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Abstract. An invariant measure is called a Bernoulli measure if the corresponding
dynamics is isomorphic to a Bernoulli shift. We prove that for C1+α diffeomorphisms
any weak mixing hyperbolic measure could be approximated by Bernoulli measures. This
also holds true for C1 diffeomorphisms preserving a weak mixing hyperbolic measure with
respect to which the Oseledets decomposition is dominated.

1. Introduction
In the ergodic theory of dynamical systems one way to study a measure is to approach it by
well-understood measures. This is the case particularly in the differentiable ergodic theory,
that is, ergodic theory of differentiable dynamical systems. One kind of well-understood
measures is the Bernoulli measures, which are strong mixing measures in Bernoulli shifts.
Bernoulli shifts have been discussed a lot in the history [11, 12, 17]. So, a natural question
is when an invariant measure could be approximated by Bernoulli measures? Several
works have been done related to this topic. In 1970, Bowen proved that a topologically
mixing hyperbolic basic set admits a Bernoulli measure [5]. In 1972, Sigmund found that
for an Axiom A diffeomorphism f, Bernoulli measures are dense in the set of all invariant
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measures supported on a basic set � as long as f |� is topologically mixing [18]. His
method is to use Markov partitions constructed by Bowen [5] through which every basic
set of f would correspond to a subshift of finite type and the problem is reduced to finding
Bernoulli measures on topologically mixing Markov chains. In 2015, Arbieto, Catalan
and Santiago discussed this problem for diffeomorphisms beyond uniform hyperbolicity.
They proved that for any generic diffeomorphism, if the dynamics restricted on an isolated
homoclinic class is topologically mixing, then the Bernoulli measures are dense in the
space of invariant measures supported on the class [3].

In the present paper we discuss this problem for non-uniformly hyperbolic dynamical
systems. More precisely, we investigate a weak mixing hyperbolic measure for a C1+α

diffeomorphism or for a C1 diffeomorphism with the Oseledec bundles of the weak mixing
measure being dominated. We prove that in these cases the weak mixing hyperbolic
measure could be approximated by Bernoulli measures.

2. Definitions and main results
2.1. Basic concepts in ergodic theory. Let X be a measurable space with σ -algebra B
and µ be a probability measure on (X, B). We call (X, B, µ) a probability space and call
(X, B, µ, T ) a probability system if T : X→ X is a µ-preserving transformation. Now
we introduce several basic concepts in ergodic theory, all of which could be found in [20].

Definition 2.1. Let (X, B, µ, T ) be a probability system. We call µ strong mixing if for
each pair A, B ∈ B,

lim
n→+∞

µ(T−n A ∩ B)= µ(A)µ(B).

We call µ weak mixing if for each pair A, B ∈ B, there is a subset J = J (A, B) of Z+
with density 1 such that

lim
n∈J,n→∞

µ(T−n A ∩ B)= µ(A)µ(B), (1)

where J has density 1 means that limn→∞ (#{J ∩ {0, 1, . . . , n − 1}}/n)= 1.

Remark 2.2. The standard definition of weak mixing is the following:

lim
n→+∞

1
n

n−1∑
i=0

|µ(T−i A ∩ B)− µ(A)µ(B)| = 0 for all A, B ∈ B. (2)

The expression (1) in Definition 2.1 is actually an equivalent characterization of (2) by
[20, Theorem 1.21]. Since we are going to use (1) for the weak mixing assumption, we
give the definition of weak mixing through (1) directly for convenience. In [20], an intuitive
description of the strong mixing and weak mixing is given as follows: strong mixing
means that for each A ∈ B, the sequence of preimages T−n A becomes asymptotically
independent of any other set B; for weak mixing, it means that the preimages T−n A
become independent of B ∈ B provided a few instants of time are neglected (a subset of
Z+ with zero density). Thus, it is easy to see that a strong mixing measure is weak mixing
and a weak mixing measure is ergodic.

Taking a finite set Y = {0, 1, . . . , k − 1}, a σ -algebra F = 2Y , a probability vector
(p0, p1, . . . , pk−1) such that pi > 0 and

∑k−1
i=0 pi = 1, we define a measure µ on (Y, F)
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by µ({i})= pi . Then we obtain a probability space (Y, F , µ). Write (X, B, m)=∏
+∞

−∞
(Y, F, µ), a product probability space which is defined as follows: let X =∏

+∞

−∞
Y. For n ≥ 0 and ai ∈ Y , let [a−n, . . . , an] = {(xi )

+∞

i=−∞ ∈ X | xi = ai ,−n ≤ i
≤ n}. Consider a semi-algebra S = {[a−n, . . . , an], n ≥ 0} of X and an additive function

m : S→ [0, 1], m([a−n, . . . , an])=

n∏
i=−n

pai .

Then S generates a unique σ -algebra B of X and m extends uniquely to a measure on
(X, B), which is still denoted by m. Define

T : X→ X, T ((yn)
+∞

n=−∞)= (xn)
+∞

n=−∞ where xn = yn+1 for all n ∈ Z.

The probability system (X, B, m, T ) is called a Bernoulli shift. It is well known that a
Bernoulli shift is strong mixing [20].

Two probability systems (X i , Bi , µi , Ti ), i = 1, 2, are isomorphic if there exist
Mi ∈ Bi satisfying the following properties:
(i) µi (Mi )= 1, Ti Mi ⊂ Mi ;
(ii) there is an invertible measure-preserving transformation φ : M1→ M2 such that φ ◦

T1(x)= T2 ◦ φ(x), for all x ∈ M1.

Important dynamical properties like ergodicity, weak mixing, strong mixing and the
measure-theoretic entropy are preserved by isomorphic systems [20].

2.2. Main results. A T -invariant measure µ is called a Bernoulli measure if the
corresponding probability system (X, B, µ, T ) is isomorphic to a Bernoulli shift. In this
paper we investigate for differentiable dynamical systems when an invariant measure could
be approximated by Bernoulli measures. We call an invariant measure µ hyperbolic if it
admits no zero Lyapunov exponents. Our first main result is the following.

THEOREM A. Let f be a C1+α diffeomorphism of a compact Riemannian manifold M
and µ be an f -invariant weak mixing hyperbolic measure. Then there exists a sequence
of Bernoulli measures {νn}n∈N supported on topological mixing hyperbolic sets such that
νn→ µ as n→+∞ in weak∗-topology.

For C1+α diffeomorphisms, Katok and Mendoza proved that an ergodic hyperbolic
measure can be approximated by measures supported on topological transitive hyperbolic
sets (see [8, Theorem S.5.9]). Theorem A says that a weak mixing hyperbolic measure
can be approximated by measures supported on topologically mixing hyperbolic sets.
Moreover, the approximation measures chosen in Theorem A are Bernoulli and thus strong
mixing. Note that a topological transitive hyperbolic set which is not topologically mixing
does not support any strong mixing measure, and this is actually the case of Katok and
Mendoza’s constructions in [8, Theorem S.5.9]. Thus, their construction is not applicable
to Theorem A to obtain Bernoulli measures.

Since locally maximal hyperbolic sets in Theorem A are structurally stable, a direct
application of Theorem A shows that weak mixing hyperbolic measures are persistent
under C1 perturbations.
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COROLLARY B. Let f be as in Theorem A. Let fn→ f in the C1 topology and µ be an
f -invariant weak mixing hyperbolic measure. Then there exists a sequence of fn-invariant
strong mixing hyperbolic measures µn such that µn→ µ as n→+∞ in weak∗-topology.

Now we remove the ‘Hölder’ condition in Theorem A and consider C1 non-uniformly
hyperbolic systems with domination.

Definition 2.3. Let 3 be an f -invariant set. A continuous splitting T3M = E s
⊕ Eu is

dominated if there are constants C > 0 and λ ∈ (0, 1) such that for all x ∈3 and all
n ≥ 0, we have ‖Dx f nv‖/‖Dx f nu‖ ≤ Cλn for any v ∈ E s(x), u ∈ Eu(x) with ‖v‖ = 1,
‖u‖ = 1.

A hyperbolic measure µ with domination means that the Oseledets decomposition
E s
⊕ Eu with respect toµ is dominated, where E s and Eu are the direct sums of Oseledets

bundles corresponding to negative and positive Lyapunov exponents of µ, respectively.
The classical non-uniformly hyperbolic theory always assumes that the derivative of a

diffeomorphism is Hölder continuous, which could not be removed in general [4, 15].
However, if the Hölder condition is replaced by the domination property between
Oseledets decompositions E s and Eu, some properties such as stable manifold theory and
the Pesin entropy formula could still be preserved [1, 19]. Liao, Sun and Wang [9] proved
that upper semi-continuity of the entropy map holds for a C1 non-uniformly hyperbolic
system with domination but may fail for a C1+α non-uniformly hyperbolic system without
domination. So, under these two assumptions some results are parallel while some are not.
For the topic of Bernoulli measure approximations, the results are parallel.

THEOREM C. Let f be a C1 diffeomorphism of a compact Riemannian manifold M and
µ be an f -invariant weak mixing hyperbolic measure with domination. Then there exists a
sequence of Bernoulli measures νn (n ∈ N) supported on topologically mixing hyperbolic
sets such that νn→ µ as n→∞ in weak∗-topology.

In the following two sections we prove Theorem A and Theorem C, respectively. In
§3, we first recall several basic facts about C1+α non-uniformly hyperbolic dynamical
systems where Lemma 3.2 is a little generalized version of the classical closing lemma
in [7]. By the weak mixing property of the measure, we may choose two recurrent orbit
arcs of two generic points of the measure with coprime lengths m1, m2, respectively. Then
Lemma 3.2 enables us to obtain a periodic point z whose orbit ‘closes’ these two arcs.
An interesting though elementary application of the coprime relation between m1 and m2

helps us to obtain the transverse intersection relation between z and f m1 z (Lemma 3.4),
which is enough to get the Bernoulli measure we need by the argument in [3].

In §4, we deal with the case of C1 non-uniformly hyperbolic systems for which the
Hölder condition is replaced by the domination property. The weak mixing property is still
used to obtain certain coprime relationships between recurrence times of recurrent orbits
and Lemma 4.3 plays the role of Lemma 3.2 as in the proof of Theorem A.

3. Proof of Theorem A
Let M be a compact Riemannian manifold and f : M→ M be a C1 diffeomorphism.
Let µ be an ergodic f -invariant hyperbolic measure; then for µ-almost every point the
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Lyapunov exponents are constants and non-zero. Let λs be the norm of the largest negative
Lyapunov exponent and λu be the smallest one of the positive Lyapunov exponents. Let
ε be a positive constant with 0< ε� λs, λu . We define 3k =3k(λs, λu; ε), k ≥ 1, to be
the set of all points x ∈ M for which there is a splitting Tx M = E s

x ⊕ Eu
x with the invariant

property D f (E s
x )= E s

f x and D f (Eu
x )= Eu

f x and satisfying:
(i) ‖D f n

|Es
f m x
‖ ≤ eεke−(λs−ε)neε|m| for all m ∈ Z, n ≥ 1;

(ii) ‖D f −n
|Eu

f m x
‖ ≤ eεke−(λu−ε)neε|m| for all m ∈ Z, n ≥ 1.

Denote

3=3(λs, λu; ε)=

+∞⋃
k=1

3k(λs, λu; ε),

which is called a Pesin set associated with µ. The Pesin set is an f -invariant set and is not
necessarily compact in general.

3.1. C1+α non-uniformly hyperbolic theory. In this section, we give some classical
facts and results about C1+α non-uniformly hyperbolic theory. For more details, readers
may refer to [7, 13, 14].

Let f be a C1+α diffeomorphism and 3=3(λs, λu; ε) be a Pesin set. Denote χ =
min{λs, λu}. Let λ′ =max{ 12 , e−99/100χ

} and γ = (1− λ′)/20. The following proposition
describes the hyperbolic behavior of f in the neighborhoods of points in the Pesin set.

PROPOSITION 3.1. [7] There exists r0 > 0 such that for any point x ∈3 there exist
0< r(x) < r0, a neighborhood C(x) and a diffeomorphism 8x : Bm−s

r(x) × Bs
r(x) −→ C(x)

(where Bi
r denotes the Euclidean ball in Ri with radius r around the origin) satisfying the

following properties.
(1) For any k > 0,8x is continuous on3k and r(x) has uniform positive lower bound rk .

(2) Denote fx =8
−1
f x ◦ f ◦8x : Bm−s

r(x) × Bs
r(x) −→ Rm−s

× Rs . Then fx has the form
fx (u, v)= (Ax u, Bxv)+ hx (u, v)= (Ax u + h1x (u, v), Bxv + h2x (u, v)), for all
(u, v) ∈ Bm−s

r(x) × Bs
r(x), where ‖Ax‖< λ

′, ‖B−1
x ‖< λ

′, h1x (0, 0)= h2x (0, 0)=
(0, 0), (dh1x )(0,0) = (dh2x )(0,0) = 0, ‖(dhx )(u,v)‖ ≤ (1− λ′)2/100.

(3) For 0< h ≤ 1 and 0≤ δ ≤ 1
2 hr(x), denote C(x, h)=8x (Bm−s

hr(x) × Bs
hr(x)). Denote

by U γ,δ,h
x the class of (m − s)-dimensional submanifolds in C(x, h) :Uγ,δ,h

x =

{8x (graph ϕ)|ϕ : Bm−s
hr(x)→ Bs

hr(x) is C1, ‖ϕ(0)‖ ≤ δ, ‖dϕ‖ ≤ γ } and Sγ,δ,hx the

class of s-dimensional submanifolds in C(x, h) : Sγ,δ,hx = {8x (graph ϕ)|ϕ : Bs
hr(x)

→ Bm−s
hr(x) is C1, ‖ϕ(0)‖ ≤ δ, ‖dϕ‖ ≤ γ }. Then, for B =8x (graph ϕ) ∈Uγ,δ,h

x ,

we have f B ∩ C( f x, h) ∈Uλ′γ,((1+λ′)/2)δ,h
f x ; similarly for A =8x (graphϕ) ∈

Sγ,δ,hx , f −1 A ∩ C( f −1x, h) ∈ Sλ
′γ,((1+λ′)/2)δ,h

f −1x .

(4) Denote by d ′x the distance generated by the Riemannian metric <, >′x , which
is the image of the Euclidean metric in Bm−s

r(x) × Bs
r(x) under 8x . Then for

B ∈Uγ,δ,h
x and any two points y1, y2 ∈ B, d ′f x ( f y1, f y2) > (

1
2 + 1/2λ′)d ′x (y1, y2);

similarly, for A ∈ Sγ,δ,hx and any two points y1, y2 ∈ A, d ′f −1x ( f −1 y1, f −1 y2) >

( 1
2 + 1/2λ′)d ′x (y1, y2).
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For x ∈3, we call C(x, h) the hyperbolic neighborhood of x . Under local coordinates
8x , fx =8

−1
f x ◦ f ◦8x in hyperbolic neighborhoods shows uniform hyperbolic behavior

by Proposition 3.1(2). By Proposition 3.1(1), we could shrink hyperbolic neighborhoods
of points in the same 3k to the same size 1

2rk : for x ∈3k and 0< h ≤ 1, denote the
neighborhood Ĉ(x, h)=8x (Bm−s

(1/2)hrk
× Bs

(1/2)hrk
)⊂ C(x, h). For B ∈Uγ,(1/4)hrk ,h

x , we

call any manifold of the form B ∩ Ĉ(x, h) an admissible (u, h)-manifold near x and
similarly A ∩ Ĉ(x, h) an admissible (s, h)-manifold near x when A ∈ Sγ,(1/4)hrk ,h

x .
The following lemma comes from the main lemma in [7], where the statement is about

closing one arc, that is, the case q = 1. We generalize it to q arcs to fit our situation in
proving Theorem A (where we need q = 2 actually) by applying the same mechanism. For
the convenience of readers, we present a proof.

LEMMA 3.2. Let f be a C1+α diffeomorphism of a compact Riemannian manifold M and
3=3(λs, λu; ε) be a Pesin set of f. Then for any δ > 0 and positive integer k there exists
ψ = ψ(k, δ) > 0 such that if there exist finite points {xi }

q
i=1 and finite positive integers

{ni }
q
i=1 such that xi , f ni (xi ) ∈3k(λs, λu; ε), d(xi+1, f ni xi ) < ψ for 1≤ i ≤ q − 1 and

d(x1, f nq xq) < ψ, then there exists a periodic point z with period n =
∑q

i=1 ni satisfying:
(i) d( f n0 + ··· + ni+ j z, f j xi+1) < δ, i = 0, . . . , q − 1, j = 0, . . . , ni+1 − 1, where

n0 = 0;
(ii) z is hyperbolic and its local stable (unstable) manifold is an admissible (s, 1)

((u, 1))-manifold near x1.

Proof. Let B0
1,0 =8x1(B

m−s
(1/2)hrk

× {0}), which is an admissible (u, h)-manifold near
x1. For 1≤ i ≤ n1, let B0

1,i = f (B0
1,i−1 ∩ C( f i−1x1, h)). We extend B0

1,0 to B̃0
1,0 =

8x1(graph ϕ̃0
1,0) ∈Uγ,(1/4)hrk ,h

x1 ; see Proposition 3.1(3) for notation. For 1≤ i ≤ n1,
let B̃0

1,i = f (B̃0
1,i−1 ∩ C( f i−1x1, h)). By Proposition 3.1(3), B̃0

1,n1
∩ C( f n1 x1, h) could

be written as 8 f n1 x
(
graph(ϕ̃0

1,n1
)
)
, where ϕ̃0

1,n1
: Bm−s

hr( f n1 x1)
→ Bs

hr( f n1 x1)
is a C1 map

such that ‖ϕ̃0
1,n1

(0)‖ ≤ ((1+ λ′)/2)n1(1/4)hrk and ‖dϕ̃0
1,n1
‖ ≤ (λ′)n1γ. Since B0

1,n1
∩

C( f n1 x1, h) is a part of the manifold B̃0
1,n1

, there exists a neighborhood of zero D0
1,n1
⊂

Bm−s
(1/2)hr( f n1 x1)

such that B0
1,n1
=8 f n1 x (graph(ϕ̃0

1,n1
| D0

1,n1
)). By the expansion property

of the manifold in Uγ,δ,h
x and choice of γ, see Proposition 3.1(4), one shows easily that

D0
1,n1

contains a ball with radius (hrk/2)( 1
2 + 1/2λ′)1/2 > hrk/2 around the origin.

Let B0
2,0 = B0

1,n1
∩ Ĉ(x2, h). Since 8x is continuous on 3k (Proposition 3.1(1)), when

d(x2, f n1 x1) is sufficiently small we have

8−1
x2
8 f n1 x1(graphϕ̃0

1,n1
|D0

1,n1
)= graph(ϕ0

2,0),

where ϕ0
2,0(0)≤ (1/4)hrk, ‖dϕ0

2,0‖ ≤ γ and ϕ0
2,0 could be defined on a ball Bm−s

(1/2)hrk
.

Thus, B0
2,0 is an admissible (u, h)-manifold near x2. Let B0

2,i = f (B0
2,i−1 ∩ C( f i−1x2, h))

for 1≤ i ≤ n2 and B0
3,0 = B0

2,n2
∩ Ĉ(x3, h). We see that B0

3,0 is an admissible (u, h)-
manifold near x3. The procedure keeps going until we obtain an admissible (u, h)-
manifold B1

1,0 = B0
q,nq
∩ Ĉ(x1, h) near x1. Carrying out the above cyclic construction

infinitely, we obtain a sequence of admissible (u, h)-manifolds {Bm
1,0}m≥0 near x1, which

we denote as {Bm
}m≥0.
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FIGURE 1. Admissible manifolds near x1.

Similarly, applying f −1, we obtain a sequence of admissible (s, h)-manifolds {Am
}m≥0

near x1. See the left-hand picture of Figure 1.
Let zi, j be the unique intersection between Ai and B j in Ĉ(x1, h) whose constructions

imply that f nzi, j = zi−1, j+1 and in particular f nz`,`−1 = z`−1,`, where n =
∑q

i=1 ni

for all `≥ 1. The expansion property of these admissible manifolds (Proposition 3.1(4))
implies that the sequences {z`,`−1}l≥0 and {z`−1,`}l≥0 converge exponentially to the same
point z (see the right-hand picture of Figure 1), which is the shadowing periodic point we
need. Observe that f ni+ j z always lies in the Lyapunov neighborhood C( f j xi+1, h). For
given δ > 0 by choosing h sufficiently small we have d( f ni+ j z, f j xi+1)≤ δ. This proves
(i). It is easy to show (ii), for stable and unstable manifolds are actually limits of {Am

}m≥0

and {Bm
}m≥0 constructed in (i), respectively, in the C0 topology. �

3.2. Proof of Theorem A. Denote by Minv(M, f ) the set of all f -invariant Borel
probability measures with weak∗-topology, which is metrizable: take a dense subset
{ϕn}

∞

n=1 of C(M); then the weak∗-topology could be given by the metric D :
Minv(M, f )×Minv(M, f )→ R,

D(µ, ν)=
∞∑

n=1

|
∫
ϕndµ−

∫
ϕndν|

2n‖ϕn‖
.

By the triangle inequality, it is easy to verify the following affine property of D on
Minv(M, f ).

LEMMA 3.3. For any µ1, µ2, ν ∈Minv(M, f ) and p ∈ [0, 1],

D(pµ1 + (1− p)µ2, ν)≤ pD(µ1, ν)+ (1− p)D(µ2, ν).

Now we are prepared to prove Theorem A.
We will show that for given ε > 0, there exists a Bernoulli measure ν such that

D(µ, ν) < ε. Let L = L(ε) be large enough such that
∑
∞

j=L+1 (1/2
j ) < 1

16ε. Take δ > 0
such that for any two points w1, w2 ∈ M with d(w1, w2) < δ, we have

|ϕ j (w1)− ϕ j (w2)|<
1

16ε‖ϕ j‖, j = 1, . . . , L ,

where {ϕn}
∞

n=1 is a dense subset of C(M) taken in the definition of D. Since the measure
µ is ergodic and hyperbolic, we can take a Pesin set 3=

⋃
k≥0 3k associated to µ.
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FIGURE 2. Periodic shadowing by z.

Since µ is weak mixing and thus ergodic, by the ergodic theorem,

G(µ) :=
{

x ∈ M :
1
n

n−1∑
i=0

δ f i x → µ, n→+∞
}

has full measure and we call x ∈ G(µ) the generic point of µ. Denote

G N (µ)=

{
x ∈ G(µ)

∣∣∣∣ D
(

1
n

n−1∑
i=0

δ f i x , µ

)
<

1
8
ε, ∀n ≥ N

}
.

Choose N and k large enough such that µ(G N (µ) ∩3k) > 0. Fix x ∈ supp(µ|3k∩G N (µ))

and denote B(x, r) ∩3k ∩ G N (µ) as Bk,N (x, r); then

µ(Bk,N (x, r)) > 0 for all r > 0.

For k and δ > 0 taken as above, we take ψ(k, δ) as in Lemma 3.2 and let r = 1
4ψ(k, δ).

Since µ is weak mixing, by Definition 2.1 there exist two consecutive integers m1,
m2 ≥ N such that

µ( f −mi Bk,N (x, r) ∩ Bk,N (x, r)) > 0 for all i = 1, 2.

It is clear that
(m1, m2)= 1.

Take two points y1, y2 such that yi , f mi yi ∈ Bk,N (x, r), i = 1, 2. Note that

d(y2, f m1 y1) < ψ(k, δ), d(y1, f m2 y2) < ψ(k, δ)

since r = 1
4ψ(k, δ). Now the two points {yi }i=1,2 and the two integers {mi }i=1,2 satisfy

the assumption of Lemma 3.2 and hence there is a hyperbolic periodic point z with period
m1 + m2 satisfying

d( f i z, f i y1) < δ, 0≤ i < m1, d( f i z, f i−m1 y2) < δ, m1 ≤ i < m1 + m2.

See Figure 2.
We split the rest of proof into two steps. The first step is to show that the periodic

measure supported on the periodic orbit of z is close to µ in the weak∗-topology. In the
second step we will show that the stable manifold of z intersects transversely with the
unstable manifold of f z, which implies that the ‘horseshoe’ associated with the transverse
intersection is topologically mixing and thus there exists a Bernoulli measure supported on
it. This Bernoulli measure is close to the periodic measure and thus close to the hyperbolic
measure µ in the weak∗-topology.
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Step 1. For ε > 0 given at the beginning of the proof of Theorem A, we show that

D
(

1
m1 + m2

m1+m2−1∑
i=0

δ f i z, µ

)
<

1
2
ε. (3)

Proof of Step 1. We reduce (3) to the following two inequalities:

D
(

1
m1

m1−1∑
i=0

δ f i z, µ

)
<

1
4
ε, (4)

D
(

1
m2

m1+m2−1∑
i=m1

δ f i z, µ

)
<

1
4
ε. (5)

We prove (4) and leave a similar proof of (5) to readers. Since d( f i z, f i y1) < δ,

0≤ i < m1,

|ϕ j ( f i z)− ϕ j ( f i y1)|<
1

16ε‖ϕ j‖, 0≤ i < m1, j = 1, . . . , L .

By the choice of L , we have

D
(

1
m1

m1−1∑
i=0

δ f i z,
1

m1

m1−1∑
i=0

δ f i y1

)

=

L∑
j=1

∣∣∣∣ 1
m1

m1−1∑
i=0

(ϕ j ( f i z)− ϕ j ( f i y1))

∣∣∣∣
2 j‖ϕ j‖

+

∞∑
j=L+1

∣∣∣∣ 1
m1

m1−1∑
i=0

(ϕ j ( f i z)− ϕ j ( f i y1))

∣∣∣∣
2 j‖ϕ j‖

≤

( L∑
j=1

1
2 j

)
ε

16
+
ε

16
<
ε

16
+
ε

16
=
ε

8
. (6)

Recall that m1 > N and thus D((1/m1)
∑m1−1

i=0 δ f i y1
, µ) < 1

8ε. So, we have

D
(

1
m1

m1−1∑
i=0

δ f i z, µ

)
≤ D

(
1

m1

m1−1∑
i=0

δ f i z,
1

m1

m1−1∑
i=0

δ f i y1

)
+D

(
1

m1

m1−1∑
i=0

δ f i y1
, µ

)
<
ε

4
.

This proves (4).
By Lemma 3.3, combined with (4) and (5), we directly obtain (3):

D
(

1
m1 + m2

m1+m2−1∑
i=0

δ f i z, µ

)

≤
m1

m1 + m2
D
(

1
m1

m1−1∑
i=0

δ f i z, µ

)
+

m2

m1 + m2
D
(

1
m2

m1+m2−1∑
i=m1

δ f i z, µ

)

<
1
4
ε +

1
4
ε =

1
2
ε.

Thus, we complete the proof of Step 1. �
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For the hyperbolic periodic point z with period π(z), denote W s
loc(z) and W u

loc(z)
as local stable and unstable manifolds of z, respectively, whose sizes are not uniquely
determined. Denote W s(z)=

⋃
n≤0 f nπ(z)W s

loc(z) and W u(z)=
⋃

n≥0 f nπ(z)W u
loc(z) as

global stable and unstable manifolds of z. Write W s(z) tW u( f i z) 6= ∅ if W s(z) has
transversal intersection with W u( f i z).

Step 2. We show that W s(z) tW u( f z) 6= ∅.

Proof of Step 2. By Lemma 3.2(ii), W u
loc(z) is an admissible (u, 1)-manifold near y1.

Denote B(z)=W u
loc(z) ∩ Ĉ(y1, 1). Following the method in the proof of Lemma 3.2(i),

through iterations B( f i z)= f (B( f i−1z) ∩ Ĉ( f i−1x1, 1)), W u
loc( f m1 z) could be written

as 8 f m1 y1(graph ϕ|D), where ϕ : Bm−s
rk
→ Bs

rk
satisfies ‖ϕ(0)‖ ≤ ((1+ λ′)/2)m1rk/4≤

(1+ λ′)/2 · rk/4, ‖dϕ‖ ≤ (λ′)m1γ ≤ λ′γ and D contains a ball around the origin with
radius rk/2( 1

2 + 1/2λ′)1/2 > rk/2. Since both y1 and f m1 y1 belong to 3k, shrinking r
if necessary we have that W u

loc( f m1 z) ∩ Ĉ(y1, 1) is an admissible (u, 1)-manifold near
y1. Since W s

loc(z) is an admissible (s, 1)-manifold near y1, we obtain W u
loc( f m1 z) t

W s
loc(z) 6= ∅.
We conclude the proof of Step 2 by the following lemma, which shows that the

transverse intersection relation between W s(z) and W u( f m1 z) could be transferred to an
intersection between W s(z) and W u( f z)†.

LEMMA 3.4. W s(z) tW u( f z) 6= ∅.

Proof. Since (m1, m2)= 1, there exist p, q ∈ Z+ such that

m1 p − m2q = 1. (7)

Note that W s(z) tW u( f m1 z) 6= ∅ implies that W s( f m1 z) tW u( f 2m1 z) 6= ∅ and
hence W s(z) tW u( f 2m1 z) 6= ∅. In fact, let B be a small disk contained in W u( f 2m1 z)
with the same dimension that intersects transversely with W s( f m1 z). By the inclination
lemma [16], for any n sufficiently large we have f π(z)n B, which, still contained
in W u( f 2m1 z), is C1 close to W u

loc( f m1 z). Thus, f π(z)n D tW s(z) 6= ∅ since
W u( f m1 z) tW s(z) 6= ∅. So, we obtain W s(z) tW u( f 2m1 z) 6= ∅. By induction, we
have W s(z) tW u( f m1(p+q)z) 6= ∅, which means that W s( f (m1+m2)q z) tW u( f m1(p+q)z)
6= ∅ since π(z)= m1 + m2. Iterating backwards (m1 + m2)q steps, we obtain W s(z) t
W u( f m1 p−m2q z) 6= ∅. By (7), we directly get W s(z) tW u( f z) 6= ∅. �

Now we complete the proof of Theorem A. Let w ∈W s(z) tW u( f z); by
[16, Theorem 4.5], there is a small neighborhood U of orb(z) ∪ orb(w) such that
f |3U is a hyperbolic invariant set which is conjugate to a subshift of finite type,
where 3U =

⋂
i∈Z f iU. By [3, Proposition 4.7], f |3U is topologically mixing and, by

[5, Theorem 34], f admits a Bernoulli measure ν on 3U . Choosing U small enough,
we have D(ν, (1/(m1 + m2))

∑m1+m2−1
i=0 δ f i z) < ε/2. Combining this with (3), we obtain

D(µ, ν) < ε. Thus, we complete the proof of Theorem A. �

† It was pointed out to us by the referee that this is an automatic corollary of [2, Proposition 1], which implies
that W s (z) tW u( f m z) 6= ∅ if and only if m ∈ `Z, where ` is a positive integer dividing π(z). Readers may refer
to [2] for more details. In particular in our case, `= 1 by the coprime relationship between m1 and m2. However,
we still present our more elementary proof here, which is much shorter, and only makes use of the inclination
lemma [16].
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4. Proof of Theorem C
We prove Theorem C in this section. Recall that in the proof of Theorem A, Lemma 3.2
plays a key role in which the Hölder condition of derivatives is crucial since it determines
the sizes of hyperbolic neighborhoods at different points. When the Hölder condition is
removed and replaced by the domination property of the hyperbolic measure, we have
another closing lemma of Liao [10] and its generalization by Gan [6].

4.1. Closing lemma for C1 non-uniformly hyperbolic systems with domination.

Definition 4.1. [10] Given positive integers n1, n2, . . . , nr and a real λ ∈ (0, 1), an orbit
arc

(x, {n j }
r
j=1)= (x, f x, . . . , f n1 x, f n1+1x, . . . , f n1+n2 x, . . . , f n1+···+nr x)

is called λ-quasi hyperbolic with gap T with respect to a splitting Tx M = Ex ⊕ Fx if
0< n j ≤ T, j = 1, . . . , r , and the following three conditions are satisfied.
(1)

∏k−1
j=0 ‖D f n j+1 |E j ‖ ≤ λ

k, 1≤ k ≤ r, where E j = D f n0+···+n j Ex and n0 = 0.

(2)
∏r−1

j=k m(D f n j+1 |F j )≥ λ
k−r, 0≤ k ≤ r − 1,where F j = D f n0+···+n j Fx and n0 = 0.

(3) ‖D f n j+1 |E j ‖/m(D f n j+1 |F j )≤ λ
2, 0≤ j ≤ r − 1.

Here m(D f |F j ) is the minimum norm of D f |F j , i.e.

m(D f |F j )= inf{‖D f v‖ : v ∈ F j , ‖v‖ = 1}.

In 1979, Liao [10] gave a closing lemma which asserts the existence of a hyperbolic
periodic orbit near a quasi hyperbolic arc if its starting point and ending point are close,
that is, tracing a hyperbolic arc by a hyperbolic periodic orbit. In 2002, Gan [6] generalized
the closing lemma to a shadowing lemma, that is, tracing ‘well-arranged’ countably many
hyperbolic arcs by a real orbit.

Definition 4.2. Let λ, ρ, T, d be positive reals, where λ ∈ (0, 1), T ≥ 1. A sequence of
orbit arcs (xi , {ni j }

r(i)
j=1)

∞

i=−∞ is called a λ-quasi hyperbolic ρ-pseudo orbit with gap T

if for any i , (xi , {ni j }
r(i)
j=1) is λ-quasi hyperbolic with gap T with respect to the splitting

Txi M = Exi ⊕ Fxi and d( f ni1+···+nir(i) xi , xi+1)≤ ρ.

A point z d-shadows (xi , {ni j }
r(i)
j=1)

∞

i=−∞ provided that d( f k z, f k−Ni xi )≤ d, k = Ni +∑`
j=1 ni j , `= 1, . . . , r(i), where

Ni =



0, i = 0,
i−1∑
k=0

( r(k)∑
j=1

nk j

)
, i > 0,

i∑
k=−1

( r(k)∑
j=1

nk j

)
, i < 0.

LEMMA 4.3. [6] Let f be a C1 diffeomorphism on a compact Riemannian manifold
M and 3 be an f -invariant closed subset of M. Assume that there exists a continuous
invariant splitting T3= E ⊕ F on 3. Then for any λ ∈ (0, 1) and T > 0 there exist
L > 0 and d0 > 0 such that for any d ∈ (0, d0] and any λ-quasi hyperbolic d-pseudo
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orbit (xi , {ni j }
r(i)
j=1)

∞

i=−∞ with gap T with respect to the splitting E ⊕ F, there exists a

point z on M which Ld-shadows (xi , {ni j }
r(i)
j=1)

∞

i=−∞. Moreover, if (xi , {ni j }
r(i)
j=1)

∞

i=−∞ is
periodic, i.e. there exists c ∈ Z+ such that for any i ∈ Z, xi = xi+c, r(i)= r(i + c) and
ni j = n(i+c) j , 1≤ j ≤ r(i), then z is also periodic with period

∑c
i=1(ni1 + · · · + nir(i)).

Remark 4.4.
(i) For the convenience of our application, the statement here is a little different from [6],

where in a quasi hyperbolic orbit arc all ni are taken as 1.
(ii) Since the gap T is finite, for any ρ > 0 by choosing d sufficiently small the

shadowing point z actually ρ-shadows the whole quasi hyperbolic orbit arc
(xi , {ni j }

r(i)
j=1), i.e. not only shadows the points f ni j (xi ).

4.2. Proof of Theorem C. For given ε > 0, we show that there exists a Bernoulli
measure ν such that D(µ, ν) < ε.

Since µ is weak mixing and hyperbolic, by the ergodic theorem, the Lyapunov
exponents are µ-almost everywhere constant and non-zero. Let λs be the norm of the
maximal negative Lyapunov exponent and λu be the minimal positive exponent of µ,
respectively. By [1, Lemma 8.4], for any δ > 0 there exist an integer Nδ > 0 and a
measurable set X with µ(X)= 1 such that for any x ∈ X and N ≥ Nδ , we have

lim
k→+∞

1
k N

k−1∑
i=0

log ‖D f N
|Es ( f i N x)‖<−λs + δ, (8)

lim
k→+∞

1
k N

k−1∑
i=0

log ‖D f −N
|Eu( f −i N x)‖<−λu + δ. (9)

Thus, for any x ∈ X and N ≥ Nδ, there exists C(x, N )≥ 1 such that for any k ≥ 1, we
have

k−1∏
i=0

‖D f N
|Es ( f i N x)‖ ≤C(x, N )ek N (−λs+δ), (10)

k−1∏
i=0

‖D f −N
|Eu( f −i N x)‖ ≤C(x, N )ek N (−λu+δ). (11)

Denote

G N (µ)=

{
x ∈ G(µ)

∣∣∣∣ D
(

1
n

n−1∑
i=0

δ f i x , µ

)
<

1
8
ε, ∀n ≥ N

}
.

Take N0 > Nδ such that

µ(G N0(µ)) >
1
2
,
‖D f N

|Es‖

m(D f N |Eu )
≤

1
2

for all N ≥ N0.

Now fix two prime integers N1, N2 ≥ N0, which implies in particular that (N1, N2)= 1.
Denote XC = {x ∈ X | C(x, N1)≤ C, C(x, N2)≤ C}. Fix x ∈ supp(µ|XC∩G N0 (µ)

) for C
large enough and write BC,N0(x, r)= B(x, r) ∩ XC ∩ G N0(µ), where B(x, r) denotes
the ball of diameter r centered at x .



Approximation of Bernoulli measures for NHS 13

Denote J = J (BC,N0(x, r), BC,N0(x, r)) as in Definition 2.1, which is of density 1.
For the moment we denote the density of a subset I ⊂ Z+ as ρ(I ). As in the proof of
Theorem A, we could obtain the coprime relationship from the weak mixing property.

LEMMA 4.5. For any M0 > 0, there exist integers m1, m2 > M0 such that

(m1 N1, m2 N2)= 1.

Proof. Let
J1 = {i N1|i ≥ 0}, J2 = {i N2|i ≥ 0}.

Obviously, ρ(J1)= 1/N1, ρ(J2)= 1/N2. Let

J ′1 = {i ≥ 0 | i N1 ∈ J }, J ′2 = {i ≥ 0 | i N2 ∈ J }.

Since

lim
n→∞

#{0≤ i < n|i N1 ∈ J }
n

= lim
n→∞

#{0≤ j < nN1| j ∈ J1 ∩ J }
nN1

· N1

= ρ(J1 ∩ J ) · N1 = 1,

we have ρ(J ′1)= 1. Similarly, ρ(J ′2)= 1. Also note that

ρ(J ′1 ∩ J ′2)= 1, ρ(J ′1 ∩ J ′2 \ J1 ∪ J2)= 1−
1

N1
−

1
N2

>
1
2
.

Hence, we could find sufficiently large integers m1, m2 ∈ J ′1 ∩ J ′2 \ J1 ∪ J2 such that
(m1, m2)= 1.

Since N1, N2 are primes, by the choice of m1, m2 it is easy to see that m1 N1 and m2 N2

are coprime, that is, (m1 N1, m2 N2)= 1. �

As in the proof of Theorem A, we will make use of recurrent points of BC,N0(x, r) to
find a periodic measure close to µ.

LEMMA 4.6. There exists a periodic point z such that

D
(

1
π(z)

π(z)−1∑
j=0

δ f j z, µ

)
<

1
2
ε, (12)

where π(z)= (m1 N1 + m2 N2) is the period of z.

Proof. Take x j ∈ BC,N0(x, r) ∩ f −m j N j BC,N0(x, r) for j = 1, 2. Let χ =min{λs, λu}

> 0 and 0< δ� χ. Enlarging N1, N2 if necessary, we have
k−1∏
i=0
‖D f N j |Es ( f i N j x j )

‖ ≤ λk, k = 1, . . . , m j , (13)

m j−1∏
i=k

m(D f N j |Eu( f i N j x j )
)≥ λk−m j , k = 0, . . . , m j − 1, (14)

where λ=max{eNi (−χ+2δ), 1/
√

2} ∈ (0, 1).
By the choice of N1, N2, we have

‖D f N j |Es‖

m(D f N j |Eu )
≤ λ2, j ∈ {1, 2}.
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Thus, we get a λ-quasi hyperbolic 2r -pseudo orbit with gap max{N1, N2}:

x1, . . . , f N1 x1, . . . , f 2N1 x1, . . . , f m1 N1 x1,

x2, . . . , f N2 x2, . . . , f 2N2 x2, . . . , f m2 N2 x2.

This is a periodic pseudo orbit. By Lemma 4.3, for any d > 0, by choosing r > 0
sufficiently small, we obtain a periodic point z such that orb(z, f ) d-shadows this quasi
hyperbolic pseudo periodic orbit. Then similarly as in Step 1 in the proof of Theorem A,
we obtain (12). �

Shrinking d if necessary, we assume that z is a hyperbolic periodic point satisfying
estimations as (13) and (14). More precisely, we acquire a constant λ̃ ∈ (λ, 1) such that

‖D f π(z)|Es (z)‖ ≤ λ̃
m1+m2 , m(D f π(z)|Eu(z))≥ λ̃

m1+m2 ,

where π(z)= m1 N1 + m2 N2 is the period of z. Thus, local stable and unstable manifolds
of z and f m1 N1 z have uniform sizes as m1, m2 go to infinity. Shrinking d further if
necessary, we obtain W s(z) tW u( f m1 N1 z) 6= ∅.

Since (m1 N1, m2 N2)= 1, by the same argument in the proof of Lemma 3.4, we
obtain W s(z) tW u( f z) 6= ∅. Thus, we could find a Bernoulli measure ν supported on
a topologically mixing hyperbolic set with

D
(

1
m1 N1 + m2 N2

m1 N1+m2 N2−1∑
j=0

δ f j z, ν

)
<
ε

2
.

Therefore, D(µ, ν) < ε and we complete the proof of Theorem C. �
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