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ARTICLE INFO ABSTRACT

Keywords: Inherent errors in tipping bucket flow meters may limit monitoring data reliability. In this work, we perform the
Systemic errors static and dynamic calibration of four large tipping buckets, apply different regression curves and investigate the
Runoff

possible measurement error sources. The volumetric capacity (static calibration) of each piece of equipment was
determined. They were tested (dynamic calibration) under ten flow intensities, ranging from low to high rainfall
intensities (return period larger than 100 years). For each flow rate, the measurement was recorded during six
time intervals (1, 2, 5, 10, 20 and 30 min) and four regression equations - linear, potential, T vs. 1/Q and
quadratic - were tested. According to the static calibration, the equipment has a volumetric capacity of 11.63 mL
(TB1), 64.16 mL (TB2), 139.86 mL (TB3) and 660.95 mL (TB4). When tested under different flow rates (dynamic
calibration), underestimations were identified according to the size of the cavity: TB1 (3.31%), TB2 (5.75%), TB3
(9.33%) and TB4 (13.57%). Among the alternative curves, linear regression showed the best correlation (above
99%) with the monitored data. Using this method, the measurement errors were reduced to —1.35% (TB1),
0.04% (TB2), 3.18% (TB3) and 3.73% (TB4). We investigated how the different variables (tipping speed, cavity
volumetric capacity and time interval of data collection) influenced the error. Errors follow a parabolic function
of tipping velocity and a linear function of cavity volumetric capacity. The time interval of data collection
interfered in the data sampled, however no statistical correlation was found. Among those variables, cavity size is
the most important one. Given its low cost we aimed to minimize the inherent error in large tipping buckets flow
meters and encourage its application, increasing in-situ collection of hydrological data.

In-situ monitoring

Error source

Nominal volumetric capacity
Device

1. Introduction collected water flow falls into a cavity and once it reaches its volumetric

capacity, the gravitational mass center is switched towards the full

Rapid land use and land cover (LULC) changes (Chanapathi & Tha-
tikonda, 2020; Mello et al., 2020), climate change (Rocha et al., 2020;
Yang et al., 2020) and population growth (Kifle Arsiso et al., 2017) result
in higher demand of water, food and energy (Mahlknecht et al., 2020).
Through in-situ monitoring, long-term datasets are created to support
the development of new technologies and solutions to maintain the
hydrological cycle (Anache et al., 2019; Nobrega et al., 2017).

Considering the specific requirements for hydrological monitoring in
a study area, there are many alternative instruments available, while
each one has its own advantage and limitations (Sun et al., 2014). A
tipping bucket (TB) flow meter is a robust, simple and high mobility
monitoring piece of equipment, which is easy to install and maintain
(Shimizu et al., 2018; Sun et al., 2014). A TB consists of two cavities
divided by a vertical plate at stable positions (one remains up while the
other is down) and it uses a very simple operational mechanism: the
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cavity, rising the empty cavity and replacing the previous one, while
releasing the stored water. This process repeats during the entire flow
event. In addition to monitoring accurately, using this kind of equipment
when associated with a reed switch and datalogger allows automation
and better details of the data collected, such as identifying the begin-
ning, end, and peak of the flow (Corona et al., 2013; Sun et al., 2014;
Zabret et al., 2018).

Despite the fact that tipping bucket application dates back to 1928
(Nebol’sin, 1928), it has been used for surface/subsurface flows in small
study area measurements, such as runoff (Calder and Kidd, 1978; Chow,
1976; Corona et al., 2013; Elder et al., 2014; Hollis & Ovenden, 1987;
Khan & Ong, 1997; Klik et al., 2004; Kim et al., 2005; Johnston, 1942;
Nehls et al., 2011; Peyrard et al., 2016; Perales-Momparler et al., 2017;
Langhans et al., 2019; Wang et al., 2020; Whipkey, 1965), percolation
(Lamb et al., 2019; Peyrard et al., 2016; Wang et al., 2020), throughfall

Received 7 December 2020; Received in revised form 19 September 2021; Accepted 22 October 2021

Available online 6 November 2021
0341-8162/© 2021 Elsevier B.V. All rights reserved.


mailto:dimaghis@gmail.com
www.sciencedirect.com/science/journal/03418162
https://www.elsevier.com/locate/catena
https://doi.org/10.1016/j.catena.2021.105834
https://doi.org/10.1016/j.catena.2021.105834
https://doi.org/10.1016/j.catena.2021.105834
http://crossmark.crossref.org/dialog/?doi=10.1016/j.catena.2021.105834&domain=pdf

D. Schwamback et al.

(Takahashi et al., 2010; Zabret et al., 2018) and stemflow (Ilida et al.,
2012; Shimizu et al., 2018; Takahashi et al., 2010; Zabret et al., 2018).

As well as tipping bucket rain gauges, tipping bucket flow meters
used for runoff measurements are also susceptible to measurement er-
rors between the reference and measured flows, thus requiring the
application of calibration curves. Calibration can be done in two ways:
static (volumetric) and dynamic. Static calibration consists of deter-
mining the volume of water necessary for the center of mass to be shifted
towards the filling cavity, leading to its tipping. The volume determined
in this step corresponds to the equipment’s reference volume or its
volumetric capacity. On the other hand, dynamic calibration consists of
plotting sample points in a graph, which correlates reference and
measured flows and then using regression curves to minimize errors.
Unlike the static calibration that occurs under extremely low flow rates,
usually by drops, to minimize the kinetic energy of the water, in dy-
namic calibration, the measurements occur under different flow rates
(Shedekar et al., 2016). Further details about both methodologies
mentioned are given by Humphrey et al. (1997).

After lab tests and data collection for dynamic calibration, another
phase begins: application of regression curves that best fit the data.
There is a large number of applicable equations, ranging from the
simplest (linear) to the most complex (polynomial and exponential).
Calder and Kidd (1978) identified a non-linearity of errors under
increased flow, and thus proposed a new calibration curve by correlating
the input flow and time interval between tilts. Based on the same central
idea of describing the errors considering its non-linearity, other authors
have also proposed calibration curves (lida et al., 2012; Shimizu et al.,
2018; Shiraki & Yamato, 2004; Takahashi et al., 2010).

Despite its recognized applicability, using TBs has systemic errors
that need minimization, through calibration, for a more accurate esti-
mation of water flow. Edwards et al. (1974) were pioneers in error
investigation and development of calibration curves for large TBs. They
discovered that water kinetic energy and the volume lost during cavity
switching, after reaching volumetric capacity, are some of the main
sources of errors in TBs. Since then, many others have dedicated their
time to developing calibration techniques (Calder & Kidd, 1978; Iida
etal., 2012; Shimizu et al., 2018), while others have focused on applying
existing methods and investigating the sources of the errors (Barfield
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and Hirschi, 1986; Calder & Kidd, 1978; Edwards et al., 1974; Egorov
et al., 2015; Hollis & Ovenden, 1987; Iida et al., 2012; Kanzari et al.,
2018; Shimizu et al., 2018; Langhans et al., 2019; Sun et al., 2014;
Somavilla et al., 2019; Takahashi et al., 2010; Yahaya et al., 2009).
Nowadays, Shimizu et al. (2018), which is one of the most outstanding
papers, provides a general calibration equation for TBs with flat trian-
gular buckets. Although it was successful in eliminating the 2-3% errors
in stemflow measurements, it is only applicable for low flow rates (less
than 60 mL per minute), inapplicable for most surface flow
measurements.

Errors in TBs can be significantly reduced by static and dynamic
calibrations (Shedekar et al., 2016), but some observed errors are still
not completely minimized (Shimizu et al., 2018). In this context, some
questions remain unclear: How can errors be affected by main opera-
tional and design variables (tipping velocity, cavity size and time in-
terval)? Among the existing regression curves, which is the most suitable
for minimizing errors? Is there a pattern in occurring errors in TBs?
Based on these questions, this paper uses different techniques (static and
dynamic calibration) and regression curves (linear, potential, T vs. 1/Q
and quadratic) aiming to minimize and investigate the source of the
occurring errors in four large sizes of tipping buckets flow meters.

2. Methodology
2.1. Tipping bucket description

The tipping bucket flow meters (Fig. 1) were designed to measure
runoff in the outlet of experimental plots (100 mz) under four different
LULC: Wooded Cerrado, also known as Cerrado sensu stricto (TB1),
sugarcane (TB2), pasture (TB3) and bare soil (TB4). Those are common
Brazilian LULC and its modification is directly linked to the hydrological
processes of the area. Most research already carried out on this topic
have presented only total volumetric runoff resulting from a precipita-
tion event, but the use of automatic monitoring sensors allows the
collection of information through a time scale, identifying the start and
end of the runoff, peak, and total flows. The investigation about the most
suitable calibration technique and errors source is fundamental to give
reliability to the insertion of automatic sensors into the characterization

(b)

Fig. 1. Illustration (a) and photographs (b) of the tipping bucket flow meters. Where: (1) is the cavity; (2) is the anchoring rod on the ground; (3) is the fixed
supporting plate; (4) is the mobile supporting plate; (5) is the vertical bar to support the reed switch and the upper plate; (6) is the height control bar; (7) is the
support rod of the height control bar; (8) reed switch and cable connecting to the datalogger; and (9) is the upper plate.
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of the occurring hydrological processes. The plots, which have been
operating since 2011 (Anache et al., 2019, 2018; Youlton et al., 2016a;
2016b), are located at the Arruda Botelho Institute, Itirapina, central
region of the State of Sao Paulo — Brazil (latitude 22°10’S, longitude
47°52'0, elevation of 790 m).

The first step in sizing the equipment was to determine the runoff
flow to be quantified. We opted to use the rational method once it makes
use of only three variables (rainfall intensity, surface flow coefficient
and contributing area), being easily applied. The rainfall intensity of 3
mm/10 min (18 mm/h) was adopted as the standard intensity for sizing
the tipping bucket cavities, which is a value that represents approxi-
mately 85% of the accumulated (rainfall) occurrences recorded between
November 2011 and October 2018 where the surface runoff coefficients
were sampled. The second variable (surface runoff coefficient) corre-
lates rainfall with runoff generation considering the LULC and soil class
was obtained from some previous studies (Anache et al., 2019). Finally,
we consider a contribution area of 100 m? (20 m long and 5 m wide), as
it is the area of the experimental plots in which the TBs will be coupled
to measure the runoff. Once all these variables were determined, the
mean flow rate was set to be measured in each plot under the different
LULC. Based on datasheets from commercial tipping bucket rain gauges
(Model TB4-L, Hydrological Services), an optimum operating speed is
between three and four dumps per minute following the indication that
the number of tippings must be greater than one (Barfield and Hirschi,
1986).

2.2. Calibration techniques

To construct an adequate calibration curve, the conditions to be
found in the field were evaluated, as the equipment will be applied in
determining the runoff in natural and agricultural areas, and is therefore
susceptible to the presence of sediments. A high concentration of sedi-
ments can influence the water density, as well as accumulate in the
cavities of the equipment (Egorov et al., 2015; Langhans et al., 2019). In
both cases, they result in malfunction and measurement errors.

Through the construction of a histogram of the concentration of
sediments occurring in the study area from 2011 to 2017, it was iden-
tified that the highest concentration recorded in the period was 10.2 g
per liter, while most of the events monitored (95%) have a concentration
of around 3.0 g/L. Barfield and Hirschi (1986) carried out the calibra-
tion process of four scales used to measure surface flow under different
concentrations of sediments and concluded that at a concentration
below 20 g/L, the presence of sediments can be neglected. Therefore, the
adverse effects mentioned above due to the presence of sediment were
disregarded, and thus water from the public supply system was used
instead of a mixture of water and soil. Fig. 2 shows an illustration of the
methodological process applied during the static (a) and dynamic (b)
calibration processes. A better description of each calibration is given
below.
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Prior to the calibration step, both cavities must have the same, or as
similar as possible, water storage capacity. Thus, preliminary tests were
carried out to ensure this consideration by increasing or decreasing the
height of the adjustment bar. To determine the volumetric resolution or
nominal volume (NV), a graduated pipette and a pipette bulb were used.
The water was dripped slowly (interval greater than 2 s) so that the
kinetic effect did not interfere in the process until one of the cavities
tipped and the volume was identified. The procedure was performed ten
times in each cavity and then the average between the measurements
was applied to determine the equipment’s NV.

During the dynamic calibration process, we used a water column
made of a PVC pipe with 250 mm of diameter and 1.5 m in height kept at
a constant water level and hydraulic head. In the apparatus, water from
the public supply system provides water to the interior of the PVC pipe,
keeping the water level constant by overflowing the pipe. A valve at the
base of the tube allowed water to escape and enter the equipment’s
cavities. The reed switch previously installed on the TB, coupled to a
datalogger (Campbell Scientific Inc CR10 and measuring at 1-minute in-
terval) and a 12 V battery, allowed the counting and automatic
recording of the number of tips.

In order to test the equipment’s behavior under extreme conditions,
TBs were tested under runoff rates corresponding to different rainfall
return periods. Flow rates were estimated using an Intensity-Duration-
Frequency curve - IDF (Eq. (1)) (Rosalem et al., 2018). The IDF curve
was obtained from 40 years of daily precipitation data from the mete-
orological monitoring station located at the Center for Water Resources
and Environmental Studies (CRHEA) at the University of Sao Paulo,
located 5 km far from the application area.

TO.]S

I=1249——
(t+11.39)°"

@

where I is the average rainfall intensity (mm h~!) associated with a
return period T (years) and duration t (minutes) adopted.

To construct the dynamic calibration curve of each TB, ten sampling
points (runoff flow rates) were calculated based on different return pe-
riods and uniformly distributed, with the last sampled flow point
resulting from precipitation with a return period greater than 100 years.

The water that flows into the TB (reference flow) was determined by
gravimetry, in which the mass of water reserved over a minute was
measured on a precision scale or electronic scale, when the maximum
measurement limit of the precision scale was reached. This procedure
was carried out in three replicates, at the start and end of each sampling,
where the average of these six values was used for the final determi-
nation of the reference flow.

In order to investigate the sampling time length interference on
measurements, the data collected were grouped into six-time intervals:
1,2, 5,10, 20 and 30 min. To reduce the possibility of interference from
adverse effects, measurements were made in five replicates for each time

(b)
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Fig. 2. Illustration of the static (a) and dynamic (b) calibration process.
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interval, and the average of the replicates was subsequently calculated.

For the regression curve application, the volume and flow measured
by the equipment (called simulated volume and flow here) need to be
determined. The simulated volume is the product between the nominal
volume and the number of dumps measured in the time interval under
analysis, while the simulated flow is the quotient between the simulated
volume and the time interval.

The second part of the dynamic calibration process consists of
applying mathematical and statistical techniques searching for equa-
tions that best predict simulated and reference flows. To do this, we used
four equations: linear; potential; time as function of the inverse of flow
rates, and quadratic. Data representation techniques were applied to
each of the four TBs under the different time intervals, totaling 96
adjustment curves. A better description of each curve is given below.

A simple linear regression (Eq. (2)) was the first option used to
establish a relationship between the reference (x-axis) and the simulated
(y-axis) flows. Other authors (Shimizu et al., 2018) have investigated
errors in TBs and mention that the correlation may not be linear. Thus,
we investigated the error behaviors under non-linear functions, in which
the potential (Eq. (3)) is one of them. We did not include an intercept
value in a linear nor a potential curve, since it would represent a
simulated flow associated with a null reference flow. The third regres-
sion curve consisted of the graphical representation of the time between
dumps (T) as a function of the inverse of the reference flow (Q;e}), as

suggested by Calder and Kidd (1978), called T vs. 1/Q curve here. The
time between dumps was calculated by the quotient between the time
interval and the number of dumps registered (Eq. (4)), which was
plotted against the inverse of the reference flow, resulting in the
mathematical representation of the regression used given by Eq. (5).
Finally, a quadratic model regression was applied between the dump
volume (Vy;) as a function of the reference flow (Qry), as proposed by
Costello and Williams (1991). This regression technique assumes that
there is a change in the nominal volume according to the reference flow
rate. Once the instantaneous tipping volume is calculated (Eq. (6)), the
simulated flow can be estimated by this mathematical representation
(Eq. (7).

Obas = MQry 2
Ohas = a0y, 3)
T = At/n “@
T = ViaseQpf + (5)
Viase = (Qre*Al) /1 ©
Viase = bo + b1 Qpase + 205 @

where Qg is the flow rate measured by the TB; Q. is the reference flow
rate; m is the slope of the linear regression curve; a and b are constants of
the potential regression curve, in which a is the point of intercession
when the simulated flow is equal to 1 and b is the curve slope; T is the
time between dumps; At is the time interval (1, 2, 5, 10, 20 or 30 min); n
is the number of dumps registered; c¢ is the constant in the T vs. 1/Q
curve indicating the time required for the cavity to leave the stable at
one side, move and reach the stable point at the other side; and by, b,
and b, are constants of adjustment in the quadratic curve.

2.3. Statistical analysis

For the statistical validation of TB applicability for flow monitoring
during the dynamic calibration tests, three statistical metrics were
applied: coefficient of determination (R; percent bias (PBIAS); and
Kling-Gupta efficiency (KGE) in a non-parametric form. The R? assesses
the degree of collinearity between measured and reference flows,
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varying between 0 and 1. The closer to 1, the better the correlation
between measured and reference data (Surfleet et al., 2012). The PBIAS
indicates the average tendency of the measured data to be larger or
smaller than the ones observed (Gupta et al., 1999). Positive PBIAS
values indicate a measured underestimation of models and equipment
representing reference data, while negative values mean an over-
estimation and, when equal to zero, a perfect correlation of the data.
Finally, using the KGE metric in the non-parametric form was an option
in an attempt to use a more robust function that would allow analysis
through different aspects (BIAS, standard deviation and Pearson’s cor-
relation), as indicated by Pool et al. (2018). In this metric, the values
vary between 0 and 1; the closer to 1, the better the statistical correlation
between the measured and reference data.

In addition to using statistical metrics that help the description,
spatialization and comparison of the simulated data, the Analysis of
Variance (2-way ANOVA) and Pearson’s correlation were applied to
investigate the interference of the selected variables (tipping speed,
cavity dimension and time interval) in the mean error between the
observed and the simulated flow rates at TBs of different sizes.

3. Results
3.1. Static calibration

The mean and standard deviations of measures at each cavity and
global analysis (both cavities) were obtained during the static calibra-
tion of each TB (Table 1). After performing the procedure and calcu-
lating the mean of the measurements, it was found that the nominal
volumes were 11.63 mL, 64.16 mL, 139.86 mL and 660.95 mL for TB1,
TB2, TB3 and TB4, respectively. Thus, these will be the values used to
identify the volumes and flows measured during the dynamic calibra-
tion, calculated by its product with the registered number of tips.

The standard deviation (SD), when expressed in absolute values
(mL), has a positive correlation with the size of the equipment, ranging
from 0.44 to 12.21 in the TB1 and TB4, respectively. However, when
expressed in percentage values, TB1 has a higher SD (3.82%) than TB4
(1.85%). Among the various factors that could lead to such a result, it is
believed that it may be associated with the cavity small water storage
capacity and great sensitivity of TB1. Although care has been taken to
carry out the calibration through the slow dripping of water, the kinetic
effect added to the drop volume promotes oscillations between the
replicates (lida et al., 2012). As the cavity size increases, this effect is
smoothed out and, therefore the SD decreases.

3.2. Dynamic calibration

Table 2 give the mean, maximum and minimum errors, standard
deviation, PBIAS and KGE in TBs under different time intervals. The
number of tips registered at each of the flow sampling points in each TB
is available as Supplementary Material (A). In both TBs, it is observed
that time interval plays a fundamental role in the calibration process. As
expected, in shorter intervals, there is a smaller number of data records,
and thus the SD is greater than when using longer intervals, such as 30
min. This point will be better discussed in the following sections.

Considering the ten flow rates sampled during the dynamic calibra-
tion process, both data from all TBs registered positive PBIAS (under-
estimation of reference flow). The highest PBIAS (13.6%) was observed
in TB4 under a nominal volume of 660.95 mL, followed by TB3 (9.3%),
TB2 (5.7%) and TB1 (3.3%), which have nominal volumes of 139.86 mL,
64.16 mL and 11.63 mL, respectively. The errors occurred under a range
of low and high runoff intensities and TBs could still operate adequately
and even before applying calibration curves, the proposed monitoring
equipment can adequately measure the water flow (KGE > 0.86).

Applying the linear regression, all TBs underestimated flow rates as
the angular coefficients obtained are lower than 1 (Fig. 3). From the data
given in Figs. 4 and 5, it can be seen that for both TBs, the time interval is
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Table 1
Nominal volumes and statistical metrics measured during volumetric calibration of TB1, TB2, TB3 and TB4.
TB1 (mL) TB2 (mL) TB3 (mL) TB4 (mL)
Cav 1 Cav 2 Cav 1 Cav 2 Cav 1 Cav 2 Cav 1 Cav 2
Mean (mL) 11.46 11.79 63.20 65.11 142.19 137.54 671.10 650.80
SD (mL and %) 0.53 (4.64) 0.27 (2.28) 0.46 (0.73) 0.33 (0.51) 2.31 (1.63) 3.13 (2.27) 5.88 (0.88) 7.16 (1.10)
Global mean (mL) 11.63 64.16 139.86 660.95
Global SD (mL and %) 0.44 (3.82) 1.06 (1.65) 3.59 (2.56) 12.21 (1.85)

Where: Cav is the tipping bucket cavity identification; Mean is the average of the volumes measured in each cavity during the replicates; SD is the standard deviation of
the volumes measured in each cavity during the replicates; and Global mean and Global SD are the mean and standard deviation, respectively, of the volumes measured
in both cavities.

Table 2
Statistical metrics of TBs capacity to measure reference flow under different time intervals.
TB Statistical metric 1 min. 2 min. 5 min. 10 min. 20 min. 30 min.
1 PBIAS (%) 3.644 3.644 2.826 2.768 2.768 3.313
KGE 0.961 0.962 0.971 0.971 0.967 0.966
Standard deviation (%) 14.238 5.733 4.475 2.157 2.157 3.927
Mean error (%) 0.913 2.104 2.208 2.746 2.746 4.433
Maximum error (%) 20.645 7.980 10.064 7.419 7.419 14.358
Minimum error (%) —35.224 —12.687 —-8.179 0.779 0.779 1.290
2 PBIAS (%) 5.415 6.034 6.010 5.762 5.750 5.746
KGE 0.945 0.939 0.939 0.942 0.942 0.942
Standard deviation (%) 10.402 10.616 4.844 3.782 2.856 2.288
Mean error (%) 7.886 7.958 6.516 6.108 5.861 5.733
Maximum error (%) 36.777 36.777 17.810 14.649 11.488 9.380
Minimum error (%) 1.635 —1.298 —0.488 0.323 0.728 1.403
3 PBIAS (%) 8.580 8.580 8.633 8.831 9.187 9.332
KGE 0.913 0.913 0.912 0.910 0.907 0.905
Standard deviation (%) 5.242 5.361 5.039 4.979 5.028 5.028
Mean error (%) 6.330 6.272 6.455 6.691 7.066 7.226
Maximum error (%) 12.245 12.269 12.573 12.674 12.725 12.708
Minimum error (%) —4.058 —4.058 —2.044 —2.044 —2.044 —1.932
4 PBIAS (%) 13.163 13.592 13.335 13.563 13.549 13.573
KGE 0.867 0.863 0.865 0.863 0.863 0.863
Standard deviation (%) 8.182 6.213 6.619 5.829 6.039 5.967
Mean error (%) 9.931 11.050 10.460 11.203 11.017 11.127
Maximum error (%) 18.091 17.013 17.229 17.229 16.730 16.730
Minimum error (%) —4.361 0.857 0.257 0.857 0.857 0.857
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Fig. 4. Error average (MRE), standard deviation (STDE), and maximum (MAXRE) and minimum (MINRE) bounds for corrected flows observed at different time

intervals and TBs capacities using different correction models; shaded areas represent values variations among different TBs capacities.
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Fig. 5. Statistical metrics for corrected flows observed at different time intervals and TBs capacities using different correction models: Kling-Gupta Efficiency (KGE),
Percent bias (PBIAS), and RMSE-observations standard deviation ratio (RSR); shaded areas represent values variations among different TBs capacities.
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a relevant variable that influences the coefficient of determination (R?).
However, there is no direct correlation between this variable and the
angular coefficient (m) of the regression curve. In this section, we will
discuss data obtained under 30 min of time interval, but you can find
data regarding other time intervals in Supplemental Material (C).

Using linear regression is a satisfactory option for all TBs analyzed, as
shown by the statistical metrics used: R? (>0.99) and KGE (>0.85), see
Fig. 3 and Table 2. As given in the previous session, the PBIAS registered
in TBs has a direct correlation with the nominal volume of its cavities.
Likewise, the slope of the linear fit curve (0.967, 0.942, 0.895 and 0.852,
see Fig. 3) follows the same trend for TB1, TB2, TB3 and TB4, respec-
tively. After implementing the curves, the fitting curve was ideal in TB1
(PBIAS = 0), while underestimation still occurred in TB2 (0.079%), TB3
(1.189%) and TB4 (1.397%). Similarly, the KGE index, considering
PBIAS in its calculation, has an inversely proportional (Pearson corre-
lation of —0.905) and not significant (p-value of 0.095) behavior for
TB1, TB2, TB3 and TB4: 0.967, 0.942, 0.896 and 0.852.

Calibration using the potential regression (Fig. 6) is a satisfactory
option for all of the TBs, as shown by the statistical metrics used: R2
(>0.99), KGE (>0.85) and mean residual error (<0.2). As recorded in
the linear regression curve, the KGE has an inversely proportional cor-
relation (Pearson’s correlation of —0.906) with NV, although it was not
statistically significant (p-value of 0.094). As for PBIAS, there is an
overestimation of the residual error of —0.358%, —0.251%, —0.021%
and —0.183% in TB1, TB2, TB3 and TB4, respectively.

In Fig. 7, it can be observed that the T vs. 1/Q regression has limi-
tations under two situations: low flow rates and short time intervals
(Shedekar et al., 2016). Although the flow sampling points are uniformly
distributed throughout the sampling range due to the mathematical
formulation of the method, there is a concentration of sampling points at
the bottom curve, while just few sampling points contribute to adjusting
the curve in the upper portion. Besides the low reliability at low flow
rates, this method has good metrics statistics: R? (>0.99), KGE (>0.85)
and mean residual error (<3%). By implementing this curve, there is an
overestimation of residual error in TB1 (5.5%), TB2 (4.55%) and TB4
(1.68%), while there is an underestimation (0.36%) in TB3.

Based on R?, the quadratic regression works well (R higher than 0.6)
for TB1 (0.721), TB3 (0.826) and TB4 (0.615). It is important to note
that although the KGE presented satisfactory values, the sampling points
are completely dispersed (R? of 0.0255) along the regression curve
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(Fig. 8) in the TB2. The statistical discrepancies observed are associated
with the KGE mathematical formulations involved, and thus emphasize
the importance of using different metrics in the calibration process.

4. Discussion
4.1. Dynamic calibration

Given the flow ranges analyzed during dynamic calibration in both
TBs, a greater standard deviation of errors was recorded at low flows,
reducing as the flow increased, as well as in rainfall gauges (Shedekar
et al., 2016). Among all the designed equipment, TB1 had the highest
SD, especially under a small-time interval (1 min). It is important to cite
that the reed switch in TB1 is located below the central axis, between
cavities 1 and 2, recording one electrical signal every two tipping points.
This contributes to the error being greater in this equipment when
compared to the others, which have a record at each tip. Under an
increasing time interval (30 min) and flow rate, the influence of this
limitation reduces and, consequently, the SD is smaller. Thus, moni-
toring short precipitation events has a greater associated error than
those with longer duration. Similarly, at higher intensities, there is a
reduction in SD while there is a higher mean error. At any measured flow
rates, there was an overestimation of the reference flows. The behavior
of TBs under flow rates at other time intervals analyzed can be found in
Supplemental Material (B).

Sun et al. (2014) designed and calibrated TBs with a nominal reso-
lution of 2.5 L and identified the same error pattern: high errors under
low and high flow rates. It is believed that under low flow rates, the
surface tension of the water influences the displacement along the sur-
face of the cavity (Sun et al., 2014), while at high flow rates, the slow
and subtle shift, ideal in the gravity center, is affected by the rapid entry
of water under turbulent flow (lida et al., 2012). Another error source
comes from the water left in the cavities after one replicate test ending,
which is not sufficient to tip (Nehls et al., 2011). This volume was not
removed from the cavities between calibration tests since we wanted to
estimate the errors that would occur during in-situ monitoring and
identify the best calibration model to reduce those errors.

The results here are similar to those obtained by Khan and Ong
(1997), Yahaya et al. (2009) and Sun et al. (2014) after applying the
linear curves to reduce errors during the calibration of TBs of different
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Fig. 6. Calibration curves using potential regression.
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Fig. 8. Calibration curves using quadratic regression.

sizes. Khan and Ong (1997) carried out the calibration process of a TB
with a volumetric capacity of 3 L and obtained R? equal to 0.99 and a
residual overestimation error of 2%. Similarly, Yahaya et al. (2009)
obtained a good coefficient of determination of 0.99 in the calibration of
a 0.14 L of volumetric capacity, which had an average error of 0.74%.
Finally, Sun et al. (2014) calibrated a TB with an NV of 2.5 L, finding a
good linear correlation (R2 equals to 0.99) between reference and
measured flows and low mean error (2.1%). It is important to note that
the NV of TB4 (660.95 mL) is greater than all of those previously
mentioned, which would then be expected to have a high error, how-
ever, its average error is lower (1.397%), proving its efficiency.

Unlike what was observed in the linear curve, there is no clear

correlation between PBIAS and NV. Barfield and Hirschi (1986) found
overestimated errors between 1.62% and 1.90% in four TBs with NV
ranging between 356 mL and 1284 mL while applying a potential cali-
bration curve.

By implementing the quadratic curve, there is an underestimation in
the residual error in TB1 (0.747%), TB3 (3.114%) and TB4 (0.134%),
while there is an overestimation (-0.129%) in TB2. Although we have
not found the quadratic to be a satisfactory method for the TBs cali-
bration, Somavilla et al. (2019) obtained a good statistical correlation
(R? of 0.99 and NSE of 0.997) and low underestimation (2.27%). Simi-
larly, Shimizu et al. (2018) were successful in eliminating the 2-3%
errors in steamflow measurements. However, in both cases, TBs have a
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low volumetric capacity.

After applying different adjustment curve methods, it was defined
which curve has the best fit. Keeping in mind the importance of stan-
dardizing methodologies for monitoring runoff in the study area, the
linear regression has the best statistical metric values and it also has
greater simplicity and confidence in terms of extrapolation. The cali-
bration equations to obtain the flow measured (V) are based on the
number of tips (N) counted by the datalogger, as given for each TB: TB1
(V =12.02 N), TB2 (V = 68.11 N), TB3 (V = 155.98 N) and TB4 (V =
774.50 N). Note that the multiplier number is greater than the nominal
resolution found during static calibration due to the underestimate error
sources presented before, such as water tension, kinetic effects, water
left in cavities and spills.

4.2. Causality tests

4.2.1. Tipping velocity

Through the Pearson correlation, the possibility of a correlation
between the tipping speed and the percentage error recorded in the
different TB sizes was investigated. It can be observed that the TBs have
discordant behaviors: TB3 presented a directly proportional (0.852)
significant correlation (p-value of 0.02), while TB1 and TB2 had nega-
tive (-0.579 and —0.008) and TB4 positive (0.707) correlations, but both
not significant (p-value > 0.05). Considering a joint analysis (join data
from all TBs), we found a positive correlation (0.134) and also signifi-
cant one (p-value equals to 0.038).

When plotting the mean error according to the number of dumps
registered in the TBs (Fig. 9), a similar pattern was identified in the error
curve behavior, which can be summarized in three zones: Zone I occurs
at low tipping speeds and results in high errors (underestimation); zone
I occurs at average tipping speeds, characterized by a decay of under-
estimation and thus, it is considered as the optimal range of operation;
finally, in zone III at a high tipping speed, the percentage error re-rises.
While calibrating a TB with a 0.14 L NV in Nigeria, Yahaya et al. (2009)
also agree that the runoff intensity and the tipping rate intefere greatly
in the errors and, finally, after plotting the efficiency versus the runoff
errors, found a parable trend in the data collected, implying the exis-
tence of these three zones explained here.

In general, there is a tendency to underestimate the flow measured
by TBs under high intensities of runoff (lida et al., 2012; Somavilla et al.,
2019) and rainfall (Shedekar et al., 2016; Sypka, 2019). This phenom-
enon can be attributed to the volume of water lost while cavities
switches (Shedekar et al., 2016). As the water enters a constant flow,
when reaching the nominal volume, the cavity starts the switching but
the water continues to fall on the cavity that already reached its NV.
Thus, there is a small time interval for the filled cavity to move and
water to begin to fall into the second cavity. This delay was also found by
Langhans et al. (2019) in TBs of different NVs (0.1-21). Considering that
this displacement interval is constant, under increased flow of water, the
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Fig. 9. Identification of behavioral zones of mean error in TBs under increasing
tipping velocity.

Catena 209 (2022) 105834

greater the underestimation errors recorded (Edwards et al., 1974).

4.2.2. Time interval of data collection

The specification of a time interval for the hydrological data acqui-
sition commonly depends on the available data storage capacity and
time interval of other installed equipment. Using shorter time intervals,
the greater the possibilities of recording extreme events, the better the
monitoring of natural phenomena (Shedekar et al., 2016).

Different data recording intervals were used in the sampling during
the dynamic calibration (1, 2, 5, 10, 20, and 30 min). Thus, to investi-
gate the interference that this variable has in the mean percentage error,
the graphs of the main effects were drawn up (available in Supplemental
Material D). Through the graphs, it can be observed that there is a
positive correlation in the TB1, TB3 and TB4, while the TB2 has a
negative correlation. In order to validate the correlation identified
through the graphs of the main effects, the Pearson’s correlation was
calculated between the time interval and the mean errors. It can be
noted that there is no strong correlation (Pearson’s correlation less than
0.2) between the variables analyzed, however, due to the p-value being
above the limit (0.05), the null hypothesis considered cannot be
rejected.

TB1, TB2 and TB4 had a greater error variation at different sampling
time intervals, while TB3 had a smoother variation, considering
different sampling time intervals (1, 2, 5, 10, 20 and 30 min) (Fig. 10).
As specially observed in TB1 and TB2, shorter intervals result in greater
errors (Habib et al., 2001; Shedekar et al., 2016). At low flow rates,
when the time interval required to reach the nominal volume is higher
than the time interval, two or more time intervals are required to reg-
ister a tipping. In the first-time interval, there is no record of tipping, as
it was only recorded in the second.

Ciach (2003) and Costello and Williams (1991) also found that the
sampling time interval is a significant variable in hydrological studies
and indicate the use of the tipping interval instead of defined sampling
times. However, it was not possible to adopt such a consideration due to
limitations in the datalogger used (Campbell Scientific Inc CR10), which
had the capacity to record data with a minimum interval of one minute.
Considering this, it is recommended that further studies be carried out
on the errors in TBs by identifying the time between the emptying of one
cavity and the beginning of filling the other one.

4.2.3. Tipping bucket volumetric capacity

The third variable investigated with the potential to influence the
mean errors was the TBS volumetric capacity. Through the Pearson
correlation test, we found a statistically significant (p-value < 0.05)
positive correlation (0.369), indicating that mean errors are directly
influenced by NV. The obtained data reinforces the importance of the
adequate sizing of TBs, so that it is not under or over-sized.

The results obtained follow the consideration of Shedekar et al.
(2016) and Somavilla et al. (2019) that the storage capacity of TBs is an
important source of errors. As previously mentioned, the underestima-
tion is possibly due to the volume of water lost during the time interval
of cavity switching. The volume of water lost is a fraction of the volume
stored in the cavities, the greater the storage capacity, the lower the
sensitivity of the equipment to this small fraction of volume that is not
monitored, and thus the greater the associated errors (Somavilla et al.,
2019).

Finally, another important source of error is the volume of residual
water retained in the cavities which is not enough for tipping. For
example, TB1 has an NV of 11.63 mL, while TB4 has a 660.95 mL. TB1
has a higher volumetric resolution than TB4 and, consequently, a
smaller residual volume that can be lost by evaporation.

4.2.4. Joint analysis

As previously presented, the percentage error is influenced by the
variables tipping speed, cavity capacity and time interval. In order to
investigate which variable analyzed has the greatest contribution to the
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Fig. 10. Mean errors occurring in TBs under different data recording time intervals.

mean error, we applied the Multi-factor Analysis of Variance. We found
out that the cavity size has a greater influence (F-value of 16.12) in mean
errors than tipping speed (F-value of 11.34). The null hypothesis of non-
correlation between the variables time interval and mean errors cannot
be rejected, due to the p-value above the imposed limit of 0.05.

4.3. Factors affecting calibration and errors

The operation principle of TBs used for runoff and rain measure-
ments is the same, thus the errors to which they are susceptible are
similar. Errors can be grouped into two categories: systematic/me-
chanical and random (Shedekar et al., 2016). Systematic errors are due
to the operation, construction material and design of the equipment,
thus they are more predictable and easier to minimize. Random errors,
however, are not predicted and occur from unusual operations during
in-situ measurements.

In addition to some main examples of systemic and random errors
given in Table 3, there are those already mentioned and discussed pre-
viously (tipping speed and time interval) and errors inherent in any
laboratory measurement, in this case: uncertainties in the measurements
of the nominal volume and reference flow rate during static and dy-
namic calibration, respectively. It is also important to include errors
caused by the equipment design, size and shape of sensors and height of
measurements (Sypka, 2019). Thus, we acknowledge that the TBs design
might have some influence on both type and magnitude of the errors.

Table 3
Examples of systemic and random errors occurring in TBs.

Systemic errors Random errors

Kinetic effect during water
entry

Under or oversizing of cavities
The continuous entry of water
into the TB cavity, which is
already in motion

Use of hydrophilic material
Loss of lubrication

Equipment installed under
uneven soil
Mechanical/electronic
limitation in counting the
number of dumps

m Silting/erosion of the base of the
equipment structure, resulting
in an unevenness of the
structure

Entry of animals

Flow inlet clogging

Holes and cracks in the cavities
of the TBs

Evaporation of the water stored
in the PVC containers after
passing through the TBs, which
is used to validate the results
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The main motivation to have opted the design and construction mate-
rials presented here is based on operational characteristics that would
resist to the continuous high flow entry. Even though we have not
investigated it, we highlight the importance of continuous advance in
developing designs that would conciliate operation limitations while
minimizing errors. Despite the inherent error sources, the use of tipping
bucket for runoff measurement is a potential instrument for a better
understanding in the hydrology field. It is even more applicable in
developing countries, such as Brazil, which most of the time have
limited funding for acquisition of high-tech monitoring equipment.

4.4. TBs relevance to hydrological studies

Anache et al. (2017) reinforce the fact that to achieve efficient use of
water, conservation of natural resources, and minimization of anthropic
impacts, a better understanding of the physical processes that make up
the hydrological cycle under different conditions of LULC (natural and
anthropic) is crucial. Despite the benefits of empirical methods, a clear
understanding of soil erosion processes, infiltration, and runoff and the
development of models that describe such processes requires accurate
and controlled measurements, which are only achieved by using in-situ
monitoring facilities and instruments (Anache et al., 2017; Guo et al.,
2019; Jha et al., 2019).

Through field monitoring, long-term data are created and support
the development of new technologies and solutions for maintaining the
hydrological cycle, despite rapid changes in LULC (Anache et al., 2019;
Nobrega et al., 2017). In-situ studies are important to reduce nutrient
losses (Zhang et al., 2020), improving the efficiency of agricultural
production (Benedetti et al., 2019) and, at the same time, promoting the
sustainable development (Tarolli and Straffelini, 2020) of this activity.
However, experimental studies are rare due to local heterogeneities and
uncertainties in hydrological and pedological measurements (Beven and
Germann, 2013), specially on developing countries. Considering this,
from the list of 23 unsolved problems that aim to orientate hydrological
research worldwide, Bloschl et al. (2019) once again highlight the
importance of developing and using innovative technologies to measure
surface and subsurface properties in a range of spatial and temporal
scales.

Using a tipping bucket flow gauge is an option for automatic and
direct monitoring of surface/subsurface flows in small study areas, such
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as bounded experimental plots and hillslopes (Wang et al., 2020) and
small hydrographic basins (Peyrard et al., 2016). In addition to moni-
toring accurately, using this kind of equipment when associated with a
reed switch and datalogger allows automation and better detailing of
data collection, such as identifying the start, end, and peak of the flow
(Corona et al., 2013; Zabret et al., 2018).

5. Conclusions

A tipping bucket flow meter is a potential instrument in in-situ
monitoring. However, its inherent errors may limit and create doubts
about its data reliability. Thus, in this paper, we performed static and
dynamic calibration on four large TBs, applied different regression
curves and investigated the error sources in order to minimize them.
Through static calibration, we found out that the equipment had a
volumetric capacity of 11.63 mL (TB1), 64.16 mL (TB2), 139.86 mL
(TB3) and 660.95 mL (TB4). Afterwards, TBs were tested under different
flow rates (dynamic calibration) and time intervals. Considering a 30-
minute time interval, an underestimation of flows at different levels
was identified according to the size of the cavity: TB1 (3.31%), TB2
(5.75%), TB3 (9.33%) and TB4 (13.57%).

We discovered a high underestimated error at low flow rates, indi-
cating that the best operating range of the equipment is under medium
flow rates. Even not dimensioned to operate at high intensities, the
equipment was tested in the laboratory under different low and high
flow intensities and had a satisfactory performance.

After performing the dynamic tests, four calibration equations were
tested: linear, potential, T vs. 1/Q and quadratic. Among the alterna-
tives, linear regression showed the best correlation (above 99%) with
the monitored data. Using this method, the mean error will be reduced
to —1.35% (TB1), 0.04% (TB2), 3.18% (TB3) and 3.73% (TB4).

Once the occurrence of systematic errors was verified, it was inves-
tigated how the different variables (tipping speed, tipping bucket
volumetric capacity and time interval of data collection) influenced the
errors. By plotting mean errors and tipping rates, a behavior pattern in
the error curves was identified: Zone I at low tipping speeds and results
in high percentage errors (underestimation); zone II at average tipping
speeds, characterized by a decay of underestimation and thus, it is
considered as the optimal range of operation; and zone III at high tipping
speed, the percentage error re-rises. Investigating the second variable,
we found that mean errors are directly influenced by the cavity volu-
metric capacity. The last variable, time interval of data collection, barely
interfered in the data sampled. Finally, considering all three error
sources, the cavity size is the most important one.

Throughout the research, we aimed to minimize the errors inherent
to the large tipping buckets and encourages various applications (steam,
runoff, percolation, etc.), increasing the in-situ hydrological data
collection, which is still very scarce, mainly in developing countries.
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