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Abstract
This paper addresses the topology optimization of fluid–structure interaction (FSI) systems considering large displacements. 
We consider the steady-state analysis of flexible structures in contact with a fluid flow governed by the incompressible 
Navier–Stokes equations. The optimization method used in this work considers the physical analysis and optimization module 
in a decoupled form. The decoupled analysis allows the finite element problem to be meshed and solved accordingly to the 
physics requirements. Optimized geometry is constructed by reading and trimming out from an optimization grid described 
by a set of binary {0, 1} design variables. The method is so-called TOBS (Topology Optimization of Binary Structures) with 
geometry trimming (TOBS-GT). Displacements are resolved using an elastic formulation with geometrical nonlinearities 
to allow for large deformations. The FSI system is solved by using finite elements and the Arbitrary Lagrangian–Eulerian 
(ALE) method. Low Reynolds numbers are assumed. The sensitivities are calculated using semi-automatic differentiation 
and interpolated to optimization grid points. In order to consider large displacements, a mapping between material and 
spatial coordinates is used to identify and track the deformed configuration of the structure. The optimized binary topology 
is found by using the standard TOBS approach (Sivapuram and Picelli in Finite Elem Anal Des 139:49–61, 2018) based on 
sequential integer linear programming. Numerical examples show that the TOBS-GT method can be effectively applied to 
design 2D and 3D structures in FSI problems including nonlinear structural responses.
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1  Introduction

Fluid–structure interaction (FSI) is a very common mul-
tiphysics phenomenon in nature, present in different propor-
tions and areas of application (Casadei et al. 2001; Galdi and 
Rannacher 2010; Bodnár et al. 2014; Kamakoti and Shyy 
2004). Despite occurring in different degrees and forms, the 
FSI problem is present in several engineering systems such 
as engines, acoustics, turbines, pumps and others. In these 
systems, FSI plays an important role and influences design 
decisions (Bazilevs et al. 2013; Païdoussis 1998). However, 
systems involving FSI problems are known for their high 
complexity, which makes structural designs challenging and 
highly non-intuitive. Thus, structural optimization methods 
emerge as a crucial ally for the development of projects with 
better performance in terms of stability, stiffness and eco-
nomic aspects.

Topology optimization methods have become popular in 
fluid–structure systems being applied to a variety of prob-
lems (Andreasen and Sigmund 2013; Vicente et al. 2015; 
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Kook and Jensen 2017). Compared to parametric and shape 
optimization, topology optimization allows non-intuitive 
solutions to be generated from a full domain regardless of 
the initial configuration and have been adopted in several 
engineering areas (Bendsøe and Sigmund 2003; Zhu et al. 
2021). In general, topology optimization involving mul-
tiphysics systems face higher challenges compared to the 
optimization of a single physics. A fundamental point to 
consider when optimizing FSI problems is the modeling of 
interface conditions. FSI problems are characterized by the 
strong coupling between physics, i.e., the structure and the 
fluid move together and depend on each other (Bungartz and 
Schäfer 2006; Hami and Radi 2017; Richter 2017). In some 
cases, the position of the FSI interface is allowed to change 
during optimization. This approach is called “wet” optimiza-
tion. Such an approach is challenging and leads to design-
dependent loads, i.e., fluid loads are intrinsically dependent 
on the structural boundary and can possibly change as the 
structural design is updated (Jenkins and Maute 2016; Lun-
dgaard et al. 2018). Thus, it is necessary to adopt precise 
techniques capable of tracking coupling conditions during 
optimization. On the other hand, the so-called “dry” opti-
mization does not allow the removal of interface elements 
and only the internal geometry of the structure is optimized 
(Maute and Allen 2004; Jenkins and Maute 2015). This work 
considers the “dry” and “wet” approach and aims to design 
structures with higher stiffness (minimum compliance) sub-
ject to FSI loads allowing for large displacements.

Different approaches have been used to optimize 
the structural topology in FSI problems. The first work 
employed a density-based approach. Yoon (2010) proposed 
a SIMP (Solid Isotropic Material with Penalization) unified 
model that solved both governing equations in a monolithic 
approach. Later, Yoon (2014) applied the same method to 
stress-constrained problems. Further discussions and com-
parisons were provided by Lundgaard et al. (2018) who 
revisited the same SIMP-based for FSI problems approach 
proposed by Yoon (2010, 2014). In both works, the “wet” 
optimization was considered. Density-based methods con-
sider an interpolation in the material constant properties 
between solid and fluid within each element. However, such 
methods have an unclear structural boundaries during opti-
mization due to the use of intermediate densities elements, 
which implies a difficult physical interpretation in addi-
tion to possible numerical inaccuracies. Jenkins and Maute 
(2015) employed a method based on the explicit level-set for 
“dry” optimization of FSI problems. A generalized formu-
lation of the extended finite element method (XFEM) was 
used to track the changes in the structural boundary during 
the optimization. The same approach was applied for “wet” 
optimization later on (Jenkins and Maute 2016). Picelli et al. 
(2019) considered the level-set-based approach for fluid 
pressure loading problems. Fluid flooding technique was 

adopted to track changes in the FSI interface during optimi-
zation. A different technique for tracking the interface based 
on the level-set framework was proposed by Feppon et al. 
(2020) in the topology optimization of thermal fluid–struc-
ture problems. Feppon et al. (2020) proposed a remeshing 
method based on the evolution of the level-set function to 
capture the FSI interface. A new framework which employs 
reaction–diffusion equations (RDE) to update the level-set 
function was proposed by Li et al. (2021). In such approach, 
a body-fitted adaptive mesh scheme is employed as a 
remeshing technique. Level-set methods employ level-set 
functions that explicitly describe the structural boundaries 
via iso-contours. The interface FSI is clear and well defined. 
However, the level-set framework is usually complex and 
requires minuscious care in the level-set update to guaran-
tee boundary smoothness, adding challenges to the already 
complex FSI problems.

The clear and explicit distinction between physical 
boundaries is also provided by binary methods (also called 
discrete) (Sivapuram and Picelli 2020). Alternatively, binary 
methods are generally easier to implement compared to 
level-set methods. Picelli et al. (2017) addressed the opti-
mization of FSI problems using binary design variables via 
the BESO (Bi-directional Evolutionary Structural Optimi-
zation) method (Huang and Xie 2007). The fluid and solid 
domains as well as the governing equations were modeled 
separately. The BESO method, however, is built upon a heu-
ristic-design updated scheme, presenting difficulties when 
applied to a general optimization problem. Still in the binary 
class of methods, Picelli et al. (2020a) applied the TOBS 
(Topology Optimization of Binary Structures) method in 
the “wet” optimization case of structures under fluid flow 
loads. The author developed a new methodology to integrate 
different optimization and finite element packages. The idea 
consists in decoupling the binary optimization grid (from 
TOBS) and the finite element analysis (FEA) mesh. A CAD 
(Computer-aided Design) model is created by reading the 
{0, 1} variables and trimming the void regions (variables 0) 
out from the original design domain. This leads to the TOBS 
with geometry trimming (TOBS-GT) method. Picelli et al. 
(2022) showed that the TOBS-GT method can be used to 
optimize turbulent fluid flow properties. In this work, the 
idea is extended to show possible benefits in multiphysics 
optimization as it allows the modeling of separate domains 
in addition to the possibility of employing conveniently 
coarse meshes, decreasing the computational costs involved 
in the FSI simulation. The standard TOBS solver is based 
on formal mathematical programming which allows the effi-
cient implementation of multiple constraints in the problem 
(Picelli et al. 2020b).

In such context, this work proposes the extension of 
the methodology based on the TOBS-GT method (Picelli 
et al. 2020a) for optimizing FSI problems including large 
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structural displacements. The TOBS is a gradient-based 
method and employs sequential linear approximation of 
objective and constraint functions to generate subproblems 
associated with integer linear programming (ILP). Despite 
the effectiveness of the studies and different approaches 
mentioned above, the consideration of more realistic prob-
lems including large structural deformations is still a chal-
lenging topic when dealing with FSI problems. Up to date, 
the design of structures under viscous fluid loads consider-
ing large displacements was effectively employed only by 
Jenkins and Maute (2015, 2016). When optimizing FSI prob-
lems with large structural deformations, the fluid–structure 
interfaces must be properly tracked and explicitly defined 
for sensitivities to be calculated correctly. The binary {0, 1} 
design variables provide clear structures which facilitate the 
imposition of coupling conditions and the numerical analy-
sis of separate fluid and structural domains. Although FSI 
problems are commonly transient, herein we carry out the 
optimization considering a steady-state regime as a design 
approach, since the computational costs of transient analyses 
are still a challenge for topology optimization. In this study, 
we develop a framework that extends the TOBS-GT method 
to efficiently deal with fluid-structure design problems con-
sidering nonlinear structural responses. Compliance mini-
mization is solved subject to a volume fraction constraint. 
COMSOL Multiphysics is used as FEA package to solve FSI 
equations and provide semi-automatic symbolic differenti-
ated sensitivities. An optimization grid defined by a set of 
binary design variables {0, 1} is created in the TOBS mod-
ule. Then, the optimization grid is passed to the FEA module 
and a geometry file is generated. The geometry is produced 
by reading the set of discrete variables, where {1} represents 
the solid domain and {0} is the void or fluid regions. The 
trimmed geometry is freely meshed with the FEA package. 
The problem is solved in the spatial (Eulerian) and mate-
rial (Langragian) frame, thus allowing the map between 
the optimization point coordinates and the calculation of 
the sensitivity field in the deformed position. Fluid loads 
are linearly interpolated via the stress-equilibrium coupling 
condition. The TOBS-GT method is applied to design of 2D 
and 3D structures under viscous fluid flow loads. To the best 
author’s knowledge, this is the first work to employ binary 
topology optimization to design FSI systems including large 
displacements. The remainder of the paper is as follows. 
Section 2 describes the FSI model used in this work: the 
Navier Stokes equations (Sect. 2.1), the structural mechan-
ics (Sect. 2.2) and the coupling conditions at the interface 
(Sect. 2.3). The optimization problem is described in Sect. 3 
including details from the TOBS and TOBS-GT methods 
and the computational procedure. 2D and 3D numerical 
examples are presented and discussed in Sect. 5. The paper 
is concluded in Sect. 6.

2 � Fluid–structure interaction

We consider a steady-state analysis of elastic structures in 
contact with viscous incompressible fluid. In this work, the 
fluid flow is modeled in a Eulerian (spatial) frame while the 
solid structure is modeled in a Lagrangian (material) frame. 
The fluid flow is considered to be laminar and is governed 
by the incompressible Navier Stokes and continuity equa-
tions. Moving mesh is considered and structural nonlinear 
responses are evaluated.

2.1 � Navier–Stokes equations

An incompressible viscous fluid flow in constant motion (as 
illustrated in Fig. 1) is governed by the Navier Stokes and 
continuity equations (Gresho and Sani 2000). Considering a 
steady-state incompressible homogeneous Newtonian fluid, 
the equations are given by

where �f is the fluid density, v is the fluid velocity, P is the 
fluid pressure, I is the unit diagonal matrix and �f is the fluid 
dynamic viscosity.

Equation 1 corresponds to the momentum equation in an 
Eulerian formulation of reference, i.e., spatial frame. The 
terms on the left side of the equation are due to convective 
acceleration and the right side represents the internal forces in 
the fluid (inertial forces and viscous forces). The fluid inertial 
and viscosity forces are related by the Reynolds number Re, 
where Re = Finertial∕Fviscous . Equation 2 expresses the incom-
pressibility of the fluid. In order to solve the governing fluid 
equations, the following boundary conditions are imposed:

(1)
�f(v ⋅ ∇)v = ∇ ⋅ [−PI + �f

(

∇v + (∇v)T
)

] on Ωf,

(2)�f∇ ⋅ (v) = 0 on Ωf,

(3)v = v0 on Γin,

(4)[ − PI + 𝜇f

(

∇v + (∇v)T
)

]nf = −P̂0nf on Γout,

(5)P̂0 ≤ pout on Γout.

Fig. 1   A schematic illustration of the FSI problem
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The inlet flow condition (Eq. 3) is prescribed the at the chan-
nel boundary Γin . At the outlet of the fluid channel Γout a 
stress free condition is applied (Eqs. 4 and 5), where nf is the 
unit normal vector outward to the fluid and pout is the pres-
sure at the outlet of the channel. A slip condition ( v ≠ 0 ) is 
imposed on the flow walls prescribed with Γsw , on the walls 
Γw and on the interface Γfs are assumed non-slip conditions 
( v = 0).

2.2 � Structural mechanics

The solid domain Ωs (see Fig. 1) is computed in a Lagrangian 
frame (Wriggers 2008; Gatzhammer 2014). All the discrete 
equations are derived with respect to the original configura-
tion of the structure (undeformed position). This formulation 
is commonly called Total Lagrangian formulation. In this 
approach, a displacement vector u is used to account for the 
displacements from each material point X to a spatial point 
x . Thus

where x is the spatial coordinate, X is the material coor-
dinate and u is the displacement vector. The deformation 
gradient tensor F can be introduced to report the deformation 
of an infinitesimal line element dX in the material domain to 
a deformed line element dx in the spatial domain as

Therefore, F can be written as

where ∇u is the displacement gradient given by the deriva-
tives of the deformed coordinates with respect to the initial 
coordinates. The strain state is evaluated in the material 
configuration by the Green–Lagrange strain tensor given by

where C = F
T
F is the right Cauchy–Green deformation ten-

sor. The tensors E and C do not contain rigid body strains. 
The strain tensor E can be rewrite using the displacement 
gradient ∇u as

where the higher-order term (∇u)
T∇u corresponds to the 

nonlinear character. The equilibrium state is described in 
terms of the 2nd Piola–Kirchhoff stress tensor S defined as

(6)x = X + u,

(7)dx =
�x

�X
dX = FdX,

(8)F =
�x

�X
= ∇u + I,

(9)E =
1

2
(C − I),

(10)E =
1

2
[(∇u)

T + ∇u + (∇u)
T∇u],

(11)∇ ⋅ (FS) + f
fsi = 0,

where ffsi is the vector of fluid loads applied on the structure, 
i.e., at the interface Γfs . The stress tensor S can be related 
with the Cauchy stress tensor �s via

where J is the Jacobian matrix. Once the material is consid-
ered to be isotropic and linearly elastic, the linear constitu-
tive relation between the stress tensor S and the strain tensor 
E can be expressed by the Saint-Venant Kirchhoff elastic 
constitutive equation which is stated by

where �s and �s are Lamé constants. This constants can be 
described in terms of the Young’s modulus E and Poisson’s 
ratio � as

In order to solve Eq. 11, Dirichlet boundary conditions are 
applied at Γu as

2.3 � Coupling interface

The coupling between solid domain and fluid domain at the 
FSI interface is defined by the kinematic and stress equi-
librium conditions. The kinematic condition concerns the 
continuity in velocity and the stress equilibrium condition 
defines the continuity of the interface with respect to the 
normal vectors of both domains (Lund et al. 2003). The 
stress coupling condition for steady-state is expressed as

where �s is the solid stress tensor, �f is the fluid stress tensor, 
ns is normal unit vector outward to the solid and nf is normal 
unit vector outward to the fluid, both in the deformed con-
figuration. A moving mesh is considered in order to evalu-
ate the motion of the fluid–structure interface, i.e., how the 
structure deforms due to fluid flow loads and how the fluid 
domain changes due to the motion of the structural bound-
ary. The moving mesh interface in COMSOL Multiphysics 
employs the Arbitrary Lagrangian–Eulerian (ALE) method 
which separates the spatial frame (fluid domain) from the 
material frame (solid domain), enabling the easy identifica-
tion of changes in physical boundaries. In this way, the solid 
structure follows the mesh displacement.

(12)�s = JFSF
T,

(13)S = �s(trE)I + 2�sE.

(14)E =
�s(3�s + 2�s)

�s + �s

,

(15)� =
�s

2(�s + �s)
.

(16)u = 0 on Γu.

(17)�sns = −�fnf on Γfs.
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3 � Topology optimization problem

3.1 � Problem formulation

This study concerns the structural mean compliance minimiza-
tion subject to a volume fraction constraint. The mathematical 
formulation of the problem considering binary variables {0, 1} 
can be stated as

where � represents the vector of design variables �j , C(�) is 
the structural mean compliance or total deformation energy, 
f and u corresponds to the loads vectors and the global struc-
tural displacement, respectively, V is the total material vol-
ume of the structure, V  is the prescribed structural volume 
fraction and Nd is the number of elements in the design vari-
ables vector.

3.2 � Material models

In order to evaluate the derivatives of the structural mean com-
pliance, the physical model should be interpolated with the 
design variables. We adopted the SIMP material model which 
is expressed as

where E(�j) is the interpolated material property with respect 
to the design variable �j , E0 is the Young’s modulus of the 
solid element and p is the penalty exponent factor. We also 
adopted a linear material interpolation in order to couple the 
sensitivities with the fluid loads that change during optimi-
zation with the material removal from the fluid–structure 
interface. Thus, the Eq. 17 referring to the stress equilibrium 
condition is rewritten as

More information and discussions about the effects of this 
material model are given in the numerical results (Sect. 5).

3.3 � TOBS method

The standard TOBS method generates optimization subprob-
lems via sequential linear approximation. Since binary design 
variables {0, 1} —0 for void and 1 for solid material—are 
employed, the TOBS framework solves the linear optimiza-
tion subproblems using integer linear programming (ILP). 
Therefore, in order for the design variables to remain integer 
and binary during optimization and the ILP problem to be 

(18)

Minimize
�

C(�) =
1

2
f
T
u

Subject to V(�) ≤ V ,

�j ∈ {0, 1}, j ∈ [1,Nd],

(19)E(�j) = �
p

j
E0 on Ωs,

(20)�sns = −�j�fnf on Γfs.

satisfied, changes in the design variables are constrained by 
means of a bounded constraint described by

where (⋅)k indicates the value of quantity (⋅) at iteration k and 
Δ�k is the vector of changes in the design variables. To keep 
the binary nature of problem the changes in the design vari-
ables are restricted. Therefore, for a solid element ( �j = 1 ) 
the possible changes are {0} or {−1} which remains solid 
or becomes void, respectively. For void elements the same 
definition is valid, where {0} is prescribed to remain void 
element or {1} to become a solid element. The optimization 
subproblems are generated applying Taylor’s series approxi-
mation and truncating at the linear terms. The objective and 
constraint functions can be rewritten as

where O(|
|

|

|

Δ�k
|

|

|

|

2

2
) represents the truncation error. There is 

no error associated with the volume function because its var-
iation is linear. In Eq. 22 the higher-order terms for the mean 
compliance function are neglected since the ILP problems 
are created using linear approximation. This implies that, 
for the approximation to be valid, the truncation error needs 
to be small enough. For this, an extra constraint is added to 
constrain the number of changes to the design variables in 
each iteration. This constraint can be expressed as

In the context of topology optimization, the � parameter 
guarantees that only a fraction of the total number of vari-
ables evolves from solid {1} to empty {0} and vice versa in 
each iteration. Therefore, the adoption of small � values is 
essential for the truncation error to be small enough.

Thus, the linearized optimization subproblem can be writ-
ten as

where Δ�k
j
 is the update of the kth design variable corre-

sponding to the jth element and ΔVk is the upper limit of the 

(21)

{

0 ≤ Δ�k
j
≤ 1 if �k

j
= 0,

−1 ≤ Δ�k
j
≤ 0 if �k

j
= 1,

(22)
C(�) ≈ C(�k) +

�C(�k)

��
⋅ Δ�k + O(|

|

|

|

Δ�k
|

|

|

|

2

2
),

V(�) = V(�k) +
�V(�k)

��
⋅ Δ�k

,

(23)|

|

|

|

Δ�k
|

|

|

|1
≤ �Nd.

(24)

Minimize
Δ�k

�C(�k)

��
⋅ Δ�k,

Subject to
�V(�k)

��
⋅ Δ�k

≤ V − V
(

�k
)

∶= ΔVk,

|

|

|

|

Δ�k
|

|

|

|1
≤ �Nd,

Δ�k
j
∈ {−�k

j
, 1 − �k

j
}, j ∈ [1,Nd],
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volume constraint. Solving the ILP problem, the design vari-
ables are updated as

As mentioned earlier, the linear approximation of functions 
is only valid for small changes in the objective and constraint 
functions at each update of the design variables. However, 
some of the problem’s constraints can start in an infeasible 
space due to the bound ΔVk

i
= V − V

(

�k
)

 requiring a big 
step to reach a viable solution. Since the topology change 
is restricted to each iteration by the � parameter, the upper 
bounds of the constraints ΔVk are relaxed to generate fea-
sible ILP subproblems. The constraint bounds are relaxed 
using 

where �i is the relaxation parameter corresponding to the 
volume constraint. Effectively, the parameter � gradu-
ally limitates the constraint functions moves towards their 
upper bounds ensuring that a viable solution exists at each 
iteration.

The ILP problem (Eq. 24) originated from the sequential 
linearization of functions is the same as a linear programming 
(LP) problem; however ILP problems are restricted to inte-
ger design variables. Therefore, ILP-based solutions can be 
slightly below the solutions generated by LP problems. How-
ever, the structural design obtained by ILP solutions has a clear 
and well-defined boundary/interface due to the use of integer 
variables. A famous technique used to solve ILP problems is 
the branch-and-bound algorithm. In this technique, the ILP 
problem is initially solved as an LP problem, i.e., without 
integer constraints. Then, the obtained solution is used as the 
initial solution and different LPs are created with additional 
extra limits on the design variables, which forces the optimizer 
to generate entire solutions in the branches (Land and Doig, 
1960). In this work, we employ the branch-and-bound algo-
rithm present in the CPLEX package to solve the ILP problem 
generated at each iteration.

3.4 � Sensitivity analysis

3.4.1 � Adjoint sensitivities

The TOBS is a gradient-based optimization method, hence 
the gradients (sensitivities) of the objective and constraint 
functions are required to iterate over solutions. The respec-
tive sensitivities can be calculated using the adjoint method 
(Haftka and Gürdal 1991; Bendsøe and Sigmund 2003). The 

(25)�k+1 = �k + Δ�k.

(26)

ΔVk =

⎧

⎪

⎨

⎪

⎩

−𝜖iV
�

�k
�

∶ V < (1 − 𝜖i)V
�

�k
�

,

V − V
�

�k
�

∶ V ∈ [(1 − 𝜖i)V
�

�k
�

, (1 + 𝜖i)V
�

�k
�

],

𝜖iV
�

�k
�

∶ V > (1 + 𝜖i)V
�

�k
�

,

general formulation of the adjoint equation for a Lagrangian 
functional can be given by

where � corresponds to the vector of adjoint variables, f is 
the vector of objective function and R is the residual. Sen-
sitivities can then be calculated by the following expression

The structural mean compliance sensitivities are then cal-
culated by the generic function (Eq. 28). The structural vol-
ume sensitivities with respect to the design variable �j are 
expressed as

where Vj is the volume fraction referring to the design vari-
able j.

4 � Computational procedures

The proposed method considers the optimizer and problem 
physics in a decoupled way, i.e., as independent modules. A 
geometry trimming procedure and interpolation of sensitivi-
ties are used to integrate both modules. The proposed opti-
mization method is based on material distribution and built 
upon the standard TOBS method (Sivapuram and Picelli 
2018). A diagram illustrating the steps of the algorithm is 
presented in Fig. 3. The equilibrium equations of the FSI 
problem are solved via the finite element method using an 
external FEA package, herein COMSOL Multiphysics. The 
equations are computed with a segregated numerical solver, 
i.e., with separate domains and in a iteratively manner. In 
addition, the required sensitivities for optimization are also 
provided by the FEA package. Besides the fluid–struc-
ture interaction module used for the physical analysis of 
the problem in COMSOL Multiphysics, we employed the 
topology optimization module to include the material model 
into the design domain. Through the “density model” tool 
present within the topology optimization module we can 
define the type of interpolation and the penalty factor as 
well. Also, the “optimization” module is used to access the 
semi-automatic built-in symbolic differentiation tool. The 
interpolation of the material and FSI coupling (Eqs. 19 and 
20) is determined by editing the properties in the structural 
mechanics and multiphysics coupling modules. Sensitivity 
analysis is performed by the adjoint method and obtained 
via the semi-automatic built-in symbolic differentiation 

(27)
(

�R

�u

)T

� = −

(

�f

�u

)T

,

(28)
(

dL

d�

)

=

(

�f

��

)T

+ �T �R

��
.

(29)
�V

��j
= Vj,
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module integrated in the software. The TOBS approach 
with geometry trimming (GT), so-called TOBS-GT, uses a 
grid points of interest described by binary variables {0, 1} 
to communicate with the FEA module. Geometry trimming 
(GT) method is the process of creating a CAD geometry 
by reading the design variables provided and trimming out 
the initial CAD model of the design domain. The proce-
dure reads the binary design variables—which prescribes 
the presence (1) or absence (0) of material—and generates 
a CAD model which contains all the contour information of 
the problem. This procedure is illustrated in Fig. 2.

A geometry is produced from these contour information 
(in .dxf, for 2D, or .stl format, for 3D) and transferred to the 
FEA module via the geometry trimming technique. The opti-
mization grid as well as the .dxf and .stl files are dimension-
less. Therefore, a scale factor is applied in order to obtain the 
actual physical dimension of the problem. The void domains 
described by variables 0 are trimmed out from the design 
domain and the CAD file with the respective geometry is 
updated every iteration. The contour information contains 
the exact location of the void regions (holes), i.e., whether 
they are located entirely inside the solid design domain or 
at the FSI interface. Internal holes are completely trimmed 
out from the CAD model and holes at the initial FSI inter-
faces are assigned to be fluid domain. Thus, the FSI inter-
face is directly tracked and the “fluid flooding” technique as 
previously used in the literature (Picelli et al. 2015) is not 

needed. In this work, we do not apply smoothing filters on 
the FSI interface, so the topologies have a staircase contour. 
Once the fluid and solid domain is defined, COMSOL Mul-
tiphysics are able to identify the boundaries corresponding 
to FSI interfaces and apply the coupling conditions. The 
software meshes the geometry freely according to physical 
requirements. The use of free finite element meshes config-
ured according to physical requirements is advantageous for 
fluid structure problems, since the mesh quality at the physi-
cal boundaries—flow channel walls and FSI interface—are 
higher, promoting a good approximation of the problem. In 
this study, this procedure is done using the option phys-
ics controlled in COMSOL Multiphysics. Triangu-
lar and quadrilateral elements are employed. The analyses 
are performed assuming plane strain. A quadratic Lagrange 
approximation is used for the structural analysis and the 
P1 + P1 or P2 + P1 discretization is employed for the fluid 
flow. FEA is carried out and semi-automatic differentiated 
sensitivities are computed. The Fluid–Structure Interaction 
interface in COMSOL Multiphysics employs an arbitrary 
Lagrangian–Eulerian (ALE) method to account for changes 
in physical boundaries. The ALE method integrates the fluid 
flow domain using a spatial frame (Eulerian description) 
with the solid domain using a material frame (Lagrangian 
description). The spatial frame is formulated in a system of 
fixed coordinates in space and the material frame is fixed to 
the material and moves along with the deformed object. The 
optimization grid is defined in the material frame and sen-
sitivities are computed in the deformed structural position, 
as illustrated in Fig. 4. An auxiliary linear analysis is con-
sidered in order to avoid convergence problems arising from 
large local structural displacements due to possible breakage 
of thin structural members. In summary, the system is ana-
lyzed first in the nonlinear regime and, if by any chance the 
solver does not converge, we employ a linear analysis in the 
current iteration in order to re-establish the stability of the Fig. 2   Representation of the geometry trimming (GT) procedure

Fig. 3   Illustration of the TOBS-
GT method for fluid–structure 
design including large displace-
ments
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structure and move on with the optimization. In this work, 
linear analysis was activated only in a few iterations, not 
being necessary in all examples. Furthermore, all problems 
converged within the nonlinear regime.

The objective function of the structural mean compliance is 
computed through the expression solid.Ws_tot incorpo-
rated in COMSOL Multiphysics. The sensitivities of the struc-
tural model are integrated in the variable fsens(dtopo1.
theta_c)/dvol, where theta_c is the vector of interpo-
lation variables (Eqs. 19 and 20) and dvol is a volume factor 
variable considered due to the different sizes of the finite ele-
ments. The sensitivities computed at each point are extracted 
through a set of grid points coincident with the optimization 
grid. In the TOBS module, a spatial filter is applied to the sen-
sitivities to smooth out the problem and avoid numerical prob-
lems, such as the checkerboard. With the respective sensitivi-
ties the optimizer provides a new set of binary variables {0, 1} . 
This process is repeated until convergence. A summary of the 
main steps for the TOBS-GT approach is presented below: 

	 1.	 Define the TOBS parameters;
	 2.	 Initialize design variables in the TOBS module via the 

optimization grid {0, 1};
	 3.	 Generate a CAD geometry in the FEA package by 

reading the optimization grid variables and trimming 
out the void regions;

	 4.	 Mesh the geometry created by the CAD model;
	 5.	 Solve the FSI system governing equations;
	 6.	 Compute the semi-automatic differentiated sensitivities 

in the grid points considering the mapping between the 
material and spatial frames;

	 7.	 Extract the calculated sensitivities and transfer them to 
the TOBS module;

	 8.	 Filter the sensitivity field defined in the grid points;
	 9.	 Solve the ILP problem and update the design variables 

{0, 1} in the optimization grid;
	10.	 Evaluate the convergence of the problem. If converged, 

stop. Otherwise, return to step 3.

5 � Numerical examples

This section presents the results obtained using the TOBS-
GT method. The goal is to minimize the mean compliance of 
structures under viscous fluid flow loads including large dis-
placements subject to a volume fraction constraint. The first 
problem is a variation on a well-known example in the lit-
erature called “the wall” problem. We solve the problem by 
optimizing only the internal geometry of the structure, i.e., 
“dry” optimization. In the second case, the “wet” optimiza-
tion approach is considered for a second variation of “the 
wall” example. In order to compare results, in the first two 
examples the problem is solved considering the small and 
large displacements. The third problem presents the applica-
tion of the method in 3D problems. The numerical examples 
shown in the following sections were computed using the 
Intel Xeon Silver 4114 - 2x CPU 2.20 GHz - 128GB RAM. 
In all the examples, the convergence is defined by averaging 
the changes in the mean compliance function over 6 con-
secutive iterations for a tolerance of � = 0.001.

5.1 � The wall—“Dry” optimization

The first problem consists of a solid wall immersed in a 
fluid flow rectangular channel, as shown in Fig. 5. In this 
problem, we analyze the same problem considering small 

Fig. 4   TOBS optimization grid 
computed in the material frame 
with mapping to the spatial 
frame

Fig. 5   The wall problem: “Dry” optimization
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and large displacements for comparison purposes. We seek 
to optimize the “dry” topology of the wall, i.e., the internal 
geometry. The properties of the solid material are Young’s 
modulus E0 = 400 kPa and Poisson’s ratio � = 0.3 . The 
fluid density is �f = 1 kg/m3 and dynamic viscosity �f = 1 
Pa s . The average inlet velocity is defined by the Reynolds 
number described by Re = �fvinD∕�f , where �f is the fluid 
density, vin is the mean inlet velocity, D is channel height 
and �s is the fluid dynamic viscosity. Herein, we assume 
Re = 1 . The flexible solid wall is immersed in a rectan-
gular channel of 6 × 2 m and it is subject to viscous fluid 
flow loads. This example is similar to the proposed by Jen-
kins and Maute (2015). The fluid flow is prescribed with 
a parabolic velocity profile at the channel inlet described 
by v = vin6(H − y)y∕H2 where H is the height of the fluid 
channel and y is the coordinate in the y direction at each 
point of the inlet. In the outflow a stress free condition is 
enforced (with pout = 0 ). A non-slip condition is imposed 
on all walls of the fluid channel. The bottom edge of the 
structure is fixed; the displacements are � = � on this edge. 
A layer of passive elements (non-design domain) with a 
thickness of 0.01 m is assumed between the interface and 
the design domain (see Fig. 5).

The internal wall topology is optimized using the TOBS-
GT method. The goal of the problem is to minimize the 
mean compliance of the structure subject to a volume frac-
tion constraint of V̄ = 60% . A 50 × 500 optimization grid 
is employed for optimization. A filter radius of 10 grid 
sizes is adopted. Material model is interpolated consider-
ing p = 3 . The constraint relaxation parameter � is set as 
0.01, i.e., the volume function changes 1% at each iteration 
until it approaches the prescribed volume fraction constraint 
V̄  . The truncation parameter—that restricts the percentage 
of change in design variables at each iteration—is set as 
� = 0.02 . Figure 6 presents the snapshots of the iterations 
along the optimization loop for the two cases, the black 
region represents the solid (1) and the white region cor-
responds to void (0).

The inclusion of the structural nonlinear response leads to 
obtaining a different optimized design compared to the linear 
problem. Figure 6 shows the material distribution within the 
design domain during the optimization process. Thin bars 
(similar to a truss) form along the iterations. As expected, 
the internal arrangement of the bars in the optimized design 
of each case differs. In the first case—Fig. 6a—the opti-
mized design has a larger amount of bars being these of 
smaller thickness and in the second case—Fig. 6b—there 
are fewer bars with greater thickness. A larger portion of 
the material is distributed close to the clamped boundary 
in both cases in order to reduce the overall deformation of 
the structure. The optimized design obtained for large dis-
placements—Fig. 6b—is similar to the topology obtained 
by Jenkins and Maute (2015).

The fluid velocity and pressure fields of the optimized 
design are plotted in Fig. 7 for the two cases. Velocity pro-
files and pressure fields are similar in the small and large 
displacement cases. In general, a greater magnitude in the 
velocity profile it is just above the structure (see Fig. 7a, c). 
In the pressure fields—Fig. 7b, d—it is possible to notice a 
high positive pressure on the left side of the structure and a 
significantly lower pressure on the right side, in addition to 
the existence of a small region of negative pressure coupled 
in the back of the structure. However, despite the similar-
ity, the case considering small displacements reaches higher 
pressure values, as shown in Fig. 7b. In addition, because 
the FSI interface remains the same along the optimization 
process, the design obtained for this case would be similar 
to a case considering a static distributed load—similarly as 
used in buildings design—since the fluid loads act as a dis-
tributed load over the entire interface of the structure. In the 
large displacements case, a larger deformation is observed 
at the top of the structure since the greatest amount of mate-
rial is distributed at the bottom of the domain. The mapping 
and distinction between the material and spatial frames in 
the fluid–structure model allows the TOBS-GT optimiza-
tion grid to be computed following the deformation of the 
structure. Structural displacements are computed by the FEA 
package and the displacement vector is added to the coor-
dinates of the solid material. The optimization grid points 
are fixed to this frame of reference and the sensitivities are 

Fig. 6   Topology snapshots along the optimization process for the dif-
ferent cases: a considering small structural displacements and b con-
sidering large structural displacements. The black region represents 
solid (1) and the white region corresponds to void (0)
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computed accordingly. In this example, the linear interpo-
lation loads does not influence the obtained solutions since 
only the “dry” topology is optimized, i.e., the solid elements 
at the interface—in contact with the fluid flow loads—
remain in the same position throughout optimization.

The evolutions of the objective (mean compliance) and 
constraint (volume) functions are presented in Fig. 8. As 
seen in the history of the structural volume fraction, the 
removal of elements is done gradual as established by the 
parameter � . It is possible to notice some jumps in the evolu-
tion of the objective function in both cases. These punctual 
increases in the objective function are due to the breakage 
of the thin bars along the iterations, which causes large local 
structural deformation, generating a significant increase in 
compliance, as illustrated in the colorized snapshots with 
the velocity field presents in Fig. 8a, b. However, this behav-
ior does not occur in all cases. The occasional increase in 
the evolution of the mean compliance is also observed by 

Jenkins and Maute (2015). Furthermore, it is interesting to 
note that with the breakage of the thin bars and consequently 
the increase in local deformation, the optimizer seeks to add 
material in order to reduce large deformations and, conse-
quently, minimize compliance. The problem considering 
small displacements (linear regime) converges to a structural 
mean compliance value of 0.0514 Nm in 57 iterations. While 
the final design optimized considering large displacements 
(nonlinear regime) is achieved in 60 iterations with a struc-
tural compliance value of 0.0543 Nm.

5.2 � The wall—“Wet” optimization

In this example, a flexible solid wall is immersed in a fluid 
flow channel, as shown in Fig. 9. We apply the TOBS-GT 
method for the optimization of the “wet” topology. This is 
a classic example of the literature, first proposed by Yoon 
(2010), explored later by other authors (Picelli et al. 2017; Li 

Fig. 7   Velocity magnitude (in m/s) and pressure field (in Pa) for the optimized designs: a–b considering linear regime and c–d considering non-
linear regime

Fig. 8   Evolution history of 
objective function and con-
straint function for the case con-
sidering a small displacement 
and b large displacements



Topology optimization of stationary fluid–structure interaction problems including large…

1 3

Page 11 of 18  337

et al. 2021). A variation of the problem with a larger design 
domain was proposed by Lundgaard et al. (2018). Herein, 
we revisit this problem including larger displacements. The 
objective is to solve the minimization of the structural mean 
compliance subject to a volume fraction constraint. In com-
parison to Lundgaard et al. (2018), we slightly increased the 
height of the non-design domain bar to obtain larger defor-
mation. The physical properties adopted for the solid domain 
are Young’s modulus E0 = 1 Pa and Poisson’s ratio � = 0.3 . 
The fluid is water, i.e., with density �f = 1000 kg/m3 and 
dynamic viscosity �f = 0.001 Pa s . The average inlet velocity 
is defined by the Reynolds number, which is Re = 80.

The fluid flow enters the left edge of the channel with a 
normal parabolic velocity profile. At the exit of the channel 
the pressure condition pout = 0 is imposed. On the walls of 
the fluid flow channel, a non-slip condition is prescribed. 
The structure is fixed on bottom boundary, i.e., the displace-
ments are � = � . The objective of this example is to design 
an aerodynamic support within a 140 × 80 mm domain, 
where a passive region (non-design domain) correspond-
ing to a mid-solid barrier is assumed. Structural mean com-
pliance is minimized via the TOBS-GT method subject to 
final volume fraction of 10% . A 280 × 160 optimization grid 
size is used for the design domain. In regard to optimiza-
tion coefficients, the constraint relaxation parameter is set 
to � = 0.02 , the truncation error constraint parameter to 
� = 0.05 , and a filter radius of 12 grid sizes. The problem is 
analyzed for small and large structural displacements. Fig-
ure 10 presents the topology design, velocity and pressure 
fields of both cases for the optimized problem using p = 5.

It can be noticed that for the large displacement case most 
of the material is deposited on the left side of the structure 
(see Fig. 10d) while in small displacement problem the dis-
tribution of solid material within design domain is done in 
a more balanced way, as seen in Fig. 10a. The velocity and 
pressure fields differ in the two cases, with higher values 
observed for the small displacements study. The optimized 
topology in the small displacement solution is obtained in 
122 iterations with the global structural mean compliance 
value of 1.534 × 10−8 Nm. A cross-comparison between 
both designs obtained is presented in Table 1. Curiously, 

the design obtained from the optimization including the geo-
metric nonlinearity presents a higher performance for both 
cases, i.e., with and without considering the nonlinearities. 
From this, the advantages of modelling large deformation 
can be evidenced, but further investigations are necessary 
to explain why the linear design was not able to find a better 
solution.

In order to verify the influence of the penalty factor p, 
the problem is solved for three different penalty factors 
p = {3, 5, 10} considering large displacements. The velocity 
and pressure fields are plotted in Fig. 11 for the three cases. 
It is possible to notice that the optimized structural designs 
are different for the studied penalty factors. In this model, 
lower penalty factors favour both stiffness and fluid loading 
interpolation, while larger penalties decrease considerably 
the calculation of the fluid loading in the sensitivities. This is 
also discussed in Yoon (2010) and Lundgaard et al. (2018). 
As seen in Fig. 11, more material was deposited on the left 
side of the structure when lower penalty factors ( p = 3 and 
5) were used. This fact is because with the interpolation of 
fluid loads, the optimizer is able to work on reducing the 
high pressure and shear loads arising from the direct contact 
of the fluid flow with the solid structure. In fact, the structure 
obtained using p = 3 presents the lowest mean compliance 

Γin Γout

30 [mm]

po = 0vin

140 [mm] 30 [mm]

80 [mm]
60 [mm]

5 [mm]
20 [mm]Ωf

Ωs

Γfs

Fig. 9   The wall problem: “Wet” optimization

Fig. 10   Comparison between the optimized design obtained consider-
ing a–c small and d–f large displacements: a and d topology design, 
b and e velocity magnitude (in m/s), c and f pressure field (in Pa) 
using p = 5
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value between the three designs. When solving the prob-
lem using p = 10 , more material was deposited closer to 
the mid-solid wall. Our numerical experience tells that FSI 

examples with high pressure and shear loads such as this one 
present convergence difficulties if the fluid loading sensi-
tivities are not used, especially for higher Reynolds number. 
The structural members in the three designs are arranged to 
globally reduce the load. The velocity and pressure fields are 
similar in the three cases. The fluid flow velocity reaches a 
significant magnitude near the upper region of the interme-
diate barrier. Besides, the pressure field varies from posi-
tive to negative values in after the flow passes the obstacle. 
Figure 12 shows the evolution of the topology and velocity 
profile over the iterations for the case of p = 5 . As it can be 
observed during optimization a clear and explicit distinction 
between physical boundaries—solid and fluid—is obtained 
along all iterations due to the binary variables.

The evolution history of the mean compliance and vol-
ume fraction functions are shown in Fig. 13. The history 
of the objective function presents some peaks, similarly as 
in the example of the optimization of the “dry” topology 
5.1. Sudden increases in compliance were also observed by 
Jenkins and Maute (2016) in “wet” topology optimization 
problems. The global measure of structural mean compli-
ance is minimized and the final obtained values are lower 
than the initial ones. Clear and explicit optimized topologies 
are obtained. The mesh created by COMSOL Multiphys-
ics for the optimized FSI design using p = 5 including the 
fluid domain is shown in Fig. 14. The area delimited in red 
represents the initial design domain. The CAD geometry 
trimming allows the meshes to be freely created, meeting the 
physical requirements. As it can be noticed, the mesh has a 
larger discretization in the FSI boundaries and quadrilateral 
elements are used in the fluid walls. The finite element mesh 
is composed of 15,197 elements—14,637 triangular and 560 
quadrilateral elements—while the TOBS-GT optimization 

Table 1   Cross-comparison between designs obtained considering small and large displacements

Designed for/simulated for Small displacements Large displacements

Small displacements C(x) = 1.5337 × 10−8 Nm C(x) = 1.5290 × 10−8 Nm

Large displacements C(x) = 1.0695 × 10−8 Nm C(x) = 1.1177 × 10−8 Nm

Fig. 11   Velocity fields in m/s (left side) and pressure in Pa (right 
side) of the topology optimized for p = {3, 5, 10}
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grid has 44,800 elements ( 280 × 160 grid points) distributed 
only in the structural design domain. Mesh refinement is 
not directly linked to optimization grid size. Therefore, the 
increase of points in the optimization grid in order to obtain 
topologies with higher resolution does not lead to a higher 
computational cost, as the finite element mesh can be kept in 
a computationally convenient size. The possibility of using 
coarse meshes in contrast to the higher grid resolution is one 
of the possible advantages of the TOBS-GT approach. On 
the other hand, the consideration of a dense FE mesh and a 
coarse optimization grid should tend to produce smoother 
fields and, therefore, similar results but with a higher compu-
tational cost. The use of coarser meshes reduces the overall 
time and challenges of the FSI computation, since the bot-
tleneck of the optimization is the finite element analysis. 
While the FEA solver can take between 20 and 70 seconds 
each iteration, the ILP problem takes less than 1 second to 
be computed (see Fig. 15). In addition, the geometry trim-
ming procedure takes on average less than 1 second to be 
executed as well as the generation of a new FEA mesh at 
every iteration. Therefore, both processes are significantly 
cheap compared to the FEA forward problem. Thus, the 
TOBS-GT method promises to be relatively cheap for opti-
mizing problems with a high degree of physical complexity.

5.3 � The billboard—3D “wet” optimization

This example solves the “wet” optimization case of a flex-
ible three-dimensional billboard-like structure immersed 
in a fluid flow channel of dimension 10 × 6 × 6 mm. The 
problem illustration is shown in Fig. 16. A 0.1 mm thick 
plate is suspended by a circular main column with a diameter 
of 0.33 mm, located on the bottom boundary of the fluid 
channel and centered on the z–direction , with a distance 
of 3.0 mm from the inlet Γin . The objective of this example 
is to design a support structure behind the suspended plate. 
The design domain Ωs is located behind the structure and 
is connected to the main column at a height of 2.0 mm, 
and has a dimension of 3 × 2 × 0.5 mm. The solid mate-
rial properties for this example is chosen to have Young’s 
modulus E0 = 4 × 103 Pa and Poisson’s ratio � = 0.3 . Fluid 
is considered to be air (density �f = 1.27 kg/m3 and dynamic 
viscosity �f = 1.72 × 10−5 Pa s ). Maximum inlet velocity vin 
is defined to 0.01 m/s.

A parabolic fluid flow enters the channel Γin with veloc-
ity v = vin(y∕H)

1

7 , where H corresponds to the height of the 
three-dimensional flow channel—in this case 6.0 mm—and y 
is the vertical coordinate for each input point. A pressure con-
dition pout = 0 is established at the outflow Γout . The follow-
ing conditions are imposed on the walls of the fluid channel: 

Fig. 12   Velocity field (in m/s) of the snapshots during the optimiza-
tion for p = 5

▸
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lateral and upper boundaries Γsw are set to slip condition, lower 
boundary Γw and the fluid–structure interface Γfs are set to 
non-slip condition. The displacements in the bottom structural 
boundary of the main column Γu are fixed, i.e., u = 0 . The 
TOBS-GT method is considered to minimize the mean com-
pliance of structural support subject to a volume fraction con-
straint of V̄ = 30% . An optimization grid of size 16 × 80 × 120 
is applied and it is located on the back of the board correspond-
ing to the gray region (see Fig. 16). The penalty factor adopted 
for the material model is p = 5 . A filter radius of 2 grid sizes 
is considered. The optimization parameters used are � = 0.02 
and � = 0.05 . Some views of the optimized structural design 
are shown in Fig. 17. The optimized support is connected to 
the main column of the structure with a greater amount of 
solid materials being deposited in this region. However, it 
is still possible to observe the occurrence of large displace-
ments as shown in Fig. 18. The TOBS-GT optimization grid 
can be placed anywhere of interest in the structure, as in this 
example where the grid points are considered to be at a height 
on the y-axis. In this way, any structural component can be 
optimized using the TOBS-GT approach, as long as the opti-
mization grid {0, 1} is placed accordingly. In addition, when 
considering large displacements, it is important to identify the 
frame of reference where the points are evaluated. Figure 18 

Fig. 13   Evolution history of the objective function (mean compliance) and constraint function (volume) for the cases: a p = 3 , b p = 5 and c 
p = 10

Fig. 14   Finite element mesh—14,637 triangular and 560 quadrilateral 
elements—for the final optimized design ( p = 5 ). The red dashed line 
represents the initial design domain

Fig. 15   Breakdown computation times of each iteration for the case 
with p = 5 using the TOBS-GT method: a for the main optimization 
steps b omitting the FEA solver times



Topology optimization of stationary fluid–structure interaction problems including large…

1 3

Page 15 of 18  337

presents the streamlines of the velocity profile for optimized 
structural support and the zoomed structure in a multislice 
velocity field plot.

6 � Conclusions

A spatial-material framework is employed to extend the 
TOBS-GT method (Picelli et al. 2020a) for optimizing FSI 
problems including large displacements. The optimized 
design of structures under viscous fluid loads is achieved 
through a decoupled analysis, where the optimization grid 
and the physical analysis are used as independent modules. 
This approach shows to be convenient when modelling 
two different physics, such as in the present FSI problem. 
A decrease in the total number of finite elements used 
is achieved if compared to the fixed optimization grid 
size. Thus, the optimization of the FSI topology is per-
formed with a reasonably lower computational cost. The 
approach, named the TOBS-GT method, integrates the 
standard TOBS solver Sivapuram and Picelli (2018) with 
an external finite element analysis package. For consider-
ing large structural displacements, the FSI system is com-
puted in the spatial (Eulerian) and material (Langragian) 
frame which allows the identification and tracking of the 
deformed FSI interface. The solid domain is solved using 
an elastic formulation with geometrical nonlinearities. The 
cases of “dry” and “wet” optimization are solved. Dif-
ferent solutions are obtained when comparing small and 
large displacements studies. The extension of the proposed 
methodology to 3D structures is direct. The inclusion of 
material nonlinearity, wall smoothing for high Reynolds 
numbers and the extension of the present methodology 
to non-FSI problems—such as single physics problems 
and multi-material problems—are possible directions for 
future research.

Appendix

This appendix presents the analysis by finite differences 
used to verify the sensitivities from Eq. 28 obtained via 
semi-automatic differentiation. The model analyzed is a 
variation of the wall problem and is shown in Fig. 19a. 
A viscous fluid flow enters through the micro-channel 
inlet with Re = 10 , with a parabolic velocity profile. At 
the outlet channel a pressure condition p = 0 is imposed. 
Non-slip conditions are applied to the walls of the fluid 
channel. The solid structure is fixed at its bottom, there-
fore displacements in this face are prescribed as zero 
( u = 0 ). The sensitivities described by Eq. 28 are com-
puted in nine points within the design domain Ωs , being 
six of them at the fluid–structure boundaries. The fluid is 
considered to be water, i.e., with density � = 1000 kg/m3 
and dynamic viscosity � = 0.001 Pa s , and the solid mate-
rial is chosen to have Young’s modulus E = 2.4 × 105 Pa 
and Poisson’s ratio � = 0.3 . Sensitivities are calculated by 

Fig. 16   The 3D billboard problem

Fig. 17   Optimized structural support for 3D FSI problem including 
large displacements: a side view, b back view, c top view and d–f 
angled views
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semi-automatic differentiation and then checked by the 
finite differences method. For the finite difference analysis, 
the step 1 × 10−5 is considered. Figure 19a and c present, 
respectively, the considered points in finite differences 

analysis and the finite element mesh used. The finite ele-
ment mesh employed and the evaluated points are shown 
in Fig. 19b. Figure 20a presents the velocity field for this 
model and Fig. 20b plots of the structure including large 

Fig. 18   Fluid velocity field 
(in m/s) around optimized 3D 
structure via TOBS-GT method

Fig. 19   Model used to carry out finite differences analysis: a illustration of the model, b finite element mesh and c points in the design domain
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displacements with zoomed. Table 2 shows the sensitiv-
ity values obtained via semi-automatic symbolic differen-
tiation and via finite differences. The maximum relative 
difference between the two methods does not exceed 1% , 
which is considerably small and validates the usability 

of the semi-automatic differentiation tool available in the 
software.
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