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Abstract

This paper addresses the topology optimization of fluid—structure interaction (FSI) systems considering large displacements.
We consider the steady-state analysis of flexible structures in contact with a fluid flow governed by the incompressible
Navier—Stokes equations. The optimization method used in this work considers the physical analysis and optimization module
in a decoupled form. The decoupled analysis allows the finite element problem to be meshed and solved accordingly to the
physics requirements. Optimized geometry is constructed by reading and trimming out from an optimization grid described
by a set of binary {0, 1} design variables. The method is so-called TOBS (Topology Optimization of Binary Structures) with
geometry trimming (TOBS-GT). Displacements are resolved using an elastic formulation with geometrical nonlinearities
to allow for large deformations. The FSI system is solved by using finite elements and the Arbitrary Lagrangian—Eulerian
(ALE) method. Low Reynolds numbers are assumed. The sensitivities are calculated using semi-automatic differentiation
and interpolated to optimization grid points. In order to consider large displacements, a mapping between material and
spatial coordinates is used to identify and track the deformed configuration of the structure. The optimized binary topology
is found by using the standard TOBS approach (Sivapuram and Picelli in Finite Elem Anal Des 139:49-61, 2018) based on
sequential integer linear programming. Numerical examples show that the TOBS-GT method can be effectively applied to

design 2D and 3D structures in FSI problems including nonlinear structural responses.
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1 Introduction

Fluid—structure interaction (FSI) is a very common mul-
tiphysics phenomenon in nature, present in different propor-
tions and areas of application (Casadei et al. 2001; Galdi and
Rannacher 2010; Bodnér et al. 2014; Kamakoti and Shyy
2004). Despite occurring in different degrees and forms, the
FSI problem is present in several engineering systems such
as engines, acoustics, turbines, pumps and others. In these
systems, FSI plays an important role and influences design
decisions (Bazilevs et al. 2013; Paidoussis 1998). However,
systems involving FSI problems are known for their high
complexity, which makes structural designs challenging and
highly non-intuitive. Thus, structural optimization methods
emerge as a crucial ally for the development of projects with
better performance in terms of stability, stiffness and eco-
nomic aspects.

Topology optimization methods have become popular in
fluid—structure systems being applied to a variety of prob-
lems (Andreasen and Sigmund 2013; Vicente et al. 2015;
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Kook and Jensen 2017). Compared to parametric and shape
optimization, topology optimization allows non-intuitive
solutions to be generated from a full domain regardless of
the initial configuration and have been adopted in several
engineering areas (Bendsge and Sigmund 2003; Zhu et al.
2021). In general, topology optimization involving mul-
tiphysics systems face higher challenges compared to the
optimization of a single physics. A fundamental point to
consider when optimizing FSI problems is the modeling of
interface conditions. FSI problems are characterized by the
strong coupling between physics, i.e., the structure and the
fluid move together and depend on each other (Bungartz and
Schiifer 2006; Hami and Radi 2017; Richter 2017). In some
cases, the position of the FSI interface is allowed to change
during optimization. This approach is called “wet” optimiza-
tion. Such an approach is challenging and leads to design-
dependent loads, i.e., fluid loads are intrinsically dependent
on the structural boundary and can possibly change as the
structural design is updated (Jenkins and Maute 2016; Lun-
dgaard et al. 2018). Thus, it is necessary to adopt precise
techniques capable of tracking coupling conditions during
optimization. On the other hand, the so-called “dry” opti-
mization does not allow the removal of interface elements
and only the internal geometry of the structure is optimized
(Maute and Allen 2004; Jenkins and Maute 2015). This work
considers the “dry” and “wet” approach and aims to design
structures with higher stiffness (minimum compliance) sub-
ject to FSI loads allowing for large displacements.
Different approaches have been used to optimize
the structural topology in FSI problems. The first work
employed a density-based approach. Yoon (2010) proposed
a SIMP (Solid Isotropic Material with Penalization) unified
model that solved both governing equations in a monolithic
approach. Later, Yoon (2014) applied the same method to
stress-constrained problems. Further discussions and com-
parisons were provided by Lundgaard et al. (2018) who
revisited the same SIMP-based for FSI problems approach
proposed by Yoon (2010, 2014). In both works, the “wet”
optimization was considered. Density-based methods con-
sider an interpolation in the material constant properties
between solid and fluid within each element. However, such
methods have an unclear structural boundaries during opti-
mization due to the use of intermediate densities elements,
which implies a difficult physical interpretation in addi-
tion to possible numerical inaccuracies. Jenkins and Maute
(2015) employed a method based on the explicit level-set for
“dry” optimization of FSI problems. A generalized formu-
lation of the extended finite element method (XFEM) was
used to track the changes in the structural boundary during
the optimization. The same approach was applied for “wet”
optimization later on (Jenkins and Maute 2016). Picelli et al.
(2019) considered the level-set-based approach for fluid
pressure loading problems. Fluid flooding technique was
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adopted to track changes in the FSI interface during optimi-
zation. A different technique for tracking the interface based
on the level-set framework was proposed by Feppon et al.
(2020) in the topology optimization of thermal fluid—struc-
ture problems. Feppon et al. (2020) proposed a remeshing
method based on the evolution of the level-set function to
capture the FSI interface. A new framework which employs
reaction—diffusion equations (RDE) to update the level-set
function was proposed by Li et al. (2021). In such approach,
a body-fitted adaptive mesh scheme is employed as a
remeshing technique. Level-set methods employ level-set
functions that explicitly describe the structural boundaries
via iso-contours. The interface FSI is clear and well defined.
However, the level-set framework is usually complex and
requires minuscious care in the level-set update to guaran-
tee boundary smoothness, adding challenges to the already
complex FSI problems.

The clear and explicit distinction between physical
boundaries is also provided by binary methods (also called
discrete) (Sivapuram and Picelli 2020). Alternatively, binary
methods are generally easier to implement compared to
level-set methods. Picelli et al. (2017) addressed the opti-
mization of FSI problems using binary design variables via
the BESO (Bi-directional Evolutionary Structural Optimi-
zation) method (Huang and Xie 2007). The fluid and solid
domains as well as the governing equations were modeled
separately. The BESO method, however, is built upon a heu-
ristic-design updated scheme, presenting difficulties when
applied to a general optimization problem. Still in the binary
class of methods, Picelli et al. (2020a) applied the TOBS
(Topology Optimization of Binary Structures) method in
the “wet” optimization case of structures under fluid flow
loads. The author developed a new methodology to integrate
different optimization and finite element packages. The idea
consists in decoupling the binary optimization grid (from
TOBS) and the finite element analysis (FEA) mesh. A CAD
(Computer-aided Design) model is created by reading the
{0, 1} variables and trimming the void regions (variables 0)
out from the original design domain. This leads to the TOBS
with geometry trimming (TOBS-GT) method. Picelli et al.
(2022) showed that the TOBS-GT method can be used to
optimize turbulent fluid flow properties. In this work, the
idea is extended to show possible benefits in multiphysics
optimization as it allows the modeling of separate domains
in addition to the possibility of employing conveniently
coarse meshes, decreasing the computational costs involved
in the FSI simulation. The standard TOBS solver is based
on formal mathematical programming which allows the effi-
cient implementation of multiple constraints in the problem
(Picelli et al. 2020b).

In such context, this work proposes the extension of
the methodology based on the TOBS-GT method (Picelli
et al. 2020a) for optimizing FSI problems including large
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structural displacements. The TOBS is a gradient-based
method and employs sequential linear approximation of
objective and constraint functions to generate subproblems
associated with integer linear programming (ILP). Despite
the effectiveness of the studies and different approaches
mentioned above, the consideration of more realistic prob-
lems including large structural deformations is still a chal-
lenging topic when dealing with FSI problems. Up to date,
the design of structures under viscous fluid loads consider-
ing large displacements was effectively employed only by
Jenkins and Maute (2015, 2016). When optimizing FSI prob-
lems with large structural deformations, the fluid—structure
interfaces must be properly tracked and explicitly defined
for sensitivities to be calculated correctly. The binary {0, 1}
design variables provide clear structures which facilitate the
imposition of coupling conditions and the numerical analy-
sis of separate fluid and structural domains. Although FSI
problems are commonly transient, herein we carry out the
optimization considering a steady-state regime as a design
approach, since the computational costs of transient analyses
are still a challenge for topology optimization. In this study,
we develop a framework that extends the TOBS-GT method
to efficiently deal with fluid-structure design problems con-
sidering nonlinear structural responses. Compliance mini-
mization is solved subject to a volume fraction constraint.
COMSOL Multiphysics is used as FEA package to solve FSI
equations and provide semi-automatic symbolic differenti-
ated sensitivities. An optimization grid defined by a set of
binary design variables {0, 1} is created in the TOBS mod-
ule. Then, the optimization grid is passed to the FEA module
and a geometry file is generated. The geometry is produced
by reading the set of discrete variables, where { 1} represents
the solid domain and {0} is the void or fluid regions. The
trimmed geometry is freely meshed with the FEA package.
The problem is solved in the spatial (Eulerian) and mate-
rial (Langragian) frame, thus allowing the map between
the optimization point coordinates and the calculation of
the sensitivity field in the deformed position. Fluid loads
are linearly interpolated via the stress-equilibrium coupling
condition. The TOBS-GT method is applied to design of 2D
and 3D structures under viscous fluid flow loads. To the best
author’s knowledge, this is the first work to employ binary
topology optimization to design FSI systems including large
displacements. The remainder of the paper is as follows.
Section 2 describes the FSI model used in this work: the
Navier Stokes equations (Sect. 2.1), the structural mechan-
ics (Sect. 2.2) and the coupling conditions at the interface
(Sect. 2.3). The optimization problem is described in Sect. 3
including details from the TOBS and TOBS-GT methods
and the computational procedure. 2D and 3D numerical
examples are presented and discussed in Sect. 5. The paper
is concluded in Sect. 6.

2 Fluid-structure interaction

We consider a steady-state analysis of elastic structures in
contact with viscous incompressible fluid. In this work, the
fluid flow is modeled in a Eulerian (spatial) frame while the
solid structure is modeled in a Lagrangian (material) frame.
The fluid flow is considered to be laminar and is governed
by the incompressible Navier Stokes and continuity equa-
tions. Moving mesh is considered and structural nonlinear
responses are evaluated.

2.1 Navier-Stokes equations

An incompressible viscous fluid flow in constant motion (as
illustrated in Fig. 1) is governed by the Navier Stokes and
continuity equations (Gresho and Sani 2000). Considering a
steady-state incompressible homogeneous Newtonian fluid,
the equations are given by

p(v-V)V=V.[=PL+ pu(Vv+(VV))]  on Q,
M
peV-(v)=0 on € )

where p; is the fluid density, v is the fluid velocity, P is the
fluid pressure, I is the unit diagonal matrix and g is the fluid
dynamic viscosity.

Equation 1 corresponds to the momentum equation in an
Eulerian formulation of reference, i.e., spatial frame. The
terms on the left side of the equation are due to convective
acceleration and the right side represents the internal forces in
the fluid (inertial forces and viscous forces). The fluid inertial
and viscosity forces are related by the Reynolds number Re,
where Re = Fi o0/ Friscous- Equation 2 expresses the incom-
pressibility of the fluid. In order to solve the governing fluid
equations, the following boundary conditions are imposed:

V=Y, on I, ?3)

[=PL+p(VV+ (VW )Ing=~Pon; on Ty (@)

p() < Pout on Fout' (5)
Lsw
—» — —» — —
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. — — — —
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—[ == =
> / Q, \ >
Ty Ty T

Fig. 1 A schematic illustration of the FSI problem
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The inlet flow condition (Eq. 3) is prescribed the at the chan-
nel boundary I';,. At the outlet of the fluid channel I, a
stress free condition is applied (Eqgs. 4 and 5), where n; is the
unit normal vector outward to the fluid and p,,, is the pres-
sure at the outlet of the channel. A slip condition (v # 0) is
imposed on the flow walls prescribed with I, on the walls

I',, and on the interface I';, are assumed non-slip conditions
(v=0).

2.2 Structural mechanics

The solid domain Q (see Fig. 1) is computed in a Lagrangian
frame (Wriggers 2008; Gatzhammer 2014). All the discrete
equations are derived with respect to the original configura-
tion of the structure (undeformed position). This formulation
is commonly called Total Lagrangian formulation. In this
approach, a displacement vector u is used to account for the
displacements from each material point X to a spatial point
x. Thus

x=X+u, 6)

where x is the spatial coordinate, X is the material coor-
dinate and u is the displacement vector. The deformation
gradient tensor F can be introduced to report the deformation
of an infinitesimal line element dX in the material domain to
a deformed line element dx in the spatial domain as

ox
dx = —dX = FdX,
X X @)

Therefore, F can be written as

ox
F=—=V,+]1, 8
aX u ( )
where V,, is the displacement gradient given by the deriva-
tives of the deformed coordinates with respect to the initial
coordinates. The strain state is evaluated in the material

configuration by the Green—Lagrange strain tensor given by
1
E = E(C -1, 9)

where C = F'F is the right Cauchy—Green deformation ten-
sor. The tensors E and C do not contain rigid body strains.
The strain tensor E can be rewrite using the displacement
gradient V , as

1
E = 5[(Vu)T +V,+ (V)'V,l, (10
where the higher-order term (V,)TV,, corresponds to the

nonlinear character. The equilibrium state is described in
terms of the 2nd Piola—Kirchhoff stress tensor S defined as

V- (FS) + % =0, (11)

@ Springer

where £*' is the vector of fluid loads applied on the structure,
i.e., at the interface I';. The stress tensor S can be related
with the Cauchy stress tensor o via

o, = JFSF', (12)

where J is the Jacobian matrix. Once the material is consid-
ered to be isotropic and linearly elastic, the linear constitu-
tive relation between the stress tensor S and the strain tensor
E can be expressed by the Saint-Venant Kirchhoff elastic
constitutive equation which is stated by

S = A(rE) + 2u E. (13)

where A, and p, are Lamé constants. This constants can be
described in terms of the Young’s modulus E and Poisson’s
ratio v as

o _HGA+20)

P s (14)
AS
V=e=———
200+ 1) (15)

In order to solve Eq. 11, Dirichlet boundary conditions are
applied at I, as

u=0 on I . (16)

u

2.3 Coupling interface

The coupling between solid domain and fluid domain at the
FSI interface is defined by the kinematic and stress equi-
librium conditions. The kinematic condition concerns the
continuity in velocity and the stress equilibrium condition
defines the continuity of the interface with respect to the
normal vectors of both domains (Lund et al. 2003). The
stress coupling condition for steady-state is expressed as

on, = —oM; on Ffs. 17)
where o is the solid stress tensor, o; is the fluid stress tensor,
n, is normal unit vector outward to the solid and n; is normal
unit vector outward to the fluid, both in the deformed con-
figuration. A moving mesh is considered in order to evalu-
ate the motion of the fluid—structure interface, i.e., how the
structure deforms due to fluid flow loads and how the fluid
domain changes due to the motion of the structural bound-
ary. The moving mesh interface in COMSOL Multiphysics
employs the Arbitrary Lagrangian—Eulerian (ALE) method
which separates the spatial frame (fluid domain) from the
material frame (solid domain), enabling the easy identifica-
tion of changes in physical boundaries. In this way, the solid
structure follows the mesh displacement.
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3 Topology optimization problem
3.1 Problem formulation

This study concerns the structural mean compliance minimiza-
tion subject to a volume fraction constraint. The mathematical
formulation of the problem considering binary variables {0, 1}
can be stated as

Minimize C(p) = 1 fTu
P 2

Subject to V(p) <V, (%)
p; € {0,1}, j € [1,N,],

where p represents the vector of design variables p;, C(p) is
the structural mean compliance or total deformation energy,
f and u corresponds to the loads vectors and the global struc-
tural displacement, respectively, V is the total material vol-
ume of the structure, V is the prescribed structural volume
fraction and N, is the number of elements in the design vari-
ables vector.

3.2 Material models

In order to evaluate the derivatives of the structural mean com-
pliance, the physical model should be interpolated with the
design variables. We adopted the SIMP material model which
is expressed as

E(p)) = p}E, on  Q 19)

where E(p;) is the interpolated material property with respect
to the design variable p;, E, is the Young’s modulus of the
solid element and p is the penalty exponent factor. We also
adopted a linear material interpolation in order to couple the
sensitivities with the fluid loads that change during optimi-
zation with the material removal from the fluid—structure
interface. Thus, the Eq. 17 referring to the stress equilibrium
condition is rewritten as

o = —p;0eh; on I (20)

More information and discussions about the effects of this
material model are given in the numerical results (Sect. 5).

3.3 TOBS method

The standard TOBS method generates optimization subprob-
lems via sequential linear approximation. Since binary design
variables {0, 1}—0 for void and 1 for solid material—are
employed, the TOBS framework solves the linear optimiza-
tion subproblems using integer linear programming (ILP).
Therefore, in order for the design variables to remain integer
and binary during optimization and the ILP problem to be

satisfied, changes in the design variables are constrained by
means of a bounded constraint described by

0<Apk<1 ifpk=0,
/ ok 21
—1<ApF <0 ifpf =1,

where (-)* indicates the value of quantity (-) at iteration k and
ApFis the vector of changes in the design variables. To keep
the binary nature of problem the changes in the design vari-
ables are restricted. Therefore, for a solid element (p; = 1)
the possible changes are {0} or {—1} which remains solid
or becomes void, respectively. For void elements the same
definition is valid, where {0} is prescribed to remain void
element or {1} to become a solid element. The optimization
subproblems are generated applying Taylor’s series approxi-
mation and truncating at the linear terms. The objective and
constraint functions can be rewritten as

aC(p*
C(p) ~ C(p") + % <At +0(|apY |5,

aV(p*
Vip) = V(o) + % -
P

(22)
A pk s

where O(||Ap| |§) represents the truncation error. There is
no error associated with the volume function because its var-
iation is linear. In Eq. 22 the higher-order terms for the mean
compliance function are neglected since the ILP problems
are created using linear approximation. This implies that,
for the approximation to be valid, the truncation error needs
to be small enough. For this, an extra constraint is added to
constrain the number of changes to the design variables in
each iteration. This constraint can be expressed as

[|ap"||, < BN,. (23)

In the context of topology optimization, the § parameter
guarantees that only a fraction of the total number of vari-
ables evolves from solid {1} to empty {0} and vice versa in
each iteration. Therefore, the adoption of small g values is
essential for the truncation error to be small enough.

Thus, the linearized optimization subproblem can be writ-
ten as

aC(p") k

Minimize - Ap",
Apk dp

oV (p* -
Subject to % AP <V =V (p) 1= AVE, (24)

|[ap4]], < BNy,
Apt e {=pf, 1= g}, j €[N,

where Ap;‘ is the update of the kth design variable corre-
sponding to the jth element and AV* is the upper limit of the
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volume constraint. Solving the ILP problem, the design vari-
ables are updated as

pk+1 — pk+Apk (25)

As mentioned earlier, the linear approximation of functions
is only valid for small changes in the objective and constraint
functions at each update of the design variables. However,
some of the problem’s constraints can start in an infeasible
space due to the bound AV =V — V(p*) requiring a big
step to reach a viable solution. Since the topology change
is restricted to each iteration by the f parameter, the upper
bounds of the constraints AV are relaxed to generate fea-
sible ILP subproblems. The constraint bounds are relaxed
using

—V(p) V<-e)V(ph),
AVE=V =V (ph) 1 Vel -e)V(p"),(1 +e)V(ph)l,
&V(pY) V> U+e)V(ph),

(26)
where ¢; is the relaxation parameter corresponding to the
volume constraint. Effectively, the parameter ¢ gradu-
ally limitates the constraint functions moves towards their
upper bounds ensuring that a viable solution exists at each
iteration.

The ILP problem (Eq. 24) originated from the sequential
linearization of functions is the same as a linear programming
(LP) problem; however ILP problems are restricted to inte-
ger design variables. Therefore, ILP-based solutions can be
slightly below the solutions generated by LP problems. How-
ever, the structural design obtained by ILP solutions has a clear
and well-defined boundary/interface due to the use of integer
variables. A famous technique used to solve ILP problems is
the branch-and-bound algorithm. In this technique, the ILP
problem is initially solved as an LP problem, i.e., without
integer constraints. Then, the obtained solution is used as the
initial solution and different LPs are created with additional
extra limits on the design variables, which forces the optimizer
to generate entire solutions in the branches (Land and Doig,
1960). In this work, we employ the branch-and-bound algo-
rithm present in the CPLEX package to solve the ILP problem
generated at each iteration.

3.4 Sensitivity analysis
3.4.1 Adjoint sensitivities
The TOBS is a gradient-based optimization method, hence
the gradients (sensitivities) of the objective and constraint
functions are required to iterate over solutions. The respec-

tive sensitivities can be calculated using the adjoint method
(Haftka and Giirdal 1991; Bendsge and Sigmund 2003). The
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general formulation of the adjoint equation for a Lagrangian
functional can be given by

R\ o\
A=—2Z), 27
( Ju ) <0u> 7)
where A corresponds to the vector of adjoint variables, f is

the vector of objective function and R is the residual. Sen-
sitivities can then be calculated by the following expression

dL\ _ (', jroR
(%)= () -5

The structural mean compliance sensitivities are then cal-
culated by the generic function (Eq. 28). The structural vol-
ume sensitivities with respect to the design variable p; are
expressed as

oV
PP Vi (29)
where V; is the volume fraction referring to the design vari-
able j.

4 Computational procedures

The proposed method considers the optimizer and problem
physics in a decoupled way, i.e., as independent modules. A
geometry trimming procedure and interpolation of sensitivi-
ties are used to integrate both modules. The proposed opti-
mization method is based on material distribution and built
upon the standard TOBS method (Sivapuram and Picelli
2018). A diagram illustrating the steps of the algorithm is
presented in Fig. 3. The equilibrium equations of the FSI
problem are solved via the finite element method using an
external FEA package, herein COMSOL Multiphysics. The
equations are computed with a segregated numerical solver,
i.e., with separate domains and in a iteratively manner. In
addition, the required sensitivities for optimization are also
provided by the FEA package. Besides the fluid—struc-
ture interaction module used for the physical analysis of
the problem in COMSOL Multiphysics, we employed the
topology optimization module to include the material model
into the design domain. Through the “density model” tool
present within the topology optimization module we can
define the type of interpolation and the penalty factor as
well. Also, the “optimization” module is used to access the
semi-automatic built-in symbolic differentiation tool. The
interpolation of the material and FSI coupling (Eqs. 19 and
20) is determined by editing the properties in the structural
mechanics and multiphysics coupling modules. Sensitivity
analysis is performed by the adjoint method and obtained
via the semi-automatic built-in symbolic differentiation
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module integrated in the software. The TOBS approach
with geometry trimming (GT), so-called TOBS-GT, uses a
grid points of interest described by binary variables {0, 1}
to communicate with the FEA module. Geometry trimming
(GT) method is the process of creating a CAD geometry
by reading the design variables provided and trimming out
the initial CAD model of the design domain. The proce-
dure reads the binary design variables—which prescribes
the presence (1) or absence (0) of material—and generates
a CAD model which contains all the contour information of
the problem. This procedure is illustrated in Fig. 2.

A geometry is produced from these contour information
(in .dxf, for 2D, or .stl format, for 3D) and transferred to the
FEA module via the geometry trimming technique. The opti-
mization grid as well as the .dxf and .stl files are dimension-
less. Therefore, a scale factor is applied in order to obtain the
actual physical dimension of the problem. The void domains
described by variables 0 are trimmed out from the design
domain and the CAD file with the respective geometry is
updated every iteration. The contour information contains
the exact location of the void regions (holes), i.e., whether
they are located entirely inside the solid design domain or
at the FSI interface. Internal holes are completely trimmed
out from the CAD model and holes at the initial FSI inter-
faces are assigned to be fluid domain. Thus, the FSI inter-
face is directly tracked and the “fluid flooding” technique as
previously used in the literature (Picelli et al. 2015) is not

[ Y Y Y

JEY Y Y PR PR PR
R Y R YUY G
—|=|—]=]=]c]o

0
0
1
1
1
1
1

olo|=|=][~|~]~

L

~

0 [ ]

Optimization grid  CAD model

Fluid-structure problem

Fig. 2 Representation of the geometry trimming (GT) procedure

Fig.3 Illustration of the TOBS-
GT method for fluid—structure
design including large displace-
ments

Convergence...

<4

Optimized design

Material frame

Vo
Includes large
displacements

Fluid-structure problem

needed. In this work, we do not apply smoothing filters on
the FSI interface, so the topologies have a staircase contour.
Once the fluid and solid domain is defined, COMSOL Mul-
tiphysics are able to identify the boundaries corresponding
to FSI interfaces and apply the coupling conditions. The
software meshes the geometry freely according to physical
requirements. The use of free finite element meshes config-
ured according to physical requirements is advantageous for
fluid structure problems, since the mesh quality at the physi-
cal boundaries—flow channel walls and FSI interface—are
higher, promoting a good approximation of the problem. In
this study, this procedure is done using the option phys-
ics controlled in COMSOL Multiphysics. Triangu-
lar and quadrilateral elements are employed. The analyses
are performed assuming plane strain. A quadratic Lagrange
approximation is used for the structural analysis and the
P, + P, or P, + P, discretization is employed for the fluid
flow. FEA is carried out and semi-automatic differentiated
sensitivities are computed. The Fluid—Structure Interaction
interface in COMSOL Multiphysics employs an arbitrary
Lagrangian—Eulerian (ALE) method to account for changes
in physical boundaries. The ALE method integrates the fluid
flow domain using a spatial frame (Eulerian description)
with the solid domain using a material frame (Lagrangian
description). The spatial frame is formulated in a system of
fixed coordinates in space and the material frame is fixed to
the material and moves along with the deformed object. The
optimization grid is defined in the material frame and sen-
sitivities are computed in the deformed structural position,
as illustrated in Fig. 4. An auxiliary linear analysis is con-
sidered in order to avoid convergence problems arising from
large local structural displacements due to possible breakage
of thin structural members. In summary, the system is ana-
lyzed first in the nonlinear regime and, if by any chance the
solver does not converge, we employ a linear analysis in the
current iteration in order to re-establish the stability of the

!
|
! sensitivities
e
\ forward problem

TOBS ] ;
dxf E
ILP . {0,1} solution ]
filtering . ‘E\‘
FEA software CAD file
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Fig.4 TOBS optimization grid
computed in the material frame
with mapping to the spatial
frame

Cin Cout

I

Ay

Fluid-structure problem

structure and move on with the optimization. In this work,
linear analysis was activated only in a few iterations, not
being necessary in all examples. Furthermore, all problems
converged within the nonlinear regime.

The objective function of the structural mean compliance is
computed through the expression solid.Ws_tot incorpo-
rated in COMSOL Multiphysics. The sensitivities of the struc-
tural model are integrated in the variable fsens (dtopol.
theta_c) /dvol, where theta_c is the vector of interpo-
lation variables (Egs. 19 and 20) and dvol is a volume factor
variable considered due to the different sizes of the finite ele-
ments. The sensitivities computed at each point are extracted
through a set of grid points coincident with the optimization
grid. In the TOBS module, a spatial filter is applied to the sen-
sitivities to smooth out the problem and avoid numerical prob-
lems, such as the checkerboard. With the respective sensitivi-
ties the optimizer provides a new set of binary variables {0, 1}.
This process is repeated until convergence. A summary of the
main steps for the TOBS-GT approach is presented below:

1. Define the TOBS parameters;

2. Initialize design variables in the TOBS module via the
optimization grid {0, 1};

3. Generate a CAD geometry in the FEA package by
reading the optimization grid variables and trimming
out the void regions;

4. Mesh the geometry created by the CAD model,;

5. Solve the FSI system governing equations;

6. Compute the semi-automatic differentiated sensitivities
in the grid points considering the mapping between the
material and spatial frames;

7. Extract the calculated sensitivities and transfer them to
the TOBS module;

8. Filter the sensitivity field defined in the grid points;

9. Solve the ILP problem and update the design variables
{0, 1} in the optimization grid;

10. Evaluate the convergence of the problem. If converged,
stop. Otherwise, return to step 3.

@ Springer
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5 Numerical examples

This section presents the results obtained using the TOBS-
GT method. The goal is to minimize the mean compliance of
structures under viscous fluid flow loads including large dis-
placements subject to a volume fraction constraint. The first
problem is a variation on a well-known example in the lit-
erature called “the wall” problem. We solve the problem by
optimizing only the internal geometry of the structure, i.e.,
“dry” optimization. In the second case, the “wet” optimiza-
tion approach is considered for a second variation of “the
wall” example. In order to compare results, in the first two
examples the problem is solved considering the small and
large displacements. The third problem presents the applica-
tion of the method in 3D problems. The numerical examples
shown in the following sections were computed using the
Intel Xeon Silver 4114 - 2x CPU 2.20 GHz - 128GB RAM.
In all the examples, the convergence is defined by averaging
the changes in the mean compliance function over 6 con-
secutive iterations for a tolerance of z = 0.001.

5.1 The wall—“Dry” optimization
The first problem consists of a solid wall immersed in a

fluid flow rectangular channel, as shown in Fig. 5. In this
problem, we analyze the same problem considering small

Ly

2.0 [m] 4.0 [m]
@/Non—design domain
Fo ut
2.0 [m] o o

Felly
0 [m] Ty
QS
I

Fig.5 The wall problem: “Dry” optimization

[
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and large displacements for comparison purposes. We seek
to optimize the “dry” topology of the wall, i.e., the internal
geometry. The properties of the solid material are Young’s
modulus E, = 400 kPa and Poisson’s ratio v = 0.3. The
fluid density is p; = 1 kg/m® and dynamic viscosity p; = 1
Pas. The average inlet velocity is defined by the Reynolds
number described by Re = p;v;, D/ u;, where p; is the fluid
density, v;, is the mean inlet velocity, D is channel height
and yg is the fluid dynamic viscosity. Herein, we assume
Re = 1. The flexible solid wall is immersed in a rectan-
gular channel of 6 X 2 m and it is subject to viscous fluid
flow loads. This example is similar to the proposed by Jen-
kins and Maute (2015). The fluid flow is prescribed with
a parabolic velocity profile at the channel inlet described
by v =v,,6(H — y)y/H?* where H is the height of the fluid
channel and y is the coordinate in the y direction at each
point of the inlet. In the outflow a stress free condition is
enforced (with p,,, = 0). A non-slip condition is imposed
on all walls of the fluid channel. The bottom edge of the
structure is fixed; the displacements are u = 0 on this edge.
A layer of passive elements (non-design domain) with a
thickness of 0.01 m is assumed between the interface and
the design domain (see Fig. 5).

The internal wall topology is optimized using the TOBS-
GT method. The goal of the problem is to minimize the
mean compliance of the structure subject to a volume frac-
tion constraint of V = 60%. A 50 X 500 optimization grid
is employed for optimization. A filter radius of 10 grid
sizes is adopted. Material model is interpolated consider-
ing p = 3. The constraint relaxation parameter € is set as
0.01, i.e., the volume function changes 1% at each iteration
until it approaches the prescribed volume fraction constraint
V. The truncation parameter—that restricts the percentage
of change in design variables at each iteration—is set as
p = 0.02. Figure 6 presents the snapshots of the iterations
along the optimization loop for the two cases, the black
region represents the solid (1) and the white region cor-
responds to void (0).

The inclusion of the structural nonlinear response leads to
obtaining a different optimized design compared to the linear
problem. Figure 6 shows the material distribution within the
design domain during the optimization process. Thin bars
(similar to a truss) form along the iterations. As expected,
the internal arrangement of the bars in the optimized design
of each case differs. In the first case—Fig. 6a—the opti-
mized design has a larger amount of bars being these of
smaller thickness and in the second case—Fig. 6b—there
are fewer bars with greater thickness. A larger portion of
the material is distributed close to the clamped boundary
in both cases in order to reduce the overall deformation of
the structure. The optimized design obtained for large dis-
placements—Fig. 6b—is similar to the topology obtained
by Jenkins and Maute (2015).

It: 0 It.:10 TIt.:20 It.:30 It.:40 It.: 50 It.: 57
(a) Solution for small displacements
It: 0 It.:10 TIt.:20 It.:30 It.:40 It.: 50 It.: 60

(b) Solution for large displacements

Fig.6 Topology snapshots along the optimization process for the dif-
ferent cases: a considering small structural displacements and b con-
sidering large structural displacements. The black region represents
solid (1) and the white region corresponds to void (0)

The fluid velocity and pressure fields of the optimized
design are plotted in Fig. 7 for the two cases. Velocity pro-
files and pressure fields are similar in the small and large
displacement cases. In general, a greater magnitude in the
velocity profile it is just above the structure (see Fig. 7a, c).
In the pressure fields—Fig. 7b, d—it is possible to notice a
high positive pressure on the left side of the structure and a
significantly lower pressure on the right side, in addition to
the existence of a small region of negative pressure coupled
in the back of the structure. However, despite the similar-
ity, the case considering small displacements reaches higher
pressure values, as shown in Fig. 7b. In addition, because
the FSI interface remains the same along the optimization
process, the design obtained for this case would be similar
to a case considering a static distributed load—similarly as
used in buildings design—since the fluid loads act as a dis-
tributed load over the entire interface of the structure. In the
large displacements case, a larger deformation is observed
at the top of the structure since the greatest amount of mate-
rial is distributed at the bottom of the domain. The mapping
and distinction between the material and spatial frames in
the fluid—structure model allows the TOBS-GT optimiza-
tion grid to be computed following the deformation of the
structure. Structural displacements are computed by the FEA
package and the displacement vector is added to the coor-
dinates of the solid material. The optimization grid points
are fixed to this frame of reference and the sensitivities are
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Fig. 7 Velocity magnitude (in m/s) and pressure field (in Pa) for the optimized designs: a—b considering linear regime and c—d considering non-

linear regime

computed accordingly. In this example, the linear interpo-
lation loads does not influence the obtained solutions since
only the “dry” topology is optimized, i.e., the solid elements
at the interface—in contact with the fluid flow loads—
remain in the same position throughout optimization.

The evolutions of the objective (mean compliance) and
constraint (volume) functions are presented in Fig. 8. As
seen in the history of the structural volume fraction, the
removal of elements is done gradual as established by the
parameter €. It is possible to notice some jumps in the evolu-
tion of the objective function in both cases. These punctual
increases in the objective function are due to the breakage
of the thin bars along the iterations, which causes large local
structural deformation, generating a significant increase in
compliance, as illustrated in the colorized snapshots with
the velocity field presents in Fig. 8a, b. However, this behav-
ior does not occur in all cases. The occasional increase in
the evolution of the mean compliance is also observed by

Jenkins and Maute (2015). Furthermore, it is interesting to
note that with the breakage of the thin bars and consequently
the increase in local deformation, the optimizer seeks to add
material in order to reduce large deformations and, conse-
quently, minimize compliance. The problem considering
small displacements (linear regime) converges to a structural
mean compliance value of 0.0514 Nm in 57 iterations. While
the final design optimized considering large displacements
(nonlinear regime) is achieved in 60 iterations with a struc-
tural compliance value of 0.0543 Nm.

5.2 The wall—“Wet” optimization

In this example, a flexible solid wall is immersed in a fluid
flow channel, as shown in Fig. 9. We apply the TOBS-GT
method for the optimization of the “wet” topology. This is
a classic example of the literature, first proposed by Yoon
(2010), explored later by other authors (Picelli et al. 2017; Li

Fig.8 Evolution history of 1 0.1 1
objective function and con- £0.06 = ’g =
straint function for the case con- z ’ g Z 0.08 i | =
sidering a small displacement B’ Q ‘Q-; ’ g
and b large displacements 9 0.05 0.8 = Q i 0.8 &
E g 500 2
= = = =
£0.04 = £ 2
8 ——Compliance (Nm) 0.6 > o 0.04 ——Compliance (Nm) 0.6 §
—Volume fraction © —Volume fraction
0.03 0.02 : i
0 20 40 60 0 20 40 60
Iterations Iterations
(a) (b)
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Fig.9 The wall problem: “Wet” optimization

et al. 2021). A variation of the problem with a larger design
domain was proposed by Lundgaard et al. (2018). Herein,
we revisit this problem including larger displacements. The
objective is to solve the minimization of the structural mean
compliance subject to a volume fraction constraint. In com-
parison to Lundgaard et al. (2018), we slightly increased the
height of the non-design domain bar to obtain larger defor-
mation. The physical properties adopted for the solid domain
are Young’s modulus E;, = 1 Pa and Poisson’s ratio v = 0.3.
The fluid is water, i.e., with density p; = 1000 kg/m3 and
dynamic viscosity y; = 0.001Pas. The average inlet velocity
is defined by the Reynolds number, which is Re = 80.

The fluid flow enters the left edge of the channel with a
normal parabolic velocity profile. At the exit of the channel
the pressure condition p,,, = 0 is imposed. On the walls of
the fluid flow channel, a non-slip condition is prescribed.
The structure is fixed on bottom boundary, i.e., the displace-
ments are u = (. The objective of this example is to design
an aerodynamic support within a 140 X 80 mm domain,
where a passive region (non-design domain) correspond-
ing to a mid-solid barrier is assumed. Structural mean com-
pliance is minimized via the TOBS-GT method subject to
final volume fraction of 10%. A 280 x 160 optimization grid
size is used for the design domain. In regard to optimiza-
tion coefficients, the constraint relaxation parameter is set
to € = 0.02, the truncation error constraint parameter to
p = 0.05, and a filter radius of 12 grid sizes. The problem is
analyzed for small and large structural displacements. Fig-
ure 10 presents the topology design, velocity and pressure
fields of both cases for the optimized problem using p = 5.

It can be noticed that for the large displacement case most
of the material is deposited on the left side of the structure
(see Fig. 10d) while in small displacement problem the dis-
tribution of solid material within design domain is done in
a more balanced way, as seen in Fig. 10a. The velocity and
pressure fields differ in the two cases, with higher values
observed for the small displacements study. The optimized
topology in the small displacement solution is obtained in
122 iterations with the global structural mean compliance
value of 1.534 x 1078 Nm. A cross-comparison between
both designs obtained is presented in Table 1. Curiously,

Fig. 10 Comparison between the optimized design obtained consider-
ing a—c small and d—f large displacements: a and d topology design,
b and e velocity magnitude (in m/s), ¢ and f pressure field (in Pa)
using p =5

the design obtained from the optimization including the geo-
metric nonlinearity presents a higher performance for both
cases, i.e., with and without considering the nonlinearities.
From this, the advantages of modelling large deformation
can be evidenced, but further investigations are necessary
to explain why the linear design was not able to find a better
solution.

In order to verify the influence of the penalty factor p,
the problem is solved for three different penalty factors
p = {3,5, 10} considering large displacements. The velocity
and pressure fields are plotted in Fig. 11 for the three cases.
It is possible to notice that the optimized structural designs
are different for the studied penalty factors. In this model,
lower penalty factors favour both stiffness and fluid loading
interpolation, while larger penalties decrease considerably
the calculation of the fluid loading in the sensitivities. This is
also discussed in Yoon (2010) and Lundgaard et al. (2018).
As seen in Fig. 11, more material was deposited on the left
side of the structure when lower penalty factors (p = 3 and
5) were used. This fact is because with the interpolation of
fluid loads, the optimizer is able to work on reducing the
high pressure and shear loads arising from the direct contact
of the fluid flow with the solid structure. In fact, the structure
obtained using p = 3 presents the lowest mean compliance
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Table 1 Cross-comparison between designs obtained considering small and large displacements

Designed for/simulated for

Small displacements

Large displacements

Small displacements

A

Large displacements

C(x) = 1.5337 x 108 Nm

C(x) = 1.0695 x 1078 Nm

C(x) = 1.5290 x 10~8 Nm

C(x) = 1.1177 x 10" Nm

| e— LRl
0 1 2

-4 2 0

(b) p =5, C(x) = 1.0695-10~8 Nm

<107
0 x 2

T <107
-4 -2 0 2
(c) p =10, C(x) = 1.0990-10~8 Nm

Fig. 11 Velocity fields in m/s (left side) and pressure in Pa (right
side) of the topology optimized for p = {3, 5, 10}

value between the three designs. When solving the prob-
lem using p = 10, more material was deposited closer to
the mid-solid wall. Our numerical experience tells that FSI

@ Springer

examples with high pressure and shear loads such as this one
present convergence difficulties if the fluid loading sensi-
tivities are not used, especially for higher Reynolds number.
The structural members in the three designs are arranged to
globally reduce the load. The velocity and pressure fields are
similar in the three cases. The fluid flow velocity reaches a
significant magnitude near the upper region of the interme-
diate barrier. Besides, the pressure field varies from posi-
tive to negative values in after the flow passes the obstacle.
Figure 12 shows the evolution of the topology and velocity
profile over the iterations for the case of p = 5. As it can be
observed during optimization a clear and explicit distinction
between physical boundaries—solid and fluid—is obtained
along all iterations due to the binary variables.

The evolution history of the mean compliance and vol-
ume fraction functions are shown in Fig. 13. The history
of the objective function presents some peaks, similarly as
in the example of the optimization of the “dry” topology
5.1. Sudden increases in compliance were also observed by
Jenkins and Maute (2016) in “wet” topology optimization
problems. The global measure of structural mean compli-
ance is minimized and the final obtained values are lower
than the initial ones. Clear and explicit optimized topologies
are obtained. The mesh created by COMSOL Multiphys-
ics for the optimized FSI design using p = 5 including the
fluid domain is shown in Fig. 14. The area delimited in red
represents the initial design domain. The CAD geometry
trimming allows the meshes to be freely created, meeting the
physical requirements. As it can be noticed, the mesh has a
larger discretization in the FSI boundaries and quadrilateral
elements are used in the fluid walls. The finite element mesh
is composed of 15,197 elements—14,637 triangular and 560
quadrilateral elements—while the TOBS-GT optimization
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Fig. 12 Velocity field (in m/s) of the snapshots during the optimiza- »
tionfor p =5

grid has 44,800 elements (280 x 160 grid points) distributed
only in the structural design domain. Mesh refinement is
not directly linked to optimization grid size. Therefore, the
increase of points in the optimization grid in order to obtain

) It.: 0
topologies with higher resolution does not lead to a higher
computational cost, as the finite element mesh can be kept in
a computationally convenient size. The possibility of using
coarse meshes in contrast to the higher grid resolution is one
of the possible advantages of the TOBS-GT approach. On
the other hand, the consideration of a dense FE mesh and a
) It 7

coarse optimization grid should tend to produce smoother
fields and, therefore, similar results but with a higher compu-
tational cost. The use of coarser meshes reduces the overall
time and challenges of the FSI computation, since the bot-
tleneck of the optimization is the finite element analysis.
While the FEA solver can take between 20 and 70 seconds
each iteration, the ILP problem takes less than 1 second to
be computed (see Fig. 15). In addition, the geometry trim-
ming procedure takes on average less than 1 second to be

executed as well as the generation of a new FEA mesh at
every iteration. Therefore, both processes are significantly
cheap compared to the FEA forward problem. Thus, the
TOBS-GT method promises to be relatively cheap for opti-
mizing problems with a high degree of physical complexity.

5.3 The billboard—3D “wet” optimization (d) It.: 47

This example solves the “wet” optimization case of a flex-
ible three-dimensional billboard-like structure immersed
in a fluid flow channel of dimension 10 X 6 X 6 mm. The
problem illustration is shown in Fig. 16. A 0.1 mm thick

plate is suspended by a circular main column with a diameter
of 0.33 mm, located on the bottom boundary of the fluid
channel and centered on the z—direction , with a distance
of 3.0 mm from the inlet I';,. The objective of this example
is to design a support structure behind the suspended plate.
The design domain €, is located behind the structure and
is connected to the main column at a height of 2.0 mm,
and has a dimension of 3 X2 X 0.5 mm. The solid mate-
rial properties for this example is chosen to have Young’s
modulus E, = 4 X 10° Pa and Poisson’s ratio v = 0.3. Fluid
is considered to be air (density p; = 1.27 kg/m? and dynamic
viscosity py = 1.72 X 107> Pas). Maximum inlet velocity v,,
is defined to 0.01 m/s.

A parabolic ﬂuld flow enters the channel I';,, with veloc-
ity v=v,,(y/H )7 where H corresponds to the helght of the

three-dimensional flow channel—in this case 6.0 mm—and y (g) It.: 107
is the vertical coordinate for each input point. A pressure con- O—:l:_;_—X 107

dition p,,, = 0 is established at the outflow I' ;. The follow-

out*
ing conditions are imposed on the walls of the fluid channel:
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Fig. 13 Evolution history of the objective function (mean compliance) and constraint function (volume) for the cases: a p=3, b p=5and ¢
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Fig. 14 Finite element mesh—14,637 triangular and 560 quadrilateral
elements—for the final optimized design (p = 5). The red dashed line
represents the initial design domain

lateral and upper boundaries I',,, are set to slip condition, lower
boundary I',, and the fluid—structure interface Iy, are set to
non-slip condition. The displacements in the bottom structural
boundary of the main column I', are fixed, i.e., u = 0. The
TOBS-GT method is considered to minimize the mean com-
pliance of structural support subject to a volume fraction con-
straint of V = 30%. An optimization grid of size 16 x 80 x 120
is applied and it is located on the back of the board correspond-
ing to the gray region (see Fig. 16). The penalty factor adopted
for the material model is p = 5. A filter radius of 2 grid sizes
is considered. The optimization parameters used are € = 0.02
and f = 0.05. Some views of the optimized structural design
are shown in Fig. 17. The optimized support is connected to
the main column of the structure with a greater amount of
solid materials being deposited in this region. However, it
is still possible to observe the occurrence of large displace-
ments as shown in Fig. 18. The TOBS-GT optimization grid
can be placed anywhere of interest in the structure, as in this
example where the grid points are considered to be at a height
on the y-axis. In this way, any structural component can be
optimized using the TOBS-GT approach, as long as the opti-
mization grid {0, 1} is placed accordingly. In addition, when
considering large displacements, it is important to identify the
frame of reference where the points are evaluated. Figure 18
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Fig. 15 Breakdown computation times of each iteration for the case
with p = 5 using the TOBS-GT method: a for the main optimization
steps b omitting the FEA solver times
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Fig. 16 The 3D billboard problem

(d) (e) (f)

Fig. 17 Optimized structural support for 3D FSI problem including
large displacements: a side view, b back view, ¢ top view and d—f
angled views

presents the streamlines of the velocity profile for optimized
structural support and the zoomed structure in a multislice
velocity field plot.

6 Conclusions

A spatial-material framework is employed to extend the
TOBS-GT method (Picelli et al. 2020a) for optimizing FSI
problems including large displacements. The optimized
design of structures under viscous fluid loads is achieved
through a decoupled analysis, where the optimization grid
and the physical analysis are used as independent modules.
This approach shows to be convenient when modelling
two different physics, such as in the present FSI problem.
A decrease in the total number of finite elements used
is achieved if compared to the fixed optimization grid
size. Thus, the optimization of the FSI topology is per-
formed with a reasonably lower computational cost. The
approach, named the TOBS-GT method, integrates the
standard TOBS solver Sivapuram and Picelli (2018) with
an external finite element analysis package. For consider-
ing large structural displacements, the FSI system is com-
puted in the spatial (Eulerian) and material (Langragian)
frame which allows the identification and tracking of the
deformed FSI interface. The solid domain is solved using
an elastic formulation with geometrical nonlinearities. The
cases of “dry” and “wet” optimization are solved. Dif-
ferent solutions are obtained when comparing small and
large displacements studies. The extension of the proposed
methodology to 3D structures is direct. The inclusion of
material nonlinearity, wall smoothing for high Reynolds
numbers and the extension of the present methodology
to non-FSI problems—such as single physics problems
and multi-material problems—are possible directions for
future research.

Appendix

This appendix presents the analysis by finite differences
used to verify the sensitivities from Eq. 28 obtained via
semi-automatic differentiation. The model analyzed is a
variation of the wall problem and is shown in Fig. 19a.
A viscous fluid flow enters through the micro-channel
inlet with Re = 10, with a parabolic velocity profile. At
the outlet channel a pressure condition p = 0 is imposed.
Non-slip conditions are applied to the walls of the fluid
channel. The solid structure is fixed at its bottom, there-
fore displacements in this face are prescribed as zero
(u=0). The sensitivities described by Eq. 28 are com-
puted in nine points within the design domain Q, being
six of them at the fluid—structure boundaries. The fluid is
considered to be water, i.e., with density p = 1000 kg/m3
and dynamic viscosity y = 0.001 Pas, and the solid mate-
rial is chosen to have Young’s modulus E = 2.4 x 10° Pa
and Poisson’s ratio v = 0.3. Sensitivities are calculated by
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Fig. 18 Fluid velocity field
(in m/s) around optimized 3D
structure via TOBS-GT method
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Fig. 19 Model used to carry out finite differences analysis: a illustration of the model, b finite element mesh and ¢ points in the design domain

semi-automatic differentiation and then checked by the
finite differences method. For the finite difference analysis,
the step 1 x 1073 is considered. Figure 19a and c present,
respectively, the considered points in finite differences
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analysis and the finite element mesh used. The finite ele-
ment mesh employed and the evaluated points are shown
in Fig. 19b. Figure 20a presents the velocity field for this
model and Fig. 20b plots of the structure including large
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Fig. 20 Fluid velocity field (m/s) of the model considered in the finite
differences analysis with Re = 10: a plot of the velocity field of the
problem and b zoomed image

displacements with zoomed. Table 2 shows the sensitiv-
ity values obtained via semi-automatic symbolic differen-
tiation and via finite differences. The maximum relative
difference between the two methods does not exceed 1%,
which is considerably small and validates the usability

of the semi-automatic differentiation tool available in the
software.
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