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Abstract 

In this article we consider the problem of estimating the density of the expectation measure with 
respect to Lebesgue measure of point processes on IR.'n. We present a.n estimator of the density for 
a very wide class of point processes. The only requirement that is made upon the point processes 
is that the density is locally square integrable. The estimation is made by wavelet expansions. 
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1. INTRODUCTION 

In this work we consider the problem of estimating the density of point processes on ]Rm. 
Both simple a.nd non-simple point processes are considered for estimation purposes. If a point 
process is simple then its intensity is equal to its density so that the estimation of the intensity of 
simple point processes follows as a particular case. 

We propose the following methodology: the restriction of the density function to the observation 
region, which is initially assumed to be an ]Rm-interval where we know the points of occurrence 
of events of a trajectory of the process, is expanded in a wavelet series. Unbiased estimators for 
the wavelet coefficients as well as unbiased estimators of the variance of the former estimators a.re 
given. We also obtain inferential sequences for the wavelets coefficients in case of non-internally 
correlated point processes {and for non-homogeneous Poisson Process as a particular case). Using 
the coefficient estimators we obtain an unbiased estimator of the density by a syntheses procedure. 
Inferential sequences for the density are also given. 

The plan of this article is the following. In section 2 we define classes of point proc.esses to 
be considered for estimation purposes,for which it is possible to calculate confidence bands for 
the density function,and present some useful properties as well as the basic concepts of "sure 
inference". Section 3 is devoted to solve the problem of estimation of the density of point processes 
on ]Rm when the observation region is an Rm interval . In section 4 comments are made upon 
the estimation of tDe density for observation regions other then intervals and we close the work 
presenting a conclusion in section 5. 

2. CLASSES OF PROCESSES, WORKING PROPERTIES AND SURE INFERENCE ANALYSIS. 

2.1. Notation. We first introduce some notation that will be necessary. We will work with 
Lebesgue measurable functions, h : lR.m -. IR which are bounded in bounded intervals of JR"' or, 



equivalently, which are integrable in the sense of Le~e and bounded on bounded intervals of 
]Rm. Let us call this class of functions r,m . Denote by £. the class of functions which are Lebesgue 
integrable over bounded intervals of JR."'. 

We will use the notation la, bl, a = (a1, ... ,a,,.), b = (b1, ... , b,..) to represent any of the 4m 
possible intervals of JR"' which can be written in the form Jt:1 la;, b,I, where lai, b;I represents one 
of the intervals (a; , ~), (a;, b.), [a;, b,) or (a;, b,] of the real line. We also use the notation xc for 
the characteristic function (or indicator) of a set C (xc(z) = 1 ..... x e C A xc(z) = 0 - x r/. C). 
Lebesgue measure on ]Rm will be indicated simply by l independently of the dimension m. If it 
is necessary to emphasize the dimension we will write l,,. . The u-algebra of Lebesgue measurable 
sets in R"' is denoted by AR•• BR"' is used for the 11-algebra of Borel sets. Functions that differ 
over zero measure subsets of their common domain or of a common extension of their domains are, 
naturally, considered Identical. All functions that we consider are &BSumed to be measurable. 

Point processes are usually denoted by N . We ~mind that a point processes is a measurable 
function from a probability space (O,A,P) into (NR"',Bfe.._,..) where N'JI..• stands for the set of 
boundedly finite integer valued measures defined on the Borel sets of.JR."' and BiJ.,,.. ia the class of 
Borel sets of JVR-· We will also denote by N the realizations of a point process, i.e., elements of 
fl11.,.. We remaind that they are typically written as N = E /c;6s, where le; E l'l'*, UJ ~ JIN, and 

iEl 
6:, is the Dirac measure with atom at xi e IR.m . The expectation measure is denoted by EN and 

/I; 
the moment measures by M,. = E( TI N). (See Daley and Vere-Jones, 1988 for further information 

izl 
on point processes). 

2.2. Classes of processes. We will work with classes of point processes that satisfy at least one 
of the following. 

Definition 2.1. Assumption B. A point procus satisfies a.ssumption B if and only if EN< l. 

Definition 2.2. Assumption A. A point proce.ss satisµs assumption A if and only if it satisfies 
assumption B and E(N x N)(A n D) = EN1r1(A n D) holds for all A e ~- where D is the 
diagonal set ofJR.2m = JR."' x R"', i.e., D = {(x,x) E JR.2"'!x ER"'} and 1r1 is the projection 
11't: IR"' x IR"' .... R"', 1r1(z,y) = x. 

Definition 2.3. A point procu11 is called non-internally c:Off'elated (NIC) if and only if for all A 
and B disjoint Borel sets of JR."' we hove Cov (N(A), N(B)) = 0. 

Definition 2.4. A point procus N on JR"' is called n-th order non-internally correlated (NIC ") if 
• 2" 2" 

and only if for all Ai. and B,. disjoint Borel 11et., of R 2 m we have Cov ( TI N, n N)(AA:' Br,;) = 0 
i a:1 i=-l 

for all k, 0 ~ k ~ n. If a point process is NIC" for all n E N we say it is an infinite order NIC 
point procus, NIC 00

• 

We will denote by B, A, NIC, NIC " or NIC 00 the c!Asses of point processes that satisfy, 
respectively, definitions 2.1 to 2.4. 

2.3. Working properties. 

Proposition 2.1. If N satisfies Assumption B then, for all EdN-integrable function, tp, we have 
f '{)dEN = I (/)VNdl. 
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Proof Immediate, since VN = dEN/dl a.e.(t]. • 
Let us denote by Dk the diagonal set of JR"m = Rm x ... x Rm, i.e., Dk = {(x, .. . ,x) e 

JR""'lx ER"'}. 

Proposition 2.2. If N satisfies Assumption B then, for all functions <p integrable with respect to 
the COttariance measure Cov (N, N), we have: 

J <pdCov (N, N) = f cpdCov (N, N) + f cpdM2 • 
]R-.-n JD 

Proof It is enough to prove that In cpdCov (N, N) = f n tpdM2. 

L <pd.Cov (N, N) = L cpd(E(N x N) - EN x EN) 

= r cpdM2 - r <p dEN ® dEN dl x dl = r cpdM2 
Jn JD dl dl JD 

since l2m(D) = (lm x lm)(D) = 0. • 

Proposition 2.3. If N satisfies Assumption A then, for all functions <{)1 integrable with respect 
to the covariance measure Cov {N, N), we have: 

/
<p1dCov{N,N)= r <p1dCov(N,N)+ f <{)VNd:!:, <p(x)=cp1(x,x). lJit•m-n Jmm 

Proof For all N E A we have 

r cp,dM2 = r ,p1r,dE(N X N) = r '{)'1'1d(EN,ri) = r ,pd.EN= I. 'P"Ndx JD lo ln J,,,,<D> R-

and the result follow from proposition 2.2. • 
We will also write J <p(:i:)vN(x}dx = J <p(x)Var(dN(x)) 

where the right hand side means ff O cp1 ( u, ti )Cov ( dN ( u), dN ( v)), D2 the diagonal set of JR 2"' and 
<p(x)=cp1(x,x). • · 

The following proposition is useful for the calculation of covariances of random variables ll.BSO­

ciated to point processes that are written as integrals. 

Proposition 2.4. Let X and Y be random variable., definetl by the stochastic integrals X = IA fdN 
and Y = fsgdN, D2 diagonal set oflR.2"', 71"1 the projection 71"1(:i:,y) = x and A,B E BR- such 
that (supp/ n A) x (supp g n B) is boundetl. For N under Assumption B we have 

Cov(X,Y) = 1 f ®g Cov(dN,dN) + 1 f®gdM2. 
(AxB)-0, (AX B)nD, 

//Cov (dN, dN) « dlxdl on (AxB)-~, i.e., there emu 1/'l E C.2m, dCov (N, N) = 'l'l(u, v)dudv, 

Cov(X,Y) = 1 J(u)g(v)112(u,v)dudv+ 1 f ©gdM2. 
(AxB)-Di (AxB)nD, 
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If N ia NIC then 

Cov (X, Y) = 1 f ® gdM2. 
(AxB)n~ 

For N under Assumption A we have 

Cov {X, Y) = 1 f ® g Cov {dN, dN) + 1 f g11NdL· 
(AxB)-~ .,,((AxB)n~) 

IfCov(dN,dN) < dLxcll on (AxB)-D2, i.e., there enst.t(b E Z2
m, dCov(N,N) = lb(u,v)dudv, 

Cov(X,Y) = 1 f(u)g(v)IJ'J(u,v)dudv+l f(x)g(x)vN(x)dx. 
(AxB)-~ .,,((AxB)nD2) 

If N ia NIC then 

Cov (X, Y) = 1 f(x)g(x)vN(x)dx. 
,r,((AxB)n.O..) 

Proof Since 

E(XY) = E (f Lxs f(u)g(v)dN(u)dN(v)) = j Lxs J(u)g(v)E(dN(u)dN(v)) 

and also 

E(~)E(Y) = 1 f(u)EdN(u) 1 g(v)EdN(v) = Jr f J(u)g(v)EdN(u)EdN(v), 
A B JAxB 

we have 

Cov (X,Y) ff f(~)g(u) (E(dN(u)dN(v)) - EdN(u)EdN(v)] JJAxB 
ff /{u)g(v)Cov (dN(u),dN(v)). JJAxB 

Now, the proposition is established using Propositions 2.2 and 2.3 and noting th.at if N is NIC 
then 112(u,v) = 0. ■ 

Observe that, since Poisson processes are special C8SeS of NIC point processes, the sixth equality 
above is fulfilled for Poisson processes. 

2.4. Sure Inference Analysis. Now we present the basics of sure inference analysis. We remark 
that this is an analysis of inference that can be euccessfully used on distribution free settings. 

Definition 2.5. The triple (X, (V,.)nellP, (V,.)neN•) formed by a random variable X : fl -+ lR, a 
sequence of positive numbera (V,.)neN• and a sequence of random variables (V,. : fl -+ 1R)neN•, i, 
an inferential sequence for x E lR if and only if the follou:ing are valid: 

(i) EX = x, Vi = Var (X), 
(ii) 'vn E Jll" V..+1 =Var(\/,.), 

(iii) Vn E N" EV,. = V,., 
(vi) 'vn E lW V,.(f!) C ffi.+. 
We will use the notation (X, V,., V,.) to represent an inferential sequence and, occasionally, we 

will simply say that the sequences V,. and Y,. form an inferential sequence for x. 
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Theorem 2.1. (On the inferential sequence of random variables.) Let (X, V,., V,.) be an 
inferential sequence for :z; E R. If 

Lm(w,A1, ... ,,\,,) = A1 ✓Vi{w) + A2 / · · + ,\,,-1 / vm-1(w) + Am/v:, 

A; E JR~ for I :5 i :5 m, m E 1N", then 

m I 
P{z E (X(w) - Lm{w,A1, .. , ,,\,,),X(w) + Lm(w,A1, ... ,,\,,)]}~I - L 2 . 

i=l A; 
We can develop a sure inference analysis to obtain "at least probability p" confidence ba.nds in 

a completely similar way to that presented above for random variables. 
From now on, I is simply an arbitrary set. 

Definition 2.6. The triple (X, (V,.)neJN•, (Y,.)neN•) formed by a stochastic process X : n x I -+ JR, 
a sequence of functions (V,. : I -+ lR)neN• and a sequence of stochastic processes (V,. : n x I -+ 

IR)neN• is said to be an inferential sequence for :z;: J-+ IR if and only if: 
(i) EX = x, Vi = Var(X), 

(ii} Vn E IN' Vn+l = Var(V,.), 
(iii) "In E IN' EV,. = V,., 
(vi) "In E IN" V,.(n XI) CIR+· 

Theorem 2.2. (On the inferential sequence of stochastic processes.) Let (X, V,., V,.) be 
an inferential sequence for x : I -+ R. Let for all m E IN", Lm : n x J x {lR~}ffl -+ R+ be given by 

L,..(w, t,>.t, ... ,Am)= >.1 l Vt(w,t) + >.2✓- .. + Am-t J v.,._i(w,t) + AmJV.,.(t), 

then, for all t E I and all m E IN', we have 
m I 

P{z(t) E [X(w, t) - Lm(w, t, At, ... ,,\,,), X(w,t) + L ... (w, t, At, ... ,,\,,)I} 2: 1 - L ).2 • 

i=l i 

See de Miranda (2004} for a detailed presentation of this subject. 

3. ESTIMATION OF THE DENSITY 

Let N be a point process over R"', with unknown density VN, 

Let {-,Ji;.; : i,j E 7l} be an orthonormal wavelet basis of L2(R) of the form -,J!,.;(t) = 23l2-,JJ(2it-i) 
or -,J!;,,{t) = 2il2¢(2i(t - ti)+ t 1 - iT) for some mother wavelet -,Ji obtained, if necessary by the 
composition of a standard wavelet with an affine transformation, such that its support is [ti, t2) 
with T = t2 - t 1 • Let rf> be the father wavelet corresponding to -,Ji. 

Similarly, let {<h,,ti,1Pi,j : i,k E 71,, j 2: ti,j, ti E 71,} be an orthonormal wavelet basis that 
contains all the scales beyond some fixed integer ti. 

It is extremely pleMant to adopt the following notation. Let d'll, = {z E 71,: z 2: d}, d E 7l U 

{-oo} and Ze(ti) = 7l U (7l Xt; 7l) if ti E 7l. If li = -oo, then Ze(ti) = 7l2 • 

Let us use Greek letters for indexes in Ze(ti} and we she.II write -,Ji,, = (/1,, ,t, if and only if T/ E 7l 
and -,Ji,,= -,Ji;,; if and only if '7 = (i,j) E 7l2

• 
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Thus, the wavelet expansions /(t) = E;e7ll: E;e:iz 6;;1/>;J(t} and /(t) = Eke2Z 'Yk4>u,(t} + 
E,ez E;e,.z 6;;,/J;,;(t) will be simply written 

J = :E a.,1/>.,, 
11eZe(ll) 

for a., given by J~00 N 11dt = JR(E( ad()t/J11dt = Et JR O('P('P11dt = E, O( < 'P(, 'P11 >= a'I. 
Let for all n, 1 .$ n .$ m, {¢,.,;,; : i,j E Zl}, t/J,.,;,;(t) = 2il2,p,.(2it - i) or 1/J ... ,,;(t) = 

2J/2ip,.(2;(t- a,,}+ a,, - iT,.) and {4>n,1r,t;,1/>n,1J: i,k E Zl, j 2:: li,.,j, li,. E Zl} be orthonormal 
wavelet b!IBeB of L2(1R.) as above where supp¢,.= [a,.,b,.) and T,. = b,. -a,.. For easy of notation 
we write (Ze(li)),. = Ze(li,.). These bases are simply written as {,p..,.,_j77,. E (Ze(li)),.} and 
they are also orthonormal bases of L2[a,.,b,.], 1 .$ n .$ m. Taking tensor products we form the 

m 
orthonormal base {f/1"1,t,., = ®::'=1it,,.,.,,.,l'J = ('11,--·,'1m) E O (Ze(li)),.} of L2(1R"') and also of 

n=l m 
L2( TT (a,.,b,.)). In this way if f E L2 (1R.m} we have 

n=l 

f= a'l,t,'1 

'IE fl (Ze(ti))ft 
R•l 

with a.,= J f,t,.,dl . 
R-

Our a.im is to obtain the restriction of vN to IT [a., b,.] = (a, b] based on the points of a trajectory 
11=1 

of the process that are contained in this :nm interval. Define 

{ 
VN if z E [a, b], 

v = 0 otherwise. 

From now on we assume that v E L2([a, bl). Therefore for the wavelet expansion of v we have 

(1) 

with 

(2) 

The main purpose is to estimate v through the expansion (1) and for this we need to estimate 
the wavelet coefficients /3., given by (2). 

We set 'h = dCov (N, N)/dl2m if Cov (N, N) < l2m, If we do not have Cov (N, N) < l2m, we 
may replace (h(u, v)dudv by dCov (N, N) in the statements of the theorems and propositions that 
follow. 

3.1. Estimation of the Wavelet Coefficients. We propose the following estimator of fJ., : 

P., == 1 -,JJ.,dN. 
(4,b) 

The main properties of this estimator are given in the following theorem. 



Theorem 3.1. For all 'I and~ we have: 
If N satisfies Assumption 8, then 

(i) the estimator /3., is unbiased. 
(ii) Letting C = (a,bj2 - {(x,x) E 1R.2m; x E [a,b]}, we have 

(3) Cov(ji,,,/J() = /l ,t,.,(1.1)¢<(v)1J2(u,v)dudv + f ,t,,,(1.1),li((u)dM2 (u,v). 
e j(o.,b]2 nD, 

(iii) In partiCtllar, 

(4) Var(,B,,) = / { it,'1(1.1)¢,,(v)1J2(1.1, v)dudv + 1 ,p'l(u)l/l"(1.1)dM2(u,v). le (o,b]"nD, 

If N satisfies As.,umption A then 
(iv) Similarly, 

(5) Cov(,B.,,/Jd = I r ,t,,,(u)th(v)q,z(u, v)dudv + 1 1/J.,(u),t,((u)v(u)d1.1. le [o,b] 

( v) /n partiCtllar, 

(6) Var(,B,,) = / { 1/J.,(u)1/J,i(v)1J2(u, v)dudv + f tJ,~(u)v(u)du. le lr .. ,"I 

Proof. (i) Since 

{J" is unbiased. 
(ii) and (iv) Apply proposition 2.4 for X = /3.,, Y = ile and A= B = [a,bj. 
(iii) Immediate from (ii). 
(v) Immediate from (iv). 

Assume that N is a NIC point process. In this case 92(1.1, v) = 0 and (3) and (5) become 

(8) 

and (4) and (6) reduce to 

1 

• 
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Var(.8,,) = { ,p~vdt = { ,p~EdN = E { ,p~dN for N e A. 
j[ca,b] lt,,,b] j[ca,b] 

This leads us to propose the following expressions as estimators of (7) to {10), 

and 

which are obviously unbiased. 
Let us denote by I(w) an appropriate set of indices such that N., = LiEI(w) k;o.,, and J(w,A) = 

{i E J(w)lxi EA}. 

Theorem 3.2. (Inferential sequence for the wavelet coefficients - B.) 

If N is a NIC 00 point proass, satisfying Assumption B, then for all { E 

/J( = I ,P(dN, v(,n = I 
[<>,bl [ca,bJ2" nD, .. 

E ,tf (xi)(N({:i:;}}}2", is an inferential sequence for fJ(­
ieI(•,[ca,b]) 

... 2• 2,. 
Proof Note that l/e, .. (w) = E H®i=l '1/Jc)(:i:;, ... ,x;)( n ( L k,o.,,))(x;, ... 'x;)} = 

jE/(w,[a.bl) i=l IE/(w,[ca,bJ 

E (1p((x;))2"kf = E 'I/Jf{x;)(N..,({x;}))2". 
;eI(w,[ca,b]) lE/(w,[a,bl) 

(i) EP, = E I 'P(dN = I 'IP(VNdl = f 'IP( E,JJ.,f/1.,,dt = E., fJ., I 'P(t/1.,dt = 
(<1,b] (11,b] R~ R"' 

E.,.B.,, < 'Pc,,/J., > = /3(; Var{,8{) = V(,i is immediate. 

(ii) By proposition 2.4 we write Var(~ ... ) = Var ( f (@~:l '1/J,)d( fl N)) = 
[a.b[•" no,.. i•l 

2•+1 2" 2· 2•+• 2""+1 

I J (®i=l ,/J()dCov ( n N, n N)+ I I (®izl v,e}dE( n N) = 
((<1,b]'"nD,-)•-D,.+1 i=l i=l ([a,b]'"nD,-)•nD,,.+1 i=l 

2"+1 dCov ( fl N, ii N) 
f f (®•=I 'I/Jc)dM2 .. +1 = ¼.n+J since at' •-• = 0 for NIC 00 point processes 

[o,b]'"+1nD
2
.+i •-+•,.. 

and ([a,b]2" nD2-}2 nD2 .. +> = [a,b] 2"+' n D2-+1. 

• 2· 2• 2" 
(iii) EV(,n = E f (®;-11Pc)d( n N) = f (®;-11"c)dM:r, = ¼ .... 

[a,b)2"nD,• i=i [a.b[2 "nD, .. 
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{iv) SinceVw En ¼,n(w) = { J (@::1 th)d( IT N)) (w) = J (@~:1 V'()d( IT N.,,) ~ 
~ca,bp•nD,.. izl [o,b]'"nD2 ,. i=l 

m • 
0 we have ve E IT (Ze(ii)); Vn E IN" 1-'(,n(O) c 1R+ and the theorem follows. ■ 

ia:1 

Theorem 3.3. (Inferential sequence for the wavelet coefficients - A.) 
m 

If N is a NIC point process, satisfying Assumption A,then for all e E IT (Ze(li))n, /Je = 
n•l I ,P{dN, \.'(,n = f ,pf vdN and ¼,n = I ,pr dl = E ti{ (x;), is an inferential sequence 

{ca,b] (ca,b] (o,b) iE/(·,[",bj) 
for /3e-

Proof (i) Immediate. 
{ii) Using Proposition 2.4 with / = g = ,pr, we write 

Var(Ve,n) == Var ( / t/{ dN) = f f ,pf (u),t{ {v)q2(u, v)dudv + 1T 1/;f+' vdl. ~~ k o 

Since 112(u, v) = 0, we obtain 

(iii) EV{,n = ft ... ,,i t/Jf EdN = \.'(,n· 
(iii) Immediate. 

• 

• 
We remark that for all n and e, V{,n+t is finite, due to the essentially boundedness of V'{ as well 

as compactness of its support. 

Therefore, in the case of a NIC point process N under Assumption A, the estimators for fJe and 
the respective and successive variances are easy to compute, being all of the form J1.,,61 "1_• dN, and 
for a particular trajectory with m occurrences in the interval [a, b), at points xo, x,, ... , Xm-1, this 

. ed '°'m-1 .,.~• ( ) expression r uces to l-Ji=O 'I'( X; • 

3.2. Estimation of the Density Function. We are now in position to estimate the density 
function v through a synthesis procedure using the estimates of the wavelet coefficients. For easy m 
of notation we will write IT (Ze(li)); = Ze(li). 

i=l 

Theorem 3.4. Let i, = E,,eZe(tl) /J,,1/J,,. 
if N satisfies A.,sumption B, then 

(i) the function v is an unbiased estimator for the de~ity function 11. 
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(ii) The variance of v i., given b11 

Var(v) = L (/ f 7/J.,(u)t/l((v}l/'l(u, v)dudv + j 1 • ¢,,(u)!/Jdv)dM2(u,v)) i/J,,i/Je for NE 8 . .,,( le (c,,b] n.o. 

(iii) 

Var(ii) = L (/ f t/l.,(u)1P{(v)112(u,11)dudv + 1 t/1,,i/J(vdt) 7/J,,t/le for NE A. ,,~ le [c,,bJ 

If N ii a NIC point process, then 

Var(v) = L (/ 1. v,,,(u)tbe(11)dM2(u,v)) 'f/;,,'f/;e, for NE 8. 
'I,( [<>,b)"nD, 

Var (Ji)= L ( f ,t,,,v,evdt) t/J"t/le, for NE A. 
'I,( 11 .. ,bJ 

(iv) and an unbiased estimator for Var(ii) i., 

Var(v) = L (f 1 tJ,.,(u)t/le(v)d(N x N)) 'f/J.,IP<, for NE 8. 
'I,( [o,b)'nDo 

~v) = L ( f ,Ji.,'f/JedN) 1/J,,,J,e, for Ne A . 
fl,( lt .. ,bJ 

Proof (i) Since E is a continuous linear functional, 

E(P) = E(L.B,,tJ,,,) = LP,,t/J,, = II. 

" " 
(ii) Note that Var(v) = E("f:,.,(.B., - /3,,)t/J,,)2 = E (Ee 'E.,(.B,, - /3.,)(Pe - /Je)tb,,,J!e) = 

= Le E., Cov(/3.,,.Be)l/J,,l/Je and apply Theorem 3.1. 
(iii) For a NIC point process, since 112(u, v) = 0, the expressions in (ii) reduce to the sums of the 
second terms inside the parentheses. 

(iv) Immediate, since vdt = EdN and dM2 = Ed(N x N). • 
Inferential sequences for II can be obtained using the result of the following theorem. 

Theorem 3.5. (Inferential Sequence for the Density- A.) Ld T/ = (T/1, .•. , l'/'2ft) E (Ze(ii))3" 

be an element of the cartesian product of Ze(li) b71 itself 2" time$, and N a NIC point process that 
satisfies Assumption A. Let 



and 

( 

2" ) 2" 
Vn(v) = L l IT 'I/J.,,dN IT 1/J,.,,, for alln ~ 1. 

'IE(Ze(lt))•• (4 ,bJ l=I l=I 

Then Vn(v) and Vn(v) are sequences of variances and estimators, respectively, such that: 
(i) E(v}=v, V1(v)=Var(v) . 

(ii) Vn EN" Vn+1(v) = Var(Vn(v)). 
(iii) Vn E JN° Vn(v) is an unbiased estimator for Vn(v). 
(iv) 'vn E ]N" Vn(ii)(n X (a, bl) C JR+ 

11 

That is, (v, Vn(v), Vn(v) ) is an inferential sequence of stochastic processes for the density v. 

Proof (i) Immediate. 
(ii) Since E ili a continuous linear functional , we have 

Var(Vn(ii)) = Var ( L (J. IT ,J,.,,dN) IT 1/J,,,) = 
f'/E(Za(l1)) 2 " [a,b] l•I l•l 

( 

2" 2" ) 2• 2" 
Var(Vn(li)) = :E 1 n "'"' rr "'~-- r,dx n 1/J,,,, rr t/Je- = '!,{E(Ze(tl))•• [a,b] l=I m=l ta! m•l 

= L (1 2ii Wµ,vdx) 
2ii' t/J,., = Vn+l(ii). 

µE(Za(ll))•"+> [a,b] l=l l=l 

(iii) Equality EVn(v) = Vn(v) follows from the linearity and continuity of E, Campbell's theorem and Proposition 2.1. 
(iv) Since Vn E lN", Vw E 0, Vx E (a, bj, 

( 

2• ) 2" 
Vn(ii)(w,x) = L 1 IT l/l,,,,dN.., IT ,J;,.,,(x) = 

'lE(Ze(ll))2 n [c,,b) l=l l = l 
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the theorem is proved. • 

Theorem 3.6. (Inferential Sequence for the Density- 8.) ut11 = (T/1, · .. ,T/'l") E (Ze(ti)f'• 
be an element of the carte.nan product of Ze{li) by itself 2n times, and N a NIC 00 point procesa 
that satisfies Assumption B. Let 

( 

2" ) 2" 

Vn(v) = L (@tJ>,,,)dM2" II tJ>,,, 
'1E(Ze(t1))•• ja,bJ2"nD2n tzl l=l 

and 

Yn(il) = L (1 •" (@¢,,,)d(Il N)) IT ,/111., for alln ~ 1. 
11e(Ze(t1))•" [o,b] nD2n l=l i•I t=l 

Then (v, Vn(v), Yn(v)) is an inferential aequence of stochastic procuses for the density v. 

Proof Analogous to Theorem's 3.5 proof. • 
Theorems 3.4 and 3.6 are the main results of this work. Note that using Theorem 3.4 we can 

estimate the density of virtually every point process since the only requirement that is made is 

that the expectation measure exists and is a locally square integrable function . Inference bands 
are also estimated for NIC point processes. In case sure inference is recommended, Theorem 3.6 
furnishes an inferential sequence for v for NIC oo point processes. Clearly, for NIC " this theorem 
has a direct analogous statement for an inferential for an n-th order inferential set that allows us 
to calculate up till then-th order sure inference bands for v . Note also that the estimate are easy 
to perform. 

4. SOME COMMENTS OF PRACTICAL CONTENT 

In this section we discuss some of the difficulties that may arise in estimating the density of 
point processes and we present, in an informal way, some possible solutions. 

In practical situations where we want to estimate the density of n point process that occurs in 
JR.m we have access to a collection of points in JR.m that represent the occurrence of events within 
a region O E JR.m. We will call this region an observation region. It will always be assumed that 
this region is a Borel set of Rm. In addition, in practice this region is bounded and for estimating 
purposes we can assume that O is such that there is no proper affine subspacf' of JR.m, i.e., with 
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dimension d < m, that contains O, because if there were such a subspace we could consider the point process to occur in JR.d for estimating purp08e8. Note that observation regions O, with this properties only, may be still extremely complicated. 
Given an observation region O, we now pose the problem of estimating the density. One possible solution is to fit the region O inside an ]Rm -interval, I, and then estimate an extension of the density to this lR"'-interval, which can be made by the methods presented in section 3, and then take the restriction of this estimate to Oas the estimate of the density on 0. Let us call {xiii E /} C 0 the observed points of occurrence of N. If O is a proper subset of I then there are infinitely many extensions and we have to choose among them. One way to extend the density is to assume that it is zero outside 0. Another possibility is to consider that the density is constant outside 0. The estimation of the density is ma.de on I considering, in the first case, that only the points x., i E /, have occurred in 1 and, for example, generating an homogeneous Poisson process on I - 0 with appropriate intensity, for exa.mple ). = (L;eJ k;}/lm(O) where k; is the multiplicity of occurrence of the point x; and when t,.,.(O) la 0, in the seconde case. These procedures for extending the density may cause "boundary effect" to appear but they have the great advantage of being general procedures which is a desired feature since the regions O may be extremely complicated. Alternatively, the choice of an extension will be guided by the regularity of the region O and by some kind of exploratory or preliminary analysis of the point process data. For example, an extending procedure that will depend on the information given by the data set is the following. For open star shaped domains with not so irregular border, 0, for which there is a center p such that there are balls B(p, r1) C O and B(p, r2) ::) 0 for which the ratio r2/r1 is "not so big'', 

m-1 
divide the sphere sm-1 in l = fl l; regions, Q,, with the same area, induced from JR."' volume, 

i=l 
by partitioning the domain of the canonical spherical coordinates rp: (0, 21r] x [O, 1rJm-2 

-+ sm-1 in an appropriate product partition and then choose O,, for each i, 1 5 i 5 t, an open set contained in the solid angle corresponding to Q; that contains the intersection of the border of O with this solid angle. Leto: = O;nO. Now calculate the mean density on o;, summing the multiplicities of occurrence inside o: and dividing by l(O:), and generate an homogeneous Poisson process which intensity is equal to this mean density, for each i, on the intersection of the i-th solid angle with I - 0. Finally, estimate the density on I. This procedure will probably reduce border effects. If the observation region is good enough, for example, it is an open set such that its border 80 is an m - 1 dimensional differentiable smooth manifold, we can "mirror the point process with respect to this boundary", that is, we can choose a distance e > 0 and for each point x; such that its distance to the border 80 is leS! than e we mirror this point with respect to the border, that is, we take, on the normal to 80 that posses through x,, a point x;' outside Osuch that its distance to 80 is that of x; to 80. Now we can take an interval I that contains o+ = {x E R+ld(x, 0) ~ e} and, for example, generate an homogeneous Poisson on I - o+. This procedure will, provided e is not too small, reduce the border effects as they will now appear at the proximity of ao+ so that the restriction of the estimated density on I to O will exhibit a better behavior. We observe that a similar "mirror" procedure is recommended for the very estimation of densities on Rm-intervals. Another possibility of solving the problem of estimation on O is to choooe a convenient cover of 0 by disjoint ]Rm-intervals and then estimate the density on these intervals. 
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5. CONCLUSION 

In this work we dealt with the problem of estimating the density of a non-homogeneous point 

process on ]Rm. The assumptions that are made upon the point process in order for it to be 
suitable for wavelet estimation of its density are extremely mild. It is only required that the 

density exists and is a locally square integrable function. Inferential sequence for the density 

function are obtained both for N E (Bn NIC 00
) and for N E (An NIC ) which permit us to 

calculate sure inference bands for the density function. Point process under B need not be quasi­

simple, as a matter of fact, they admit multiplicity of occurrence. On the odder hand, if N is 
under .A it is quasi-simple, that is, there a.re no multiplicities a.s.[P). (See de Miranda, 2003.) 

It is interesting to observe that multiplicity permits a wider spectrum of possibilities of internal 

dependence probability structures &nd this is reflected on the fact that n-th order inference bands 

(see de Miranda, 2003) are obtained for B point processes under NJC n or NIC 00
, a strong 

requirement then NIC as for A point processes. It is also important to note that we can choose 

different families of wavelets to form t/J,, = 'Pt,'11 ® ... ® t/J,,.,,,,,., i.e., ,J,;'s may belong to different 

families and the choice may be guided by practical instances. Finally we observe that 8S we have 

inferential sequences for wavelets coefficients, we can perform thresholding procedures upon these 

coefficients in much the same way as was done In de Miranda and Morettin, 2003 and de Miranda, 

2003. 

The first author thanks Our Lord and Savior Je!IUIJ Christ. 
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