





equivalently, which are integrable in the sense of Lebesgue and bounded on bounded intervals of
IR™. Let us call this class of functions £L™. Denoteby £ the class of functions which are Lebesgue
integrable over bounded intervals of IR™.

We will use the notation |a,b], 8 = (81,...,am), b = (b;,...,bn) to represent any of the 4™
possible intervals of R™ which can be written in the form [Ji~, las, bi|, where Ja;, b;| represents one
of the intervals (a;,b;), (a;, bi], [ai, b:) or {a;, 4] of the real line. We also use the notation x¢ for
the characteristic function (or indicator) of a set C (xc(z) =1+ 2z€C A xc(z) =0 = z ¢ C).
Lebesgue measure on IR™ will be indicated simply by £ independently of the dimension m. If it
is necessary to emphasize the dimension we will write 4,. The o-algebra of Lebesgue measurable
sets in R™ is denoted by Agrm. Brm is used for the o-algebra of Borel sets. Functions that differ
over zero measure subsets of their common domain or of a common extension of their domains are,
naturally, considered identical. All functions that we consider are assumed to be measurable.

Point processes are usually denoted by N. We Eemind that a point Pprocesses is a measurable
function from a probability space (£, A, P) into (Nrm,Byg,,.) where Ngm stands for the set of
boundedly finite integer valued mesasures defined on the Borel sets of R™ and B A 18 the class of
Borel sets of Ngm. We will also denote by N the realizations of a point process, i.e., elements of
Nr~. We remaind that they are typically written as N = ¥~ kid;, where k; € IN*, §I < N, and

i€l

¥
4z, is the Dirac measure with atom at x; € IR™. The expectation measure is denoted by EN and
3
the moment measures by My, = E(]] N). (See Daley and Vere-Jones, 1988 for further information
1)
on point processes). ’
2.2. Classes of processes. We will work with classes of point processes that satisfy at least one
of the following.
Definition 2.1. Assumption B. A point process satisfies assumption B if and only if EN < £.
Definition 2.2. Assumption A. A point process satisfies assumption A if and only if it satisfies
assumption B aend E(N x N)(AN D) = ENm(AN D) holds for all A € Bgam where D is the
diagonal set of R>™ = R™ x R™, i.e., D = {(z,7) € R*™|z ¢ R™} and m, is the projection
m:R™ x R™ -+ R™, m(z,9) =z
Definition 2.3. A point process is called non-internally correlated (NIC) if and only if for all A
and B disjoint Borel sets of R™ we have Cov (N(A), N(B)) = 0.
Definition 2.4. A point process N on R™ s called n-th order non-internally correlated (NIC™) §f
2* 2
and only if for all Ay and By disjoint Borel sets of R2™ we have Cov([] N, [I N}(Ax,Bx) =0
i=1  i=}

Jor allk, 0 < k < n. If a point process is NIC™ for alln € N we say i; is an.inﬁnite order NIC
point process, NIC *°,

We will denote by B, A, NIC, NIC * or NIC * the classes of point processes that satisfy,
respectively, definitions 2.1 to 2.4.
2.3. Working properties.

Proposition 2.1. If N satisfies Assumption B then, for all EdN -integrable function, ¢, we have
JPdEN = [ pundt.



Proof Immediate, since vy = dEN/df a.e.[é). »

kl'flt us denote by Dy the diegonal set of R*™ = R™ x ... x R™, i, Dy = {(z,...,2) €
R*™z € R™}.

Proposition 2.2. If N satisfies Assumption B then, for all functions ¢ integrable with respect to
the covariance measure Cov (N, N), we have:

/ ¢dCov (N, N) = /R .., PACoV (N.N) + /D edMs.

Proof It is enough to prove that [}, ¢dCov (N,N) = [, pdM,.

/ @dCov (N,N) = / @d(E(N x N) - EN x EN)
D
- /¢sz / ddEeN dftNdlxdl / odM,
since fom (D) = (€, % £,)(D) = 0. n

Proposition 2.8. If N satisfies Assumption A then, for all functions ¢, integrable with respect
to the covariance measure Cov (N, N), we have:

/w;dCov(N,N)=/ ¢1dCov (N,N)+/ wvndz, o(z) = pi(x, z).
R?™_D R™
Proof For all N € A we have
/ wv1dMy = / pmdE(N x N) = / o1 d(ENm) = / WdEN = / wrndx
D D D w1(D) R
and the result follow from proposition 2.2. ]

We will also write
[vt@inia)z = [ ota)var @nia))
where the right hand side means ff, b, P1(2,v)Cov (AN (u),dN(v)), D; the diagonal set of R and

o(z) = 1z, 3).
The following proposition is useful for the calculation of covariances of random variables asso-
ciated to point processes that are written as integrals.

Proposition 2.4. Let X andY be random variables defined by the stochastic integrals X = [, fdN
and Y = [5 gdN, D, diagonal set of R®™, =, the projection m(z,y) = = and A, B € Brm such
that (supp f N A) x (supp gN B) is bounded. For N under Assumption B we have

Cov (X,Y) = / f®g Cov(dN,dN) + / £ ® gdM,.
(AxB)~Da (AxB)ND,

If Cov (AN, dN) < dexdl on (AxB)~Da, i.c., there ezists g € £, dCov (N, N) = gz(u, v)dudv,
Cov (X,Y) = / f(uw)g({v)ga(u,v)dudv + / f @ gdM,.
(AxB)—D;

(AxB)ND,



If N is NIC then

Cov (X,Y) = f f®gdMs.
(AxB)NDy

For N under Assumption A we have

Cov(X,Y):/ f®g Cov(dN,dN)+/ fovndL.
(AxB)-Dy m({(AxB)NDy)

IfCov (dN,dN) < d¢xdf on (AxB)—Da, i.c., there ezists g € T, dCov (N, N) = ga(u, v)dudv,

Cov (x,¥) = | F(u)9(@)aa(u, v)dudv + / H(@)9(@)vn(z)dz.
(AxB)-Dg m ((AxB)ND3)

If N is NIC then

Cov (X, Y) = / F(@)al)vn(a)dz.
x1{(AxB)ND])

Proof Since

E(XY)=E ( J[ feewaneane) = [ [ I EN N )
and also

EOEY) = [ f0)BaNG) [ o)BaNG) = [ slewEaN BN w),
we have

Cov (X,Y)

/ jA  £(4)9(0) [E@N()AN (o) - BIN()BaN ()

/ / F{u)g(v)Cov (dN(u),dN(v)).
AxB

Now, the proposition is established using Propositions 2.2 and 2.3 and noting that if N is NIC
then ga(u,v) = 0. »

Observe that, since Poisson processes are special cases of NIC point processes, the sixth equality
above is fulfilled for Poisson processes.

24. Sure Inference Analysis. Now we present the basics of sure inference analysis. We remark
that this is an analysis of inference that can be successfully used on distribution free settings.

Definition 2.5. The triple (X, (Va)newe, (Va)nen-) formed by a random variable X : Q — R, a
sequence of positive numbers (Vp)newe and a sequence of random variables (V,. 12— R)peme, is
an inferential sequence for z € R if and only if the following are valid:
(i) EX =2, V; = Var (X),
(ii) Vn € N* Vpyy = Var (Va),
{ili) Vn e N* EV, = V,,
(vi) Vn e N* V,(Q) c R,.

We will use the notation (X, V,, f/,,) to represent an inferential sequence and, occasionally, we
will simply say that the sequences V,, and V, form an inferential sequence for z.
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Theorem 2.1. (On the inferential sequence of random variables.) Let (X, V,, V,) be an
inferential sequence for z € R. If

[

Lo 30 m) = | )+ D0+ At Fonms() + A Vo

M €ER] for1<i<m, me N, then

P{z € [X() - Ln(@, My 2 X(0) + Len(w My D]} 2 1= )55
i=1
We can develop a sure inference analysis to obtain “at least probability p” confidence bands in
a completely similar way to that presented above for random variables.
From now on, I is simply an arbitrary set.

Definition 2.6. The triple (X, (Va)new«, (V,,),.eno) formed by a stochastic process X : OxI —+ R,
a sequence of functions (Vy : I = R)pen+ and a sequence of stochastic processes (Vy : @ x I —
R)nen- s said to be an inferential sequence for x : I — R if and only if:
() EX =z, V = Var(X),
(ii) Vn e N* Viyq = Var(V,),
(i) Yne N* EV, =V,
(vi) vneIN* V,(2xI)C R4.

Theorem 2.2. (On the inferential sequence of stochastic processes.) Let (X,V,, V,.) be
an inferential sequence forz : I - R. Let for allm € N*, L, : @ x I x (R})™ — Ry be given by

Lin(w, 2, A1, ..., Am) = A \.'Vl(%t)‘h\z\',’-- -+ Amo1y Vim-1{w, 8) + Am V/ Vin(8),
then, for allt € I and allm € N°, we have

P{a(t) € [X(@,1) = Lun(w, 6, A1, -, Am), X(@,8) + Lm(w, 8, M, Am)]} 2 1= 3 ;—2
i=1 " ?

See de Miranda (2004) for a detailed presentation of this subject.
3. ESTIMATION OF THE DENSITY

Let N be a point process over IR™, with unknown density vy.

Let {3 ; : 4,4 € Z} be an orthonormal wavelet basis of L2(IR) of the form v; ;(t) = 27/2y(27t—1)
or ¥ ;{t) = 2/2y(27(t — t;) + t; — iT) for some mother wavelet 3 obtained, if necessary by the
composition of a standard wavelet with an affine transformation, such that its support is [t;,¢2]
with T =13 — {;. Let ¢ be the father wavelet corresponding to .

Similarly, let {éx,e, %5, : i,k € Z, j > 4,4, ti € 7Z} be an orthonormal wavelet basis that
contains all the scales beyond some fixed integer &i.

It is extremely pleasant to adopt the following notation. Let 4Z = {: € Z:22>d},d € ZU
{-o0} and Ze(li) = Z U (Z x4 Z) if &i € Z. If i = —oo, then Ze(li) = z2.

Let us use Greek letters for indexes in Ze(#i) and we shall write ¥, = ¢n r; if and only if n € Z
and ¥, = ¢;; f and only if n = (4,5} € /i



Thus, the wavelet expansions f(t) = Yiem Z,'ezaiﬂbi 4(t) and f(t) = 2kez7k¢k.li(t) +
2oiez 2oje o %i5¥ii(t) will be simply written
.f = Z aq#’m

neZe(ti)

fo a given by [, findt = (5 oetelbdt = e [ ot = 5 o < vt >= 0.

Let for all n, 1 < n < m, {Ynij 1,5 € Z}, ¥nii(t) = 29/2, (29t — i) or Y, 4(t) =
2j/2¢n(2j(t - aﬂ) + 6y — iTn) and {¢n,k,li1'/’n.i,.‘i 5 i»k € Z, J 2 timjr tin € z} be orthonormal
wavelet bases of L*(IR) as above where supp ¥, = [an,bn] and Ty, = by, — an. For easy of notation
we write (Ze(li)), = Ze(lin). These bases are simply written as {¥nn. It € (Ze(ti))n} and
they are also orthonormal bases of L?[a,,bs], 1 £ n < m. Taking tensor products we form the

m
orthonormal base Yl = @ 1¥nnu, 1 = (.- 7m) € 11 (Ze(ti))a} of L2(R™) and also of
n=

L*(T1 {an:ba}). In this way if f € L2(IR™) we have
n=1

f= Z any,

ne ] (Ze(tin
with o, = [ fy,deL.
e
m
Our aim s to obtain the restriction of vy to [] [aa,ba] = [a, 4] based on the points of a trajectory
1

n=
of the process that are contained in this IR™ interval. Define

_ [ v~ ifzelad],
Y10 otherwise.

From now on we assume that v € L?([a,}]). Therefore for the wavelet expansion of v we have

(1) v=>3" Bytm
7
with
(2) B = 18 vpde = /[a'bl vippde.

The main purpose is to estimate » through the expansion (1) and for this we need to estimate
the wavelet coefficients 3, given by (2).

We set g2 = dCov (N, N)/dézy, if Cov (N, N) < tzm. If we do not have Cov (N,N) < b, we
may replace g2(u,v)dudv by dCov (N, N) in the statements of the theorems and propositions that
follow.

3.1. Estimation of the Wavelet Coefficients. We propose the following estimator of Gy:
Ba= | yndN.

[a.}
The main properties of this estimator are given in the following theorem.



Theorem 3.1. For all n and £ we have:
If N satisfies Assumption B, then
(i) the estimator §3, is unbiased.
(i) Letting C = [a,b]? — {(z,z) € R*™ : z € [a,b]}, we have

@ ooty = [ [ vt oo [ st o)

a.b
(iii) In particular,
() Varthy) = [ [ wntibatolaatuniduds + [ gtuda(udadafu,u).
c [a.6)20D,
If N satisfies Assumption A then
(iv) Similarly,

(5) Cov(Bn,ﬁE)= / /c Un(ule (v)gz(u, v)dudy + /[a p P (U)tpe (u)r(u)du.
(v) In particular,
B,) = u, v)dudv 2 .
® Var(Bo) = [ [ wn(abnodatu, o + [,

Proof. (i) Since
E(Bﬂ) = E/ YndN = / Yovndl = / Yordl = Gy,
(a.8] [a.8] fa.8]
5,, is unbiased.
(i) and (iv) Apply proposition 2.4 for X = §,, Y = 3; and A = B = [a, }].

(iii) Immediate from (ii).
(v) Immediate from (iv).

Assume that N is a NIC point process. In this case g2{u,v) = 0 and (3) and (5) become
(1) Cov(Bn,fe) = / / Y @ YedMy = E / / P @ ¥ed(N x N)  for N € B.
[a.b}3N D, [a.b]2NDg

®) Covlfn Bc) = /[ , bt = B /[ e for N e A

and (4) and (6) reduce to

©) Var(d,) = / / by @ VydM; = E / / Yo ®@Und(N x N) for N € B.
{520 D2 (a.b2N D3



(10) Var(B,) = / Pivdl = / Y2EdN = E / Y3dN for Ne A
fa.b} [a,b] 8]
This leads us to propose the following expressions as estimators of {7) to (10),

GoviBo, i) = / /{a g, BV X) and Var(fy) = / / Pn®Pod(NxN), for N € B

[a,8]2NDa

and

Cov(Bn, ) = /[ Ve and Ve G) = /[ N, or N e A

which are obviously unbiased.
Let us denote by I{w) an sppropriate set of indices such that N,, = 1(w) Ki0z; and Iw, A) =
{i € I{w)|=; € A}.

Theorem 3.2. (Inferential sequence for the wavelet coefficients - B.)
If N is a NIC ™ point process, satisfying Assumption B, then for all £ € [ (Ze(ti))n,
n=1

fo= [N, Vo= [ (@ viMen, and Uy = (@Eiv0d((I M) =

[0.212" NDzn [8.8)2" A Dan

Z% ) ¢€ (z:)(N({z:}))*", is an inferential sequence for fg.
i€l(-,[a,b]

Proof Note that v{.n(“’) p {(®,_1 Ye(z;,-- :I:)(H( P, k162 ) )(z5, .. x)} =

. on g€l (w[ab] - . i=1 el {(w,]a,b]
. E ('d’é(zj))z ka' P V’c (a:,)(Nu,({z,}))z
F€l(w,[a.b]) i€l{w,a)b

(i) EB: = E[ jl.:] VYedN = [ jl;] ¢5uNdl = nfn Ve X, Btadl =3, ﬁ,,mf Yeth,dl =

2,,[3,, < g, ¥y > =P ; Var (ﬁ:) = V;,1 is immediate.

(if) By proposition 2.4 we write Var (V; ,) = Var( [ (®?;1 Pe)d( ﬁ N)) =
=l

[a.6]2"NDan
sl 22 i
(@1 ¥e)dCov (IT N, T N)+f J (®L] veaE( rI N)=
({8,8]2" NDy=)3=Dyn 4. =1 =l ([2.5]2™ N\D2= )3N Dy 41
dCav(ﬁl N,_i'[: N)

n41
f (®?=1 Ye)dMans1 = Vg i since

[a.b]"‘“ NDynyy
and ([a,8]" N.D3-)2 N Dansa = [a,6]7""" N Donnr.

(i) EVgn=E | (®.=1'/’e)d(ﬂ Ny= [ (®L;ve)dMn = Vi .

[a,6]2" NDyn {0.8]2" NDygn

= 0 for NIC *° point processes

ntlm
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(iv) Since Vuw € 2 Vg n(w) = (, S (® ¢e)d(ijl N)) W= | (®L wc)d(_fjl Ny

a,8]7* NDan 0,62 N Dyn
m -
0 we have V£ € J](Ze(ti)); Vn € IN* V; ,(2) C R, and the theorem follows. ]
i=1

Theorem 3.3. (Inferential sequence for the wavelet coefficients - A.)
If N is a NIC point process, satisfying Assumption A,then for all £ € ﬁ (Ze(£8))n, ,é{ =
n=1

[ ¥edN, Vin= [ ¢ vdN and Vg, = | Ydt= % ¥Z (2;), is an inferential sequence
[a.t] [a,8) [a.8] i€ [a,b])

for B¢.

Proof (i) Immediate.
(ii) Using Proposition 2.4 with f=9= ¢gn, we write

A n n » T il
Var (V¢,n) = Var (/[a,b’ gbg dN) = //;¢§ (u)gl)? (v)qg(u,v)dudv+/o wf vdl.

Since gz(, v) = 0, we obtain

27+l

Var(Ve,n) = / W0l = V.
{a,b]

|
(ii)) BVen = fio %7 EdN = Vg .
(iii) Immediate. u

We remark that for all n and £, V p41 is finite, due to the essentially boundedness of 1) as well
as compactness of its support.

Therefore, in the case of a NIC point process N under Assumption A, the estimators for B¢ and
the respective and successive variances are easy to compute, being all of the form f[a',,] qb?' dN, and
for a particular trajectory with m occurrences in the interval {2, ), at points zg,2y,...,Zm_1, this
expression reduces to Y75’ %2 (x:).

3.2. Estimation of the Density Function. We are now in position to estimate the density
function » through a synthesis procedure using the estimates of the wavelet coefficients. For easy

of notation we will write ﬁ (Ze(ti)); = Ze(£i).
i=]
Theorem 3.4. Let i = ZnEZe(ﬂ) ﬁ,ﬂﬁ,,.

If N satisfies Assumption B, then
(i) the function  is an unbiased estimator for the density function v.



(ii) The variance of & is given by

Vo)~ 3 ( [ [ tatrvewentu, vauds + [ /[ oo, P (v)dMa(u,v)) St for N € B.

Var{{) = 2'5: ( / /; Ynl(u)pe(v)ga(u, v)dudv + /[a " 1}:,,¢5udt) Yo¥e for N € A
3 .

If N is a NIC point process, then
(i)

Var (5) = XE: ( / /{ - 1,b,,(u)¢€(u)dM2(u,u)) Wntbe, for N € B.
ﬂ1 1 ¢

Var(9) =" ( / ¢n¢€udl) Putbe, for N € A.
me \Jlad]

(iv) end an unbiased estimator for Var(Dd) is
Var(i) = ,,Ze (/ ./[a,brnD, Y (u)te(v)d(N x N)) Yne, for N € B.
Var(p) =3 ( / ¢,,¢€dN) botbe, for N € A,
e la,b]

Proof (i) Since F is a continuous linear functional,
E(@)= E(Zévﬂbn) = Zﬂn'wr) =
n n

(ii) Note that Var(9) = E(T, (8, — Bo)¥n)* = E (Es T8y — Ba)Be - Be)wqwe) =

=3¢ ¥, Cov(By, Be)¥mie and apply Theorem 3.1.
(iii) For a NIC point process, since ga{u,v) = 0, the expressions in (ii) reduce to the sums of the
second terms inside the parentheses.

(iv) Immediate, since vd¢ = EdN and dM; = E4(N x N). »

Inferential sequences for v can be obtained using the result of the following theorem.

Theorem 3.5. (Inferential Sequence for the Density - A.} Letn = (1,...,n2) € (Ze(£i))*"
be an element of the cartesian product of Ze(fi) by itself 2" times, and N a NIC point process that
satisfies Assumption A. Lel

ap)= 5 (/{a ﬁ¢n,udr)ﬁ¢m

neza@)z® \’lod <y =1



1
and
Va(9) =

2" om
/ H"ﬁmdN) [I ¥ne: for alin> 1.

[avb] =1 =1

ne(Ze(e))" (
Then V,(9) and V,,(i)) are sequences of variances and estimators, respectively, such that:
() E(®) =v, Vi(5) = Var (5).
(i) Vn € IN® Voyu(9) = Var(V,(2)).
(iii) Vn € IN* V(2) s an unbiased estimator for V(D).
(iv) Vo e IN* V,(5)(Q X [2,8]) € R,
That is, (D, V,(D), f/,.(i)) ) is an inferential sequence of stochastic processes for the density v.
Proof (i) Immediate.
(ii) Since E is a continuous linear functional, we have

2" 2"
Var(V(2)) = Var ( > < /[ medN) H%) =

a,b] =1

n€(Ze(4i))2" =1
2" 2" 2" 2"
> Cov (/ Hw,,,dN,/ II wgmdN) I ¥n I v
néE(Ze(er))z® la:b] g, (8:8] =t =1 ms

Using Proposition 2.4 we have

2" 2" 2" i
Var(V,(9)) = Z (/ H ¥ne H Ye.. Vd.r) H'p'u H Ve =

nEe(Zotina® \Vlatlm1 =1  m=l

on+l on+1
= X ([ T ture] T e = Vors).
pe(za@yantt \Ylob p=; =1

(ili) Equality EV,.(I‘}) = V(D) follows from the linearity and continuity of E, Campbell’s theorem
and Proposition 2.1.

(iv) Since ¥n € IN*, Vw € , Vz € [a, b},

2" 2"
o= ¥ ([ Tl ) [Tonte =

ne(Ze(ayy?™ \” o8] p=y =1
i 2" 2"
= 2 / (H """) ¥n,(@) JaN, = 3 / (H ¢nz¢m(z)) dN,, =
ne(zZeey)s 7158 \oz 3=1 ne(zateiy)z ol \z21

- j ) (ﬁwqu,m) dn,, =

ot e (zeay== \e<i
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™t gn-1
= / Z (H Yyt (2) H Ve Vem (z)) dN, =

b ezaqayan—t \ =1 m=1

A= n-1
= /{ g Z H Ve (T) Y, Z (H Yen (z)¢5m) dN, =

ne(ze(hi))>>t \ £=1 ge(Ze(l)y>=~ \m=1

2'-—1 2

=/H]( Y I ¢aGWn | dv 20,

n€(Ze(e)a""? =1
the theorem is proved. [ ]

Theorem 3.6. (Inferential Sequence for the Density - B.) Letn = (n,...,7) € (Ze(£i))3"
be an element of the cartesian product of Ze(£i) by itself 2 times, and N a NIC * point process
that satisfies Assumption B. Let

2" 2"
)= 3 ( /[ (®¢»m)dMe-)me

ne(Ze(81))a™ ,b)3°NDan o2y =1
and

Vi 2" i
Vn(ﬁ) = Z (f (® ¢ﬂl)d(H N)) H‘/Jﬂu fOT alln > 1.

ne(za@)ya® \7 188 NDan =y j=1 =1
Then (&, Vi (9), Vo (P)) is an inferential sequence of stochastic processes for the density v.
Proof Analogous to Theorem’s 3.5 proof. ]

Theorems 3.4 and 3.6 are the main results of this work. Note that using Theorem 3.4 we can
estimate the density of virtually every point process since the only requirement that is made is
that the expectation measure exists and is a locally square integrable function. Inference bands
are also estimated for NIC point processes. In case sure inference is recommended, Theorem 3.6
furnishes an inferential sequence for v for NIC co point processes. Clearly, for NIC * this theorem
has a direct analogous statement for an inferential for an n-th order inferential set that allows us
to calculate up till the n-th order sure inference bands for v. Note also that the estimate are easy
to perform.

4. SOME COMMENTS OF PRACTICAL CONTENT

In this section we discuss some of the difficulties that may arise in estimating the density of
point processes and we present, in an informal way, some possible sclutions.

In practical situations where we want to estimate the density of 2 point process that occurs in
IR™ we have access to a collection of points in IR™ that represent the occurrence of events within
a region O € R™. We will call this region an observation region. It will always be assumed that
this region is a Borel set of R™. In addition, ip practice this region is bounded and for estimating
purposes we can assume that O is such that there is no proper affine subspace of R™, i.e., with
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dimension d < m, that contains O, because if there were such a subspace we could consider the
point process to occur in R? for estimating purposes. Note that observation regions O, with this
properties only, may be still extremely complicated.

Given an observation region O, we now pose the problem of estimating the density. One possible
solution is to fit the region ¢ inside an R™-interval, 7, and then estimate an extension of the density
to this IR™-interval, which can be made by the methods presented in section 3, and then take the
restriction of this estimate to O as the estimate of the density on O. Let us call {z;|ie I} C ©
the observed points of occurrence of N. f @ is a proper subset of I then there are infinitely
many extensjons and we have to choose among them. One way to extend the density is to assume
that it is zero outside ®. Another possibility is to consider that the density is constant outside
©. The estimation of the density is made on T considering, in the first case, that only the points
Z;, i € I, have occurred in Z and, for example, generating an homogeneous Poisson Pprocess on
T — O with appropriate intensity, for example A = (37, ki)/lm(©) where k; is the multiplicity
of occurrence of the point z; and when £-(0) # 0, in the seconde case. These procedures for
extending the density may cause “boundary effect” to appear but they have the great advantage
of being general procedures which is a desired feature since the regions O may be extremely
complicated. Alternatively, the choice of an extension will be guided by the regularity of the
region O and by some kind of exploratory or preliminary analysis of the point process data, For
example, an extending procedure that will depend on the information given by the data set is the
following. For open star shaped domains with not so irregular border, ©, for which there is a center
p such that there are balls B(p,r;) C © and B(p,r2) O O for which the ratio r2/r; is “not so big”,

1

m—
divide the sphere $™ ! in ¢ = I1 #; regions, Q;, with the same area, induced from IR™ volume,
i=1

i=
by partitioning the domain of the canonical spherical coordinates @ : 0,27 x [0, x]™~2 — §m-1jy
an appropriate product partition and then choose O;, for each i, 1 < i < £, an open set contained
in the solid angle corresponding to ; that contains the intersection of the border of @ with this
solid angle. Let O} = ©;NO. Now calculate the mean density on O}, summing the multiplicities of
occurrence inside O] and dividing by #(O}), and generate an homogeneous Poisson process which
intensity is equal to this mean density, for each i, on the intersection of the i-th solid angle with
Z —~ O. Finally, estimate the density on Z. This procedure will probably reduce border effects.

If the observation region is good enough, for example, it is an open set such that its border 80
is an m — 1 dimensional differentiable smooth manifold, we can “mirror the point process with
respect to this boundary”, that is, we can choose a distance £ > 0 and for each point z; such that
its distance to the border 80 is less than ¢ we mirror this point with respect to the border, that is,
we take, on the normal to 8O that posses through z;, a point z;’ outside € such that its distance to
80 is that of z; to 0. Now we can take an interval T that contains OF = {xr € R*|d(z,0) < ¢}
and, for example, generate an homogeneous Poisson on T — ©+. This procedure will, provided ¢ is
not too small, reduce the border effects as they will now appear at the proximity of 80 so that
the restriction of the estimated density on T to O will exhibit a better behavior. We observe that
a similar “mirror” procedure is recommended for the very estimation of densities on R™-intervals.

Another possibility of solving the problem of estimation on @ is to choose a convenient cover of
O by disjoint R™-intervals and then estimate the density on these intervals.



5. CONCLUSION

In this work we dealt with the problem of estimating the density of a non-homogeneous point
process on IR™. The assumptions that are made upon the point process in order for it to be
suitable for wavelet estimation of its density are extremely mild. It is only required that the
density exists and is a locally square integrable function. Inferential sequence for the density
function are obtained both for N € (BN NIC ) and for N € (AN NIC ) which permit us to
calculate sure inference bands for the density function. Point process under B need not be quasi-
simple, as a matter of fact, they admit multiplicity of occurrence. On the odder hand, if N is
under A it is quasi-simple, that is, there are no multiplicities a.s.[P]. (See de Miranda, 2003.)
It is interesting to observe that multiplicity permits a wider spectrum of possibilities of internal
dependence probability structures and this is reflected on the fact that n-th order inference bands
(see de Miranda, 2003) are obtained for B point processes under NIC ™ or NIC *°, a strong
requirement then NIC as for A point processes. It is also important to note that we can choose
different families of wavelets to form ¥, = ¥1,9; ® ... ® Y., i.€., ¥;'s may belong to different
families and the choice may be guided by practical instances. Finally we observe that as we have
inferential sequences for wavelets coefficients, we can perform thresholding procedures upon these
coefficients in much the same way as was done in de Miranda and Morettin, 2003 and de Miranda,
2003.

The first author thanks Our Lord and Savior Jesus Christ.
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