for both the number of
cusps and the number of double points for a general finitely-determined map-germ
02 —> (32.

In this paper, we consider the analogous problem for map-germs F : C" —> C”;
that is, given such a map-germ, consider a perturbation which is stable, and ask how
many occurrences of each isolated feature in A(FE) there are. The features are the
zero-schemes of the title, and the numbers are the multiplicities. We are able to give
answers in the case that F is of corank 1. In particular, if F is weighted homogeneous,
then we give a closed formula for these numbers in terms of the weights and degrees
of F. However, unlike Fukuda, Ishikawa and Rieger, we do not consider the case of
real map-germs R2 —> R2.

A 3-dimensional example analogous to the swallowtail one above can be obtained
by taking a section of the butterfly:

F: C3 —> c3
($1,152,11) H ($1,162,y5+$1y2+w2y)-

Here the singular set is a smooth surface in 0”, whose image A(F) is a surface with
a cuspidal edge and a more degenerate point at the origin — see Figure 2. A stable
perturbation (or stabilization) F6 can be given by

Feud, 332,14) = ($1,562,115 + 951142 + $211 + E113)-

The interesting isolated features (zero-schemes) of A(FE) are the 2 swallowtail points
(Ag-points), and the 2 points where a cuspidal edge passes through a smooth sheet
(Amn—points). There could in principle be a further isolated feature, namely a triple
point of A(FE) where three smooth sheets intersect (Awhn-points), but in fact it
doesn’t occur in this example. The purpose of this paper is to be able to predict
these numbers from the form of F, without studying FE explicitly. For example, if
y5 were replaced by y6 in the butterfly example above, then according to Theorem 1,

any stabilization would have 1 Aquu-point, 6 Amp-points and 3 A3-points.

In general, let F : (C”,()) -—) (C",()) be a map-germ with a degenerate (non—

stable) singularity, and let F be a l-parameter stabilization of F. We assume that
F is of corank 1 (that is, {if}; has rank n — 1). If F is finitely-determined, then the
singularity of F (at 0) splits up into a number of non-degenerate zero-dimensional
(stable) singularities of F, which we now describe.

A stable map-germ G : (C",()) —) (C",()) has an Ak singularity (k S n) if it is
left-right equivalent to the germ,

k 1 k—l($I:-~-,55n—17y) H (1111,----,fvn—1,y + +1511! +"'ka-1'y)~



Figure 2: Discriminant of F5 (6 < (i) — the butterfly
(thick line is cuspidal edge, grey line is self-intersection, broken lines are hidden)

Moreover, any stable corank 1 map—germ is an Ak for some natural number k. As is
easily seen from the normal form, the set of points in C" where a stable map has an
A). singularity is a submanifold of codimension k (given by 11:1 = - - - = :1:k_1 = y = 0).
The image of this set is also a smooth submanifold of codilnension k. It turns out
(Mather-Gaifney geometric critierion [1()]) that a map with only corank 1 singularities
is stable if and only if these submanifolds in the discriminant are in general position.

Suppose the map G’ : C" —) C" is stable (and defined on some open subset of
C"). Let z be in the image of G, and put S = G"1(z) = {s1,...,sd}. Suppose G has
an Ar] singularity (Ti 2 0) at Sj (for j = 1, . . . ,d). Then z represents a zero-scheme
if and only if H + + rd = ii. That is, after suppressing those rj equal to zero,
”P = (n ..... 17) is a partition of 7L. We call such a multi-singularity an Ap-singularity.
In the case n. = 2, the two possibilities are a cusp, with 73 = (2), and a double-fold,
with 73 = (1,1); for n = 3 the three possibilities are a swallowtail, with 73 = (3), a
fold-cusp, with 73 = (2, l) and a triple fold, with ’P = (1,1, 1) — as in the examples
above.

The question is, given an A-finite (i.e. of finite A-codirnension or equivalently A—

iinitely determined) map-germ F : (C"._()) —) (C",()), and a partition 73 of u, how
many A7) singularities are there in a stabilization of F. in a suitably small neighbour—
hood of (i? This number is independent of the particular stabilization chosen. and we
denote it ”A7? = fiA'p(F),



We consider corank-l map-germs from X = (C”,()) to Y = (C”‘,()). Choosing
linearly adapted coordinates, we write

F:C"“1><C —> cn-lxc
(any) H (w1f(:l:,y))-

When F is weighted homogeneous, we put,
'U)() = Wt(y)7 Iwi = Wt(fl)i),

(1)
(t = degree( f ), w = $211 wi.

Let 73 = (n, . . . gm) be a partition of u, with T1 2 713 _>_ -~ -. and call t the length of
73. Define N('P) to be the order of the subgroup of S(' which fixes ‘P. Here S(- acts on
R’ by perinnting the coordinates. For example, for 7D = (4,4,2,2,2,1,1,1) we have
NW?) = (2!)(3!)2 = 72.

Theorem 1 Let F : (C",()) —) (C",()) be a co'rank-I weighted-hornogem—zous A-finite
map-germ. with weights and degrees as above. For any stabilization. of F. and any
partition 'P of N,

n—l 71+C—1

_ we i_,~
who/1:1? is the length of'P.

1 Intermediate results
Associated to X = C"_1 x C and 73 We will be considering various spaces. In partic—
ular.

X6 : Cn—l X cf,
X6 = cn—l X 05+”

We will also be considm'ing a versal deformation F of F, with base Cd, and then we
denote X4 = Cd x X“ and silnilarly X6 = Cd x X‘.

Let F : X —) Y" be an Ac—versal unfolding of F (with base Cd), so that
F(u,:z¢,y)=(u,=v=f(w,y,U))=(1L,Fu(w,y))-

For each partition 73 = (11, . . .,'r() of n we consider (following ideas of Gaffney
[3]) the subscheine V('P) of X5 := Cd x C”_1 x CC, where t = length('P), defined by

0 M 95 W»

~ ~ F',':,',-=F',",;~,ilV(’P) := clos (u,:l;.y1,....,y() G X(- . (a J y) (u l (11) mt

o F“ has a singularity of type A”,
at (u,w,yj)



where ‘clos" means the analytic closure in if. Let 7T = 7r('P) : V('P) —-> Cd be the
restriction to V('P) of the Cartesian projection X5 —> Cd. For generic u 6 Cd, the
fibre 7r'l(u) consists of those ‘inulti-points’ (also known as ‘sets’) where F has an A7)
niulti-gerni. We are thus interested in the degree of 7r(73).

Proposition 2 IfP : (1'1, . . .,'I'[) is a partition of n, then

1

11/17.» : Wilegeehrllh).

PROOF Let y = (yl, . . . ,y(;) E i703) and a E S[. We have

3"7 1= (ya(1):"'1ycr(f)) 6 W7?)

if and only if TU”) = T‘j for each j = 1, . . . J. There are N('P) such a. The points y
and y” are distinct, but the corresponding sets are the same, and it is the sets that
are counted in fiAp. El

Let TVP) be the ideal defining f/(P), and put

IN?) = (IV/3) + (U1, . . . ,ud))/ (U1, . . . Aid) C Ox“

corresponding to the intersection of V0?) with {0} x X5: = X5. The main theorem
follows from the following results, which are proved in §2.

Proposition 3 V0?) is smooth of dimension d, and 7r(’P) : 1703) —) Cd is finite—1
and flat.

Proposition 4 IN?) is a ze'ro-dimensional complete intersection and hence the de—

gree of MP) coincides with di'InCOXI/fl'P).

Proposition 5 IfF is weighted homogeneous, with weights and degree as in (1), the
projection 7r(73) : V(’P) —) Cd has degree

1 n+f'—l

d<7a=m H (ll—Jive)-

2 Proofs
Nearby the (A,-1 +~ - -+A,‘[) rnulti-germs, there are points in the target with (T1 +1)+
(73 + 1) + - - - + (‘l'( + l) preilnages (i.e. n + E preiniages). We shall define an (n + (f)—

tnple scheme in X”=C"_1 >< CM”, which on the appropriate diagonal specializes to
the ideal defining (A,-I + - - - + Aw) niulti—gerrns (Lemma 6 below).

C.“



We denote the coordinates of X6 by

,. _ ,. ,
1

,
1 2 2

,
(

, ((.1.,y) - (.1,,y0, . . . ,y,.l,y(), . . . ,y,.2, . . . ,y0, . . . h11,7).

In X ‘ there is a diagonal of particular interest7 namely,

m7?) = {(w,y) e X" |y§°=y§2 Vi,j=1,...,7-k, Vk=1,...,(f},

which can be parametrized in the obvious way by (:1:,y1, . . . ,y():

(11:,y)=(:1:,y1,...,y1,y2,...,y2,....,y(,...,yc), (2)

with yi repeated H + 1 times. This corresponds to an embedding of X1: in X6.
Let Imp) be the ideal defining A('P), that is

fair) =<11f~1uil= Vi=1,--.-,'r'i~.. sz=1,..,,1€>.

A generic point of (MP) is one of the form (2) with yi yfi yj, for i yé j.
We define a sheaf of ideals j(f.,'P) C OX‘ by

J(f,'P)=(/L,~|1I=1,....,'n,+fl—l).,

with

1 M1) (yéy—l fl} (Milli-F1 ,” (y(l))n+l—1

1 yil (gm-1 f}, waif“ (yi, )"v+’—1

in = V"- s 5 z z z :

1 ya <y6>f-1 fé (yaw (men-“4

1 yf, oar—1 ff, (yaw (y£,>"'+‘-1

where V = V(y(1,, - - - ,y,1.1 ,
- - - 71/6, - - - ,y,‘.£) is the Vandermonde determinant and

ff = flan y?)-

Lemma 6 ([6. Lemma 2.7]) At a generic point of A('P) we have.

flf-PHIm-m = <<<9yf>1,...,(a;,"f'>1,...,<8;,f')(,....(a;;->(>

+ <fl3ay") — f(:l-',y1); 2 S i 5 £> +IA(P)~



PROOF OF PROPOSITION 3 It is clear that (HP) is an analytically closed set of
dimension d. In fact, it follows from [5, Cor. 4.3.3] that I7('P) is smooth of din'iension
d. The projection 7r('P) : 1703) —> Cd is a finite mapping. Indeed, f is finitely A-
determined and A7; is a (l-stable multigerm, so by the Mather-Gaffney geometric
criterion [10], the fibre over zero is either the origin or empty. Moreover, the ideal
I('P) defining the fibre of W over zero is obtained as the specialization of j(f,73) to
the principal diagonal A0, whose generators are yi -— y-l, for i,j = 1...l. In fact, by
Lemma 6,

J(f,7’) +IA0 = (W), . ..,<a;;-“*1f>> +IA0-

The generators (Oi/f), . . . , (OJ/”Ll—lf) form a regular sequence in C'l"1+(. So, by [7]

the projection 7r(73) : V('P) —) Cd is flat. [I

PROOF OF PROPOSITION 4 If it were not a complete intersection, the projection
7r(’P) would not be finite. El

PROOF OF PROPOSITION 5 Note that

degree(h,-) = d — iwn,

so that the product of all the degrees of the IL, is

ri-I-C—l

H (d — ill/0)-
j=1

From Bezout’s theorem applied to the ideal J(F, 73) +IA(7>), it follows that its degree
13

1 n—H—l 1 n+£—1
' II. '7-— H (d —on)wo = “7— H (d —J'wo)-

1110+"w j=1 wow j=1

Therefore, by Lemma 6 above, this is also d('P). C1

3 Multiplicities of strata in Ak discriminants
In this final section, we use Theorem 1 to give a simple formula for the local multi—

plicity of the closure of each stratum in the discriminant of an Ak singularity.
Consider the stable AA. map f : Ck —) Cl“,

,k+1 (k—lflf"1-,--~-,-'"'Iv—I-,'!/l=(XIs----Xk—1~.Yl=(1l?1-,----,5"k—1:!/ +1171‘J +"'+-'lfk.~_1'y)-

This map is clearly weighted homogeneous, with weights wt(:z:,-) = wt(X,-) = i—I— 1.

wt(y) = 1 and wt(Y) = A: + 1. The discriminant A(f) is stratified by the various



A7?) nmlti-gerrns, where ’P = (1'1,...,'r'f) is a partition of n 5 k + 1 — l. Denote
this stratum by A7; and its closure by Z7). Z1? is an algebraic subvariety of C" of
dimension D = k — n. Note that Goryunov [5, §4.3] shows that if n > k + 1 —- K then
A79 is empty (his D(p,1, . . . , pk) corresponds to our A7; for 73 = (fl1+1,...-,lllc +1)).

Theorem 7 The multiplicity of Z7; at the origin is given. by,

1

W(D+1)D(D—1)...(D—l+2),
where D = (lilu(Z'p) and N("P) is defined in the introduction.

To prove this, we first need a lemma on the geometric structure of Ak discrimi—

nants.

Lemma 8 Let Z'p be as above, and let (zi) be any sequence ofpoints in Z7) conve1ying
to 0. Then.

fFOZ’P3:1.13210Tin-Z1" = {(X,Y) | Y = Xk—n+1 = Xk—n+2 = = Xk~1=0}-

PR.()()F As is well—known and easy to see, the discriminant of f coincides with the
discriminant of the orbit map 00 : Cf --> Cf for the action of the permutation
group Sk+1= where Cf is identified with the subspace of Ck“Ll the sum of whose
coordinates vanishes, and Si.“ acts on C'c+l by permuting the coordinates. Consider
the extension 0 of 00 to Ck+1 defined as usual by,

0 : Ck-H l Ck-H

(yen-wk“) H (Zyi,nyyj,---,y1---yk+1)-
i i<j

Clearly. Cl" is to be identified with the subspace of Clc+1 with vanishing first coordi-
nate. It will be more convenient for computations to change coordinates in the target
of 0’ so that 0 takes the form

5('!/1;---=yk+1l= (Zyi, Zy?’ ny’mnzyzk-l-l)
i ii 1

Note that the linear subspaces of the form ’Ipr are preserved by the differential at
the origin of this change of coordinates; indeed the differential is a diagonal matrix.
Denote by A the discriminant of 5.

Given the partition 73 = (n, . . . , 71) of n, the stratum A73 is the image under 5 of
279 C ClerI parametrized by

(11/1=~--,‘1Jc) H (yum,y1,y2,---,yz-,----,yr=,---,yf),



where yj occurs with multiplicity rj, and the yj are distinct. Write 673 for the restric-
tion of 5 to 279. Using this parametrization of 2p, 6p has the form,

6P(y1""’y") = (2772/13 ZTiy?,...,ZTiyi€+l).
i z' i

Thus, at a point y E 273, the differential of 519 is

7'1 - . . lrf

~
27'1y1 ' " 211m

da¢>(y) = . .

<k+1myf (k+1)7'eyi“7

Notice that the top E x E minor is equal to Z! (H Ti) V(y1, . . .,yg), where V is the
Vandermonde determinant, which is non-vanishing on A7). Consequently, at points
of A7), the tangent space to A7: projects isomorphically onto Cg (defined by the
vanishing of the last I; — E coordinates).

Finally, since the k — 1? components of 6 are of strictly higher degree than the first
12, it follows that in the limit as (y1,.. .,yg) —> (0, . . . ,()), the tangent space to A1.)

tends to Cf. Intersecting source and target with Cf: and Cf respectively shows that
the same is true of the tangent space to A7), as required.

El

P ROOF OF THEOREM 7 It follows from this lemma that the multiplicity at U of Zp
is given by the intersection multiplicity of Z7: with the n—dimensional subspace

{(X,Y) lX1="'=Xk—n =()},
which is transverse to this unique limiting tangent space ToZp, and it remains for us
to compute this multiplicity.

To this end, consider the map g : C” —) C" defined by
g(1Ll7 - - -:Un—1=y)=(U1,- ' ' ,Un, 11k“ + “lyn—l + ' ' ' + un—ly):

which is induced from f by the immersion 7 : C" —) Ck,

7(1L1, ' ' ' 7un—17y) = (01 ' ' "051117 ' ' 'aun—1ay)a

in the sense that f o 7 = 7 o g.
By the lemma, this inclusion is transverse to A( f ) away from the origin, so that it

is [Cam—finite, and consequently, g is A-fiuite (Damon [1]). Moreover, a stabilization
gg of g is obtained by perturbing the embedding 7 to an embedding 75 transverse to
A( f), and a fortim'i transverse to Zp. If 75 is transverse to Z’p, then im(75) F1 27? =
im(75) 0 A7.» is a finite set (for dimensional reasons).

The points of this intersection are precisely the image under 75 of the points in
C" (the image of gE) over which gE has A7: an singularity. Since g is weighted ho-

mogeneous, the number of such points is given by Theorem 1. A simple computation
then proves Theorem 7. [j
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